
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Definitional Side of the Forcing

G. Jaber G. Lewertowski P.-M. Pédrot M. Sozeau N. Tabareau

INRIA

TYPES
24th May 2016

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 1 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Forcing in a Nutshell

Historically, forcing is a model transformation
Several names for the same concept

Forcing translation ∼= Kripke models ∼= Presheaf construction
(Set theory) (Modal logic) (Category theory)

Cohen’s original variant is classical
We will study intuitionistic forcing

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 2 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Forcing: the Oppression

Why on earth would you use forcing?

Set theory: a lot of independance results (too late for the Fields medal!)

Modal logic: Logic what?
Category theory: a HoTT topic!

Many models arise from presheaf constructions
Coquand & al. model of univalence is an example
Also step-indexing, parametricity...
But this stuff targets sets or topoi (erk)

We want forcing in Type Theory!

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 3 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Forcing: the Oppression

Why on earth would you use forcing?

Set theory: a lot of independance results (too late for the Fields medal!)

Modal logic: Logic what?

Category theory: a HoTT topic!
Many models arise from presheaf constructions
Coquand & al. model of univalence is an example
Also step-indexing, parametricity...
But this stuff targets sets or topoi (erk)

We want forcing in Type Theory!

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 3 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Forcing: the Oppression

Why on earth would you use forcing?

Set theory: a lot of independance results (too late for the Fields medal!)

Modal logic: Logic what?
Category theory: a HoTT topic!

Many models arise from presheaf constructions
Coquand & al. model of univalence is an example
Also step-indexing, parametricity...
But this stuff targets sets or topoi (erk)

We want forcing in Type Theory!

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 3 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intuitionistic Forcing in LJ (Kripke, presheaf, whatever)

Assume a preorder (P,≤). We summarize the forcing translation in LJ.
To a formula A, we associate a P-indexed formula [[A]]p.
To a proof ⊢ A, we associate a proof of ∀p : P, [[A]]p.
(Target theory not really specified here, think λΠ.)

Most notably,
[[A → B]]p := ∀q ≤ p. [[A]]q → [[B]]q

(Actually this can be adapted straightforwardly to any category (P, Hom).)

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 4 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intuitionistic Forcing in LJ (Kripke, presheaf, whatever)

Assume a preorder (P,≤). We summarize the forcing translation in LJ.
To a formula A, we associate a P-indexed formula [[A]]p.
To a proof ⊢ A, we associate a proof of ∀p : P, [[A]]p.
(Target theory not really specified here, think λΠ.)

Most notably,
[[A → B]]p := ∀q ≤ p. [[A]]q → [[B]]q

(Actually this can be adapted straightforwardly to any category (P, Hom).)

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 4 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Intuitionistic Forcing in LJ (Kripke, presheaf, whatever)

Assume a preorder (P,≤). We summarize the forcing translation in LJ.
To a formula A, we associate a P-indexed formula [[A]]p.
To a proof ⊢ A, we associate a proof of ∀p : P, [[A]]p.
(Target theory not really specified here, think λΠ.)

Most notably,
[[A → B]]p := ∀q ≤ p. [[A]]q → [[B]]q

(Actually this can be adapted straightforwardly to any category (P, Hom).)

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 4 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Also sprach Curry-Howard

The previous soundness theorem makes sense in a proof-relevant world:

If ⊢ t : A then p : P ⊢ [t]p : [[A]]p

... and the translation can be thought of as a monotonous monad reader

Reader Forcing
T A := P → A Tp A := ∀q : P, q ≤ p → A
read : 1 → P read : 1 → P

enter : (1 → A) → P → A enter : (1 → A) → ∀p : P, p ≤ read() → A

In particular, taking (P,≤) to be a full preorder gives the reader monad.

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 5 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Also sprach Curry-Howard

The previous soundness theorem makes sense in a proof-relevant world:

If ⊢ t : A then p : P ⊢ [t]p : [[A]]p

... and the translation can be thought of as a monotonous monad reader

Reader Forcing
T A := P → A Tp A := ∀q : P, q ≤ p → A
read : 1 → P read : 1 → P

enter : (1 → A) → P → A enter : (1 → A) → ∀p : P, p ≤ read() → A

In particular, taking (P,≤) to be a full preorder gives the reader monad.

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 5 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Also sprach Curry-Howard

The previous soundness theorem makes sense in a proof-relevant world:

If ⊢ t : A then p : P ⊢ [t]p : [[A]]p

... and the translation can be thought of as a monotonous monad reader

Reader Forcing
T A := P → A Tp A := ∀q : P, q ≤ p → A
read : 1 → P read : 1 → P

enter : (1 → A) → P → A enter : (1 → A) → ∀p : P, p ≤ read() → A

In particular, taking (P,≤) to be a full preorder gives the reader monad.

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 5 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Do it, or do not: there is no try

In 2012, Jaber & al. gave a forcing translation from CIC into itself.

Intuitively, not that difficult.
To a type ⊢ A : □ associate p : P ⊢ [[A]]p : □
To a term ⊢ t : A associate p : P ⊢ [t]p : [[A]]p by induction on t
To handle types-as-terms uniformly, [[·]] is defined through [·]:

[A]p : Πq ≤ p.□ (A type)
[[A]]p := [A]p p idp

Translation of the dependent arrow is almost the same:

[[Πx : A.B]]p ≡ Πq ≤ p.Πx : [[A]]q. [[B]]q

... except that this naive presentation does not work.

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 6 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Do it, or do not: there is no try

In 2012, Jaber & al. gave a forcing translation from CIC into itself.

Intuitively, not that difficult.
To a type ⊢ A : □ associate p : P ⊢ [[A]]p : □
To a term ⊢ t : A associate p : P ⊢ [t]p : [[A]]p by induction on t

To handle types-as-terms uniformly, [[·]] is defined through [·]:
[A]p : Πq ≤ p.□ (A type)
[[A]]p := [A]p p idp

Translation of the dependent arrow is almost the same:

[[Πx : A.B]]p ≡ Πq ≤ p.Πx : [[A]]q. [[B]]q

... except that this naive presentation does not work.

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 6 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Do it, or do not: there is no try

In 2012, Jaber & al. gave a forcing translation from CIC into itself.

Intuitively, not that difficult.
To a type ⊢ A : □ associate p : P ⊢ [[A]]p : □
To a term ⊢ t : A associate p : P ⊢ [t]p : [[A]]p by induction on t
To handle types-as-terms uniformly, [[·]] is defined through [·]:

[A]p : Πq ≤ p.□ (A type)
[[A]]p := [A]p p idp

Translation of the dependent arrow is almost the same:

[[Πx : A.B]]p ≡ Πq ≤ p.Πx : [[A]]q. [[B]]q

... except that this naive presentation does not work.

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 6 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Do it, or do not: there is no try

In 2012, Jaber & al. gave a forcing translation from CIC into itself.

Intuitively, not that difficult.
To a type ⊢ A : □ associate p : P ⊢ [[A]]p : □
To a term ⊢ t : A associate p : P ⊢ [t]p : [[A]]p by induction on t
To handle types-as-terms uniformly, [[·]] is defined through [·]:

[A]p : Πq ≤ p.□ (A type)
[[A]]p := [A]p p idp

Translation of the dependent arrow is almost the same:

[[Πx : A.B]]p ≡ Πq ≤ p.Πx : [[A]]q. [[B]]q

... except that this naive presentation does not work.

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 6 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Separate, but equal

The culprit is the conversion rule:
⊢ t : A A ≡β B

⊢ t : B
⇝ p : P ⊢ [t]p : [[A]]p [[A]]p ≡β [[B]]p

p : P ⊢ [t]p : [[B]]p

But in general, A ≡β B does not imply [[A]]p ≡β [[B]]p.

To fix this, Jaber & al. needed to stuff equality proofs everywhere.
In types: [[□]]p ≡ Σ(A : Πq ≤ p.□). « A respects some stuff »
In functions: [[Πx : A.B]]p ≡ Σ(f : . . .). « f respects other stuff »

And only recovered that A ≡β B implies p : P ⊢ [[A]]p =□ [[B]]p.

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 7 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Separate, but equal

The culprit is the conversion rule:
⊢ t : A A ≡β B

⊢ t : B
⇝ p : P ⊢ [t]p : [[A]]p [[A]]p ≡β [[B]]p

p : P ⊢ [t]p : [[B]]p

But in general, A ≡β B does not imply [[A]]p ≡β [[B]]p.

To fix this, Jaber & al. needed to stuff equality proofs everywhere.
In types: [[□]]p ≡ Σ(A : Πq ≤ p.□). « A respects some stuff »
In functions: [[Πx : A.B]]p ≡ Σ(f : . . .). « f respects other stuff »

And only recovered that A ≡β B implies p : P ⊢ [[A]]p =□ [[B]]p.

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 7 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

When conversion matters

In the end, you cannot interpret conversion by mere conversion.

⊢ t : A A ≡β B
⊢ t : B

⇝ p : P ⊢ [t]p : [[A]]p π : [[A]]p ≡β [[B]]p

p : P ⊢ transport([π],[t]p) : [[B]]p

This step is usually dismissed in a categorical world by:

« This diagram commutes. »

... but here, it raises a hell of coherence issues.
Breaks computation
Requires definitional UIP in the target.
Requires that ≤ is proof-irrelevant.
Only degenerated presheaf models!

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 8 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

When conversion matters

In the end, you cannot interpret conversion by mere conversion.

⊢ t : A A ≡β B
⊢ t : B

⇝ p : P ⊢ [t]p : [[A]]p π : [[A]]p ≡β [[B]]p

p : P ⊢ transport([π],[t]p) : [[B]]p

This step is usually dismissed in a categorical world by:

« This diagram commutes. »

... but here, it raises a hell of coherence issues.
Breaks computation
Requires definitional UIP in the target.
Requires that ≤ is proof-irrelevant.
Only degenerated presheaf models!

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 8 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A new hope

Interestingly the Curry-Howard isomorphism explains this failure.

Root of the failure
The usual forcing [·]p translation is call-by-value.

That is, assuming (P,≤) has definitional laws:

t ≡βv u implies [t]p ≡β [u]p

where βv is generated by the rule:

(λx. t)V −→βv t{x := V} (V a value)

This problem is already here in the simply-typed case but less troublesome.

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 9 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Two Sides of the Forcing

There is an easy Call-by-Push-Value decomposition of forcing.

Precomposing by the CBV decomposition we recover the usual forcing
Precomposing by the CBN decomposition we obtain a new translation
... much closer to Krivine and Miquel’s classical variant

CBPV

CBV

CBN
λΠ

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 10 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Two Sides of the Forcing

There is an easy Call-by-Push-Value decomposition of forcing.
Precomposing by the CBV decomposition we recover the usual forcing

Precomposing by the CBN decomposition we obtain a new translation
... much closer to Krivine and Miquel’s classical variant

CBPV

CBV

CBN
λΠ

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 10 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Two Sides of the Forcing

There is an easy Call-by-Push-Value decomposition of forcing.
Precomposing by the CBV decomposition we recover the usual forcing
Precomposing by the CBN decomposition we obtain a new translation
... much closer to Krivine and Miquel’s classical variant

CBPV

CBV

CBN
λΠ

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 10 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

CBN provides many abilities some consider to be unnatural

You only have to change the interpretation of the arrow.

CBV [[Πx : A.B]]p ∼= Πq ≤ p.Πx : [[A]]q. [[B]]q

CBN [[Πx : A.B]]p ≡ Π(x : Πq ≤ p. [[A]]q). [[B]]p

... and everything follows naturally (CBN is somehow a « free » construction).

Interpretation of CCω

Assuming that P has definitional laws, then [·] provides a non-trivial trans-
lation from CCω into itself preserving typing and conversion.

This is to the best of our knowledge, the first effectful translation of CCω.

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 11 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

CBN provides many abilities some consider to be unnatural

You only have to change the interpretation of the arrow.

CBV [[Πx : A.B]]p ∼= Πq ≤ p.Πx : [[A]]q. [[B]]q

CBN [[Πx : A.B]]p ≡ Π(x : Πq ≤ p. [[A]]q). [[B]]p

... and everything follows naturally (CBN is somehow a « free » construction).

Interpretation of CCω

Assuming that P has definitional laws, then [·] provides a non-trivial trans-
lation from CCω into itself preserving typing and conversion.

This is to the best of our knowledge, the first effectful translation of CCω.

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 11 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Yoneda not far, patience, soon you will be with him

Technical issue: how can P have definitional laws?

Answer: using this one weird old Yoneda trick!

(P,≤) 7→ (PY ,≤Y)

PY := P
p ≤Y q := Πr : P. q ≤ r → p ≤ r

Yoneda lemma
The category (PY ,≤Y) is equivalent to (P,≤)

Furthermore, it has definitional laws

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 12 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Yoneda not far, patience, soon you will be with him

Technical issue: how can P have definitional laws?

Answer: using this one weird old Yoneda trick!

(P,≤) 7→ (PY ,≤Y)

PY := P
p ≤Y q := Πr : P. q ≤ r → p ≤ r

Yoneda lemma
The category (PY ,≤Y) is equivalent to (P,≤)

Furthermore, it has definitional laws

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 12 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Inductive types

Up to now, we only interpret the negative fragment (Π+□).

But our translation can be adapted easily to inductive types.
We just need to box all subterms!

[[Σx : A.B]]p := Σ(x : Πq ≤ p. [[A]]q). (Πq ≤ p. [[B]]q)

[[A + B]]p := (Πq ≤ p. [[A]]q) + (Πq ≤ p. [[B]]q)

Inductive [[N]]p : □ := [O] : [[N]]p | [S] : (Πq ≤ p. [[N]]q) → [[N]]p

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 13 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Inductive types

Up to now, we only interpret the negative fragment (Π+□).

But our translation can be adapted easily to inductive types.
We just need to box all subterms!

[[Σx : A.B]]p := Σ(x : Πq ≤ p. [[A]]q). (Πq ≤ p. [[B]]q)

[[A + B]]p := (Πq ≤ p. [[A]]q) + (Πq ≤ p. [[B]]q)

Inductive [[N]]p : □ := [O] : [[N]]p | [S] : (Πq ≤ p. [[N]]q) → [[N]]p

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 13 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Dependent elimination

Yet, the translation does not interpret full dependent elimination.

Nrec Π(P : □).P → (P → P) → N → P ✓
Nind Π(P : N → □).P O → (Πn : N.P n → P (S n)) → Πn : N.P n ✠

Effects ⇝ Non-standard inductive terms
(A well-known issue. See e.g. Herbelin’s CIC + callcc)

Luckily there is a surprise solution coming from classical realizability.

Storage operators!

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 14 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Dependent elimination

Yet, the translation does not interpret full dependent elimination.

Nrec Π(P : □).P → (P → P) → N → P ✓
Nind Π(P : N → □).P O → (Πn : N.P n → P (S n)) → Πn : N.P n ✠

Effects ⇝ Non-standard inductive terms
(A well-known issue. See e.g. Herbelin’s CIC + callcc)

Luckily there is a surprise solution coming from classical realizability.

Storage operators!

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 14 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Dependent elimination

Yet, the translation does not interpret full dependent elimination.

Nrec Π(P : □).P → (P → P) → N → P ✓
Nind Π(P : N → □).P O → (Πn : N.P n → P (S n)) → Πn : N.P n ✠

Effects ⇝ Non-standard inductive terms
(A well-known issue. See e.g. Herbelin’s CIC + callcc)

Luckily there is a surprise solution coming from classical realizability.

Storage operators!

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 14 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Storage operators

They allow to prove induction principles in presence of callcc
Essentially emulate CBV in CBN through a CPS
Defined in terms of non-dependent recursion

θN : N → ΠR : □. (N → R) → R
θN := Nrec (λR k. k 0)(λñ R k. ñ R (λn. k (S n)))

Trivial in CIC: CIC ⊢ Πn R k. θN n R k =R k n
The above propositional η-rule is negated by the forcing translation
But it interprets a restricted dependent elimination!

Nĩnd ΠP.P O → (Πn : N.P n → θN (S n) □ P) → Πn : N. θN n □ P ✓

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 15 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Storage operators

They allow to prove induction principles in presence of callcc
Essentially emulate CBV in CBN through a CPS
Defined in terms of non-dependent recursion

θN : N → ΠR : □. (N → R) → R
θN := Nrec (λR k. k 0)(λñ R k. ñ R (λn. k (S n)))

Trivial in CIC: CIC ⊢ Πn R k. θN n R k =R k n
The above propositional η-rule is negated by the forcing translation
But it interprets a restricted dependent elimination!

Nĩnd ΠP.P O → (Πn : N.P n → θN (S n) □ P) → Πn : N. θN n □ P ✓

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 15 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Storage operators

They allow to prove induction principles in presence of callcc
Essentially emulate CBV in CBN through a CPS
Defined in terms of non-dependent recursion

θN : N → ΠR : □. (N → R) → R
θN := Nrec (λR k. k 0)(λñ R k. ñ R (λn. k (S n)))

Trivial in CIC: CIC ⊢ Πn R k. θN n R k =R k n
The above propositional η-rule is negated by the forcing translation
But it interprets a restricted dependent elimination!

Nĩnd ΠP.P O → (Πn : N.P n → θN (S n) □ P) → Πn : N. θN n □ P ✓

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 15 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What we also did

A fancy plugin for Coq generating horrendous well-typed terms

The forcing is definitional with this one!

A handful of independence results and usecases

⇝ Generate anomalous types that negate univalence
⇝ Step indexing
⇝ Give some intuition for the cubical model

A LICS paper detailing the whole story

This is the paper you’re looking for!

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 16 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What we also did

A fancy plugin for Coq generating horrendous well-typed terms

The forcing is definitional with this one!
A handful of independence results and usecases

⇝ Generate anomalous types that negate univalence
⇝ Step indexing
⇝ Give some intuition for the cubical model

A LICS paper detailing the whole story

This is the paper you’re looking for!

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 16 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What we also did

A fancy plugin for Coq generating horrendous well-typed terms

The forcing is definitional with this one!
A handful of independence results and usecases

⇝ Generate anomalous types that negate univalence
⇝ Step indexing
⇝ Give some intuition for the cubical model

A LICS paper detailing the whole story

This is the paper you’re looking for!

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 16 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

What remains to be done

Recover a propositional η-rule by using parametricity
Understand the cubical model in CBN (may the Force be with us...)

Design a general theory of CIC + effects using storage operators
The next 700 stupid translations of CIC into itself

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 17 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

I’ve got a bad feeling about this

Questions you have?

Pédrot & al. (INRIA) The Definitional Side of the Forcing 24/05/2016 18 / 18


