
Dialectica the Ultimate

Pierre-Marie Pédrot

INRIA

TLLA’24
08/07/24

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 1 / 41

In Media Res

Today’s Menu
The most tricky question that I have been tormented with for a while

« What the (He)LL am I am going to talk about at TLLA? »

Just in case you entered this room by sheer mistake:

TLLA :≡ Trends in Linear Logic and Applications
(It is still time to escape.)

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 2 / 41

In Media Res

Today’s Menu
The most tricky question that I have been tormented with for a while

« What the (He)LL am I am going to talk about at TLLA? »

Just in case you entered this room by sheer mistake:

TLLA :≡ Trends in Linear Logic and Applications
(It is still time to escape.)

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 2 / 41

In Media Res

Today’s Menu
The most tricky question that I have been tormented with for a while

« What the (He)LL am I am going to talk about at TLLA? »

Just in case you entered this room by sheer mistake:

TLLA :≡ Trends in Linear Logic and Applications

(It is still time to escape.)

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 2 / 41

In Media Res

Today’s Menu
The most tricky question that I have been tormented with for a while

« What the (He)LL am I am going to talk about at TLLA? »

Just in case you entered this room by sheer mistake:

TLLA :≡ Trends in Linear Logic and Applications
(It is still time to escape.)

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 2 / 41

How do you do, fellow linear logicians?

Linear Logic?

LL was fashionable as an undergraduate
We had a group discussing the latest GoI trends and stuff
I betrayed linear logic right during my PhD (defended in 2015)
I think I have been mostly doing dependent type theory since then

« Seriously, what I am going to talk about at TLLA? »

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 3 / 41

How do you do, fellow linear logicians?

Linear Logic?

LL was fashionable as an undergraduate
We had a group discussing the latest GoI trends and stuff
I betrayed linear logic right during my PhD (defended in 2015)
I think I have been mostly doing dependent type theory since then

« Seriously, what I am going to talk about at TLLA? »

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 3 / 41

How do you do, fellow linear logicians?

Linear Logic?

LL was fashionable as an undergraduate
We had a group discussing the latest GoI trends and stuff
I betrayed linear logic right during my PhD (defended in 2015)
I think I have been mostly doing dependent type theory since then

« Seriously, what I am going to talk about at TLLA? »
P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 3 / 41

How I Learned to Stop Worrying and Love the Bang

The universal solution to the TLLA problem

(Hint: it’s actually in the title.)

Dialectica.

Shameless recycling: this was the topic of my PhD
Advertisement-worthy: it is not taught around enough to my taste
Latent schizophrenia: it keeps appearing everywhere (and nobody sees it)

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 4 / 41

How I Learned to Stop Worrying and Love the Bang

The universal solution to the TLLA problem

(Hint: it’s actually in the title.)

Dialectica.

Shameless recycling: this was the topic of my PhD
Advertisement-worthy: it is not taught around enough to my taste
Latent schizophrenia: it keeps appearing everywhere (and nobody sees it)

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 4 / 41

How I Learned to Stop Worrying and Love the Bang

The universal solution to the TLLA problem

(Hint: it’s actually in the title.)

Dialectica.

Shameless recycling: this was the topic of my PhD

Advertisement-worthy: it is not taught around enough to my taste
Latent schizophrenia: it keeps appearing everywhere (and nobody sees it)

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 4 / 41

How I Learned to Stop Worrying and Love the Bang

The universal solution to the TLLA problem

(Hint: it’s actually in the title.)

Dialectica.

Shameless recycling: this was the topic of my PhD
Advertisement-worthy: it is not taught around enough to my taste

Latent schizophrenia: it keeps appearing everywhere (and nobody sees it)

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 4 / 41

How I Learned to Stop Worrying and Love the Bang

The universal solution to the TLLA problem

(Hint: it’s actually in the title.)

Dialectica.

Shameless recycling: this was the topic of my PhD
Advertisement-worthy: it is not taught around enough to my taste
Latent schizophrenia: it keeps appearing everywhere (and nobody sees it)

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 4 / 41

A Short, Mostly Wrong History of Dialectica

Dialectica in a nutshell

The great ancestor of realizability
The name comes from the journal it was published in
Basically a fancy realizability model of HAω into System T
Designed by Gödel in the 30’s but published in 1958
Extremely kludgy and antiquated

The More You Know
In Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes, Gödel
passes more time discussing α-conversion than the actual Dialectica inter-
pretation.

(You have been warned.)

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 5 / 41

A Short, Mostly Wrong History of Dialectica

Dialectica in a nutshell

The great ancestor of realizability
The name comes from the journal it was published in
Basically a fancy realizability model of HAω into System T
Designed by Gödel in the 30’s but published in 1958
Extremely kludgy and antiquated

The More You Know
In Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes, Gödel
passes more time discussing α-conversion than the actual Dialectica inter-
pretation.

(You have been warned.)

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 5 / 41

A Short, Mostly Wrong History of Dialectica

Dialectica in a nutshell

The great ancestor of realizability
The name comes from the journal it was published in
Basically a fancy realizability model of HAω into System T
Designed by Gödel in the 30’s but published in 1958
Extremely kludgy and antiquated

The More You Know
In Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes, Gödel
passes more time discussing α-conversion than the actual Dialectica inter-
pretation.

(You have been warned.)

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 5 / 41

Anatomy of a Dusty Realizability

If HAω ⊢ A then

Witness Counter Orthogonality
Sequence of types Sequence of types

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 6 / 41

We Have Come to Realize

Legitimate question
What has this to do with LL?

On most connectives, Dialectica follows the BHK interpretation.
W(A ∧ B) = W(A)×W(B)
W(A ∨ B) = W(A) +W(B)

That is, it is morally the same as Kreisel realizability
i.e. boring intuitionistic semantics

... except the one important connective

A → B

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 7 / 41

We Have Come to Realize

Legitimate question
What has this to do with LL?

On most connectives, Dialectica follows the BHK interpretation.
W(A ∧ B) = W(A)×W(B)
W(A ∨ B) = W(A) +W(B)

That is, it is morally the same as Kreisel realizability
i.e. boring intuitionistic semantics

... except the one important connective

A → B

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 7 / 41

We Have Come to Realize

Legitimate question
What has this to do with LL?

On most connectives, Dialectica follows the BHK interpretation.
W(A ∧ B) = W(A)×W(B)
W(A ∨ B) = W(A) +W(B)

That is, it is morally the same as Kreisel realizability
i.e. boring intuitionistic semantics

... except the one important connective

A → B

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 7 / 41

We Have Come to Realize

Legitimate question
What has this to do with LL?

On most connectives, Dialectica follows the BHK interpretation.
W(A ∧ B) = W(A)×W(B)
W(A ∨ B) = W(A) +W(B)

That is, it is morally the same as Kreisel realizability
i.e. boring intuitionistic semantics

... except the one important connective

A → B

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 7 / 41

We Have Come to Realize

Legitimate question
What has this to do with LL?

On most connectives, Dialectica follows the BHK interpretation.
W(A ∧ B) = W(A)×W(B)
W(A ∨ B) = W(A) +W(B)

That is, it is morally the same as Kreisel realizability
i.e. boring intuitionistic semantics

... except the one important connective

A → B
P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 7 / 41

Implying this Makes Sense

There is more to arrows than just functions!

W(A → B) =

{
W(A) ⇒ W(B)
W(A) ⇒ C(B) ⇒ C(A)

C(A → B) = W(A)× C(B)

Functions have both a forward and a backward component.

A clear reminiscence of LL!

!A⊸ B ∼= B⊥⊸ ?A⊥

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 8 / 41

Implying this Makes Sense

There is more to arrows than just functions!

W(A → B) =

{
W(A) ⇒ W(B)
W(A) ⇒ C(B) ⇒ C(A)

C(A → B) = W(A)× C(B)

Functions have both a forward and a backward component.

A clear reminiscence of LL!

!A⊸ B ∼= B⊥⊸ ?A⊥

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 8 / 41

Beating a Dead Horse

Since De Paiva, it is well-known that Dialectica factorizes through LL

W(A⊸ B) =

{
W(A) ⇒ W(B)
C(B) ⇒ C(A)

C(A⊸ B) = W(A)× C(B)

W(!A) = W(A)
C(!A) = W(A) ⇒ C(A)

W(A → B) ∼= W(!A⊸ B)

Reminder:

W(A → B) =

{
W(A) ⇒ W(B)
W(A) ⇒ C(B) ⇒ C(A)

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 9 / 41

Beating a Dead Horse

Since De Paiva, it is well-known that Dialectica factorizes through LL

W(A⊸ B) =

{
W(A) ⇒ W(B)
C(B) ⇒ C(A)

C(A⊸ B) = W(A)× C(B)

W(!A) = W(A)
C(!A) = W(A) ⇒ C(A)

W(A → B) ∼= W(!A⊸ B)

Reminder:

W(A → B) =

{
W(A) ⇒ W(B)
W(A) ⇒ C(B) ⇒ C(A)

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 9 / 41

Can Dialectica Break Bricks?

Actually, most∗ models of LL are Dialectica-like

Chu spaces
Dialectica categories
Double-glueing

Nothing new here, nonetheless, it does not hurt to stress it.

Empirical Observation
Dialectica is the most natural way to linearize an intuitionistic calculus

(∗) except maybe games, and even there if we squint enough there are weird similarities.

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 10 / 41

Can Dialectica Break Bricks?

Actually, most∗ models of LL are Dialectica-like

Chu spaces
Dialectica categories
Double-glueing

Nothing new here, nonetheless, it does not hurt to stress it.

Empirical Observation
Dialectica is the most natural way to linearize an intuitionistic calculus

(∗) except maybe games, and even there if we squint enough there are weird similarities.

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 10 / 41

Can Dialectica Break Bricks?

Actually, most∗ models of LL are Dialectica-like

Chu spaces
Dialectica categories
Double-glueing

Nothing new here, nonetheless, it does not hurt to stress it.

Empirical Observation
Dialectica is the most natural way to linearize an intuitionistic calculus

(∗) except maybe games, and even there if we squint enough there are weird similarities.

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 10 / 41

Can Dialectica Break Bricks?

Actually, most∗ models of LL are Dialectica-like

Chu spaces
Dialectica categories
Double-glueing

Nothing new here, nonetheless, it does not hurt to stress it.

Empirical Observation
Dialectica is the most natural way to linearize an intuitionistic calculus

(∗) except maybe games, and even there if we squint enough there are weird similarities.

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 10 / 41

The Horse that Did Not Stop Beating Itself to Death

Dialectica keeps popping everywhere

Some of these Dialectica-like constructs are well-known
Some are more obscure, e.g. sequential algorithms (cf. some workshop in Marseille)

Surprisingly, obvious but deep connections were only made recently

Infomercial
This afternoon at LICS: Dialectica actually computes differentials

My now systematic reaction when faced with something related to LL

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 11 / 41

The Horse that Did Not Stop Beating Itself to Death

Dialectica keeps popping everywhere

Some of these Dialectica-like constructs are well-known
Some are more obscure, e.g. sequential algorithms (cf. some workshop in Marseille)

Surprisingly, obvious but deep connections were only made recently

Infomercial
This afternoon at LICS: Dialectica actually computes differentials

My now systematic reaction when faced with something related to LL

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 11 / 41

The Horse that Did Not Stop Beating Itself to Death

Dialectica keeps popping everywhere

Some of these Dialectica-like constructs are well-known
Some are more obscure, e.g. sequential algorithms (cf. some workshop in Marseille)

Surprisingly, obvious but deep connections were only made recently

Infomercial
This afternoon at LICS: Dialectica actually computes differentials

My now systematic reaction when faced with something related to LL

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 11 / 41

The Horse that Did Not Stop Beating Itself to Death

Dialectica keeps popping everywhere

Some of these Dialectica-like constructs are well-known
Some are more obscure, e.g. sequential algorithms (cf. some workshop in Marseille)

Surprisingly, obvious but deep connections were only made recently

Infomercial
This afternoon at LICS: Dialectica actually computes differentials

My now systematic reaction when faced with something related to LL

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 11 / 41

In This Talk

A 100% free idea for a research project!

I am too lazy to write a paper on that
It is more efficient to point at the moon
Invited talks are great for dissemination of such knowledge

Graded / quantitative types are a poor man’s Dialectica

More positively, Dialectica is a finer kind of graded types
Compatible with rich types (i.e. MLTT)
Dialectica as proof-relevant, higher-order complexity annotations

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 12 / 41

In This Talk

A 100% free idea for a research project!

I am too lazy to write a paper on that
It is more efficient to point at the moon
Invited talks are great for dissemination of such knowledge

Graded / quantitative types are a poor man’s Dialectica

More positively, Dialectica is a finer kind of graded types
Compatible with rich types (i.e. MLTT)
Dialectica as proof-relevant, higher-order complexity annotations

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 12 / 41

In This Talk

A 100% free idea for a research project!

I am too lazy to write a paper on that
It is more efficient to point at the moon
Invited talks are great for dissemination of such knowledge

Graded / quantitative types are a poor man’s Dialectica

More positively, Dialectica is a finer kind of graded types
Compatible with rich types (i.e. MLTT)
Dialectica as proof-relevant, higher-order complexity annotations

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 12 / 41

In This Talk

A 100% free idea for a research project!

I am too lazy to write a paper on that
It is more efficient to point at the moon
Invited talks are great for dissemination of such knowledge

Graded / quantitative types are a poor man’s Dialectica

More positively, Dialectica is a finer kind of graded types
Compatible with rich types (i.e. MLTT)
Dialectica as proof-relevant, higher-order complexity annotations

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 12 / 41

Part I
Dialectica Done Right

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 13 / 41

Curry-Howard to the Rescue

Let us present Dialectica as a program translation!

Without cheating too much
A rich language in the source: MLTT
The target will also be a variant of MLTT (some cheating involved here)

A variant of Moss-von Glehn model (a.k.a the Google Drive note by A. Bauer and myself)

... but why?

To get rid of most of Gödel’s hacks
To care about the equational theory
Because dependent types are cool, expressive and effective

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 14 / 41

Curry-Howard to the Rescue

Let us present Dialectica as a program translation!

Without cheating too much
A rich language in the source: MLTT
The target will also be a variant of MLTT (some cheating involved here)

A variant of Moss-von Glehn model (a.k.a the Google Drive note by A. Bauer and myself)

... but why?

To get rid of most of Gödel’s hacks
To care about the equational theory
Because dependent types are cool, expressive and effective

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 14 / 41

Curry-Howard to the Rescue

Let us present Dialectica as a program translation!

Without cheating too much
A rich language in the source: MLTT
The target will also be a variant of MLTT (some cheating involved here)

A variant of Moss-von Glehn model (a.k.a the Google Drive note by A. Bauer and myself)

... but why?

To get rid of most of Gödel’s hacks
To care about the equational theory
Because dependent types are cool, expressive and effective

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 14 / 41

MLTT for Dummies
Do not panic

I am not expecting you to be experts in dependent types

⇝ MLTT is just a fancily-typed λ-calculus. (Any Agda or Coq user around?)

Otherwise
The major differences with your run-of-the-mill λ-calculus.

Types can depend on terms (duh!)

Π(x : A).B

The equational theory on terms lifts to the type layer

refl : Π(A : Type)(x : A). x = x ⇝ (refl N 2) : 1 + 1 = 2

Large elimination: build types by pattern-matching on positives

λ(b : B). if b then N else (N → N) : B → Type

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 15 / 41

MLTT for Dummies
Do not panic

I am not expecting you to be experts in dependent types

⇝ MLTT is just a fancily-typed λ-calculus. (Any Agda or Coq user around?)

Otherwise
The major differences with your run-of-the-mill λ-calculus.

Types can depend on terms (duh!)

Π(x : A).B

The equational theory on terms lifts to the type layer

refl : Π(A : Type)(x : A). x = x ⇝ (refl N 2) : 1 + 1 = 2

Large elimination: build types by pattern-matching on positives

λ(b : B). if b then N else (N → N) : B → Type

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 15 / 41

Simpler? It Depends

Remember that in standard Dialectica, a type A is converted to

a type W(A) a type C(A) a relation ⊥A⊆ W(A)× C(A)

Thanks to the added expressivity, we can conflate C(A) and ⊥A

An MLTT type A will be converted to
a type W(A)

a dependent type C(A) : W(A) → Type

No need for orthogonality, it is built into C!
Remark: for readability I will write C(A)⟨M⟩ for C(A) M.

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 16 / 41

Simpler? It Depends

Remember that in standard Dialectica, a type A is converted to

a type W(A) a type C(A) a relation ⊥A⊆ W(A)× C(A)

Thanks to the added expressivity, we can conflate C(A) and ⊥A

An MLTT type A will be converted to
a type W(A)

a dependent type C(A) : W(A) → Type

No need for orthogonality, it is built into C!

Remark: for readability I will write C(A)⟨M⟩ for C(A) M.

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 16 / 41

Simpler? It Depends

Remember that in standard Dialectica, a type A is converted to

a type W(A) a type C(A) a relation ⊥A⊆ W(A)× C(A)

Thanks to the added expressivity, we can conflate C(A) and ⊥A

An MLTT type A will be converted to
a type W(A)

a dependent type C(A) : W(A) → Type

No need for orthogonality, it is built into C!
Remark: for readability I will write C(A)⟨M⟩ for C(A) M.

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 16 / 41

Exponentially More Complex

We must validate the equational theory of MLTT

in particular the β-rule (i.e. we want a CCC)

... but the natural model arising from Dialectica is only a SMCC
the original Dialectica is not a program translation

We must introduce an additional structure M called abstract multisets

A generalization of finite multisets
Clearly there to handle exponentials
Bear with me...

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 17 / 41

Exponentially More Complex

We must validate the equational theory of MLTT

in particular the β-rule (i.e. we want a CCC)
... but the natural model arising from Dialectica is only a SMCC
the original Dialectica is not a program translation

We must introduce an additional structure M called abstract multisets

A generalization of finite multisets
Clearly there to handle exponentials
Bear with me...

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 17 / 41

Exponentially More Complex

We must validate the equational theory of MLTT

in particular the β-rule (i.e. we want a CCC)
... but the natural model arising from Dialectica is only a SMCC
the original Dialectica is not a program translation

We must introduce an additional structure M called abstract multisets

A generalization of finite multisets
Clearly there to handle exponentials
Bear with me...

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 17 / 41

Categorical Nonsense

An abstract multiset structure is just a semiringoid!

A monad M with return and bind:
{·} : A → M A >>= : M A → (A → M B) → M B

that further has a commutative monoid structure:
∅ : M A ⊕ : M A → M A → M A

If you forget the parameter, equations are those of a semiring

{M} >>= F ≡ F M M >>= (λx. {x}) ≡ M
(M >>= F) >>= G ≡ M >>= (λx.F x >>= G)

∅⊕ M ≡ M M ⊕∅ ≡ M (M ⊕ N)⊕ P ≡ M ⊕ (N ⊕ P)

∅ >>= F ≡ ∅ M >>= (λx.∅) ≡ ∅

(M ⊕ N) >>= F ≡ (M >>= F)⊕ (N >>= F) M >>= (λx.F ⊕ G) ≡ (M >>= F)⊕ (M >>= G)

Prototypical example: finite multisets

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 18 / 41

Categorical Nonsense

An abstract multiset structure is just a semiringoid!

A monad M with return and bind:
{·} : A → M A >>= : M A → (A → M B) → M B

that further has a commutative monoid structure:
∅ : M A ⊕ : M A → M A → M A

If you forget the parameter, equations are those of a semiring

{M} >>= F ≡ F M M >>= (λx. {x}) ≡ M
(M >>= F) >>= G ≡ M >>= (λx.F x >>= G)

∅⊕ M ≡ M M ⊕∅ ≡ M (M ⊕ N)⊕ P ≡ M ⊕ (N ⊕ P)

∅ >>= F ≡ ∅ M >>= (λx.∅) ≡ ∅

(M ⊕ N) >>= F ≡ (M >>= F)⊕ (N >>= F) M >>= (λx.F ⊕ G) ≡ (M >>= F)⊕ (M >>= G)

Prototypical example: finite multisets

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 18 / 41

Categorical Nonsense

An abstract multiset structure is just a semiringoid!

A monad M with return and bind:
{·} : A → M A >>= : M A → (A → M B) → M B

that further has a commutative monoid structure:
∅ : M A ⊕ : M A → M A → M A

If you forget the parameter, equations are those of a semiring

{M} >>= F ≡ F M M >>= (λx. {x}) ≡ M
(M >>= F) >>= G ≡ M >>= (λx.F x >>= G)

∅⊕ M ≡ M M ⊕∅ ≡ M (M ⊕ N)⊕ P ≡ M ⊕ (N ⊕ P)

∅ >>= F ≡ ∅ M >>= (λx.∅) ≡ ∅

(M ⊕ N) >>= F ≡ (M >>= F)⊕ (N >>= F) M >>= (λx.F ⊕ G) ≡ (M >>= F)⊕ (M >>= G)

Prototypical example: finite multisets
P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 18 / 41

The Translation, At Last

Assume Γ ⊢ M : A in MLTT.

The Dialectica translation will produce two kinds of objects.

The forward translation:

W(Γ) ⊢ [M] : W(A)

For each x : X ∈ Γ, a reverse translation:

W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩

Reminder:

M : Type → Type W(A) : Type C(A) : W(A) → Type

If ∥Γ∥ = n, this means I have n + 1 objects!

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 19 / 41

The Translation, At Last

Assume Γ ⊢ M : A in MLTT.

The Dialectica translation will produce two kinds of objects.

The forward translation:

W(Γ) ⊢ [M] : W(A)

For each x : X ∈ Γ, a reverse translation:

W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩

Reminder:

M : Type → Type W(A) : Type C(A) : W(A) → Type

If ∥Γ∥ = n, this means I have n + 1 objects!

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 19 / 41

The Translation, At Last

Assume Γ ⊢ M : A in MLTT.

The Dialectica translation will produce two kinds of objects.

The forward translation:

W(Γ) ⊢ [M] : W(A)

For each x : X ∈ Γ, a reverse translation:

W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩

Reminder:

M : Type → Type W(A) : Type C(A) : W(A) → Type

If ∥Γ∥ = n, this means I have n + 1 objects!

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 19 / 41

The Translation, At Last

Assume Γ ⊢ M : A in MLTT.

The Dialectica translation will produce two kinds of objects.

The forward translation:

W(Γ) ⊢ [M] : W(A)

For each x : X ∈ Γ, a reverse translation:

W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩

Reminder:

M : Type → Type W(A) : Type C(A) : W(A) → Type

If ∥Γ∥ = n, this means I have n + 1 objects!

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 19 / 41

The Translation, At Last

Assume Γ ⊢ M : A in MLTT.

The Dialectica translation will produce two kinds of objects.

The forward translation:

W(Γ) ⊢ [M] : W(A)

For each x : X ∈ Γ, a reverse translation:

W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩

Reminder:

M : Type → Type W(A) : Type C(A) : W(A) → Type

If ∥Γ∥ = n, this means I have n + 1 objects!

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 19 / 41

Motto

[M]x is a measure of the “number” of uses of x in M

W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩

In particular,
[x]x := λπ. {π} (dereliction)

[y]x := λπ.∅ if x ̸= y (weakening)

noting that
[x] := x

(Reminder: W(Γ) ⊢ [M] : W(A))

Substitution lemma (contraction + promotion)

[M{x := N}]y π ≡ ([M]y{x := [N]} π) ⊕ ([M]x{x := [N]} π >>= [N]y)

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 20 / 41

Motto

[M]x is a measure of the “number” of uses of x in M

W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩

In particular,
[x]x := λπ. {π} (dereliction)

[y]x := λπ.∅ if x ̸= y (weakening)

noting that
[x] := x

(Reminder: W(Γ) ⊢ [M] : W(A))

Substitution lemma (contraction + promotion)

[M{x := N}]y π ≡ ([M]y{x := [N]} π) ⊕ ([M]x{x := [N]} π >>= [N]y)

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 20 / 41

Motto

[M]x is a measure of the “number” of uses of x in M

W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩

In particular,
[x]x := λπ. {π} (dereliction)

[y]x := λπ.∅ if x ̸= y (weakening)

noting that
[x] := x

(Reminder: W(Γ) ⊢ [M] : W(A))

Substitution lemma (contraction + promotion)

[M{x := N}]y π ≡ ([M]y{x := [N]} π) ⊕ ([M]x{x := [N]} π >>= [N]y)

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 20 / 41

A Functional Functional Interpretation

There is no structure in our theory yet, let’s look at functions!

W(Π(x : A).B) :=

{
f : Π(x : W(A)).W(B)
φ : Π(x : W(A)).C(B)⟨f x⟩ → M C(A)⟨x⟩

}
C(Π(x : A).B)⟨f, φ⟩ := Σ(x : W(A)).C(B)⟨f x⟩

Up to dependent noise, this is the same as the simply typed variant!

Forward translations are easy.

[λx.M] := (λx. [M]), (λx. [M]x)
[M N] := [M].1 [N]

Recall: if Γ ⊢ M : A then W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩ provided x : X ∈ Γ

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 21 / 41

A Functional Functional Interpretation

There is no structure in our theory yet, let’s look at functions!

W(Π(x : A).B) :=

{
f : Π(x : W(A)).W(B)
φ : Π(x : W(A)).C(B)⟨f x⟩ → M C(A)⟨x⟩

}
C(Π(x : A).B)⟨f, φ⟩ := Σ(x : W(A)).C(B)⟨f x⟩

Up to dependent noise, this is the same as the simply typed variant!

Forward translations are easy.

[λx.M] := (λx. [M]), (λx. [M]x)
[M N] := [M].1 [N]

Recall: if Γ ⊢ M : A then W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩ provided x : X ∈ Γ

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 21 / 41

A Functional Functional Interpretation

There is no structure in our theory yet, let’s look at functions!

W(Π(x : A).B) :=

{
f : Π(x : W(A)).W(B)
φ : Π(x : W(A)).C(B)⟨f x⟩ → M C(A)⟨x⟩

}
C(Π(x : A).B)⟨f, φ⟩ := Σ(x : W(A)).C(B)⟨f x⟩

Up to dependent noise, this is the same as the simply typed variant!

Forward translations are easy.

[λx.M] := (λx. [M]), (λx. [M]x)
[M N] := [M].1 [N]

Recall: if Γ ⊢ M : A then W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩ provided x : X ∈ Γ

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 21 / 41

Full Reverse

Reverse translations are quite a mouthful.

[λx.M]x := λ(x, π). [M]x π

[M N]x := λπ. ([M].2 [N] π) ⊕ ([M]x ([N], π) >>= [N]y)

Cheat Sheet
1. If Γ ⊢ M : A then W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩ provided x : X ∈ Γ.

2. W(Π(x : A).B) :=

{
f : Π(x : W(A)).W(B)
φ : Π(x : W(A)).C(B)⟨f x⟩ → M C(A)⟨x⟩

}
3. C(Π(x : A).B)⟨f, φ⟩ := Σ(x : W(A)).C(B)⟨f x⟩

Application basically follows the substitution lemma.

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 22 / 41

Full Reverse

Reverse translations are quite a mouthful.

[λx.M]x := λ(x, π). [M]x π

[M N]x := λπ. ([M].2 [N] π) ⊕ ([M]x ([N], π) >>= [N]y)

Cheat Sheet
1. If Γ ⊢ M : A then W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩ provided x : X ∈ Γ.

2. W(Π(x : A).B) :=

{
f : Π(x : W(A)).W(B)
φ : Π(x : W(A)).C(B)⟨f x⟩ → M C(A)⟨x⟩

}
3. C(Π(x : A).B)⟨f, φ⟩ := Σ(x : W(A)).C(B)⟨f x⟩

Application basically follows the substitution lemma.

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 22 / 41

Positive Attitude

I have been bluffing you: a dependent C is only needed for positive types.

⇝ most of the dependent noise so far has been useless.

I don’t want to enter details, here is a quick sketch of sum types:

W(A + B) := W(A) +W(B)
C(A + B)⟨inl M⟩ := C(A)⟨M⟩
C(A + B)⟨inr N⟩ := C(B)⟨N⟩

⇝ term translation follows the leading motto
Variable use in inl M and inr M is obvious
Variable use in

case M with inl x → N1 | inr y → N2

comes from either M or Ni depending on M

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 23 / 41

Positive Attitude

I have been bluffing you: a dependent C is only needed for positive types.

⇝ most of the dependent noise so far has been useless.
I don’t want to enter details, here is a quick sketch of sum types:

W(A + B) := W(A) +W(B)

C(A + B)⟨inl M⟩ := C(A)⟨M⟩
C(A + B)⟨inr N⟩ := C(B)⟨N⟩

⇝ term translation follows the leading motto
Variable use in inl M and inr M is obvious
Variable use in

case M with inl x → N1 | inr y → N2

comes from either M or Ni depending on M

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 23 / 41

Positive Attitude

I have been bluffing you: a dependent C is only needed for positive types.

⇝ most of the dependent noise so far has been useless.
I don’t want to enter details, here is a quick sketch of sum types:

W(A + B) := W(A) +W(B)
C(A + B)⟨inl M⟩ := C(A)⟨M⟩
C(A + B)⟨inr N⟩ := C(B)⟨N⟩

⇝ term translation follows the leading motto
Variable use in inl M and inr M is obvious
Variable use in

case M with inl x → N1 | inr y → N2

comes from either M or Ni depending on M

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 23 / 41

Positive Attitude

I have been bluffing you: a dependent C is only needed for positive types.

⇝ most of the dependent noise so far has been useless.
I don’t want to enter details, here is a quick sketch of sum types:

W(A + B) := W(A) +W(B)
C(A + B)⟨inl M⟩ := C(A)⟨M⟩
C(A + B)⟨inr N⟩ := C(B)⟨N⟩

⇝ term translation follows the leading motto
Variable use in inl M and inr M is obvious
Variable use in

case M with inl x → N1 | inr y → N2

comes from either M or Ni depending on M
P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 23 / 41

The Universal Property of Universes

As usual in effectful models of MLTT, types-as-terms are underspecified

W(Type) := { W : Type; C : W → Type }
C(Type)⟨W,C⟩ := whatever

W(A) := [A].W C(A) := [A].C

⇝ for the forward translation of a type A we have little choice

[A] := (W(A),C(A))

⇝ for the reverse translation, no constraints (“types do not use resources”)

[A]x := λπ.∅

A lot of somewhat arbitrary choices

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 24 / 41

The Universal Property of Universes

As usual in effectful models of MLTT, types-as-terms are underspecified

W(Type) := { W : Type; C : W → Type }
C(Type)⟨W,C⟩ := whatever

W(A) := [A].W C(A) := [A].C

⇝ for the forward translation of a type A we have little choice

[A] := (W(A),C(A))

⇝ for the reverse translation, no constraints (“types do not use resources”)

[A]x := λπ.∅

A lot of somewhat arbitrary choices

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 24 / 41

The Universal Property of Universes

As usual in effectful models of MLTT, types-as-terms are underspecified

W(Type) := { W : Type; C : W → Type }
C(Type)⟨W,C⟩ := whatever

W(A) := [A].W C(A) := [A].C

⇝ for the forward translation of a type A we have little choice

[A] := (W(A),C(A))

⇝ for the reverse translation, no constraints (“types do not use resources”)

[A]x := λπ.∅

A lot of somewhat arbitrary choices

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 24 / 41

The Universal Property of Universes

As usual in effectful models of MLTT, types-as-terms are underspecified

W(Type) := { W : Type; C : W → Type }
C(Type)⟨W,C⟩ := whatever

W(A) := [A].W C(A) := [A].C

⇝ for the forward translation of a type A we have little choice

[A] := (W(A),C(A))

⇝ for the reverse translation, no constraints (“types do not use resources”)

[A]x := λπ.∅

A lot of somewhat arbitrary choices

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 24 / 41

The Universal Property of Universes

As usual in effectful models of MLTT, types-as-terms are underspecified

W(Type) := { W : Type; C : W → Type }
C(Type)⟨W,C⟩ := whatever

W(A) := [A].W C(A) := [A].C

⇝ for the forward translation of a type A we have little choice

[A] := (W(A),C(A))

⇝ for the reverse translation, no constraints (“types do not use resources”)

[A]x := λπ.∅

A lot of somewhat arbitrary choices

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 24 / 41

The Universal Property of Universes

As usual in effectful models of MLTT, types-as-terms are underspecified

W(Type) := { W : Type; C : W → Type }
C(Type)⟨W,C⟩ := whatever

W(A) := [A].W C(A) := [A].C

⇝ for the forward translation of a type A we have little choice

[A] := (W(A),C(A))

⇝ for the reverse translation, no constraints (“types do not use resources”)

[A]x := λπ.∅

A lot of somewhat arbitrary choices
P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 24 / 41

Trust me

We have defined a model of MLTT.

If Γ ⊢ M : A,
W(Γ) ⊢ [M] : W(A)

W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩ for all x : X ∈ Γ

and similarly for conversion.

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 25 / 41

Part II

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 26 / 41

A Resourceful Take

People in type theory want to track resources

for efficiency
for security / privacy
for the love of LL

Various names for somewhat similar systems

Graded type theories (à la Orchard)
Quantitative type theories (à la McBride-Atkey)

As a first-order approximation I will lump them together here

I will gloss over the differences
and deliberately ignore some technicalities

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 27 / 41

A Resourceful Take

People in type theory want to track resources

for efficiency
for security / privacy
for the love of LL

Various names for somewhat similar systems

Graded type theories (à la Orchard)
Quantitative type theories (à la McBride-Atkey)

As a first-order approximation I will lump them together here

I will gloss over the differences
and deliberately ignore some technicalities

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 27 / 41

A Resourceful Take

People in type theory want to track resources

for efficiency
for security / privacy
for the love of LL

Various names for somewhat similar systems

Graded type theories (à la Orchard)
Quantitative type theories (à la McBride-Atkey)

As a first-order approximation I will lump them together here

I will gloss over the differences
and deliberately ignore some technicalities

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 27 / 41

Get in the Ring

Typically, fix a resource semi-ring (M,+,×).

⇝ used to assign a measure to variable use
0 means not used
1 is exactly once

⇝ you tend to expect a little bit more structure
an order ≤ compatible with the semi-ring operations
often a maximal absorbing element ω
sometimes a max operation ⊔

Simplest example is 0 ≤ 1 ≤ ω.

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 28 / 41

Get in the Ring

Typically, fix a resource semi-ring (M,+,×).

⇝ used to assign a measure to variable use
0 means not used
1 is exactly once

⇝ you tend to expect a little bit more structure
an order ≤ compatible with the semi-ring operations
often a maximal absorbing element ω
sometimes a max operation ⊔

Simplest example is 0 ≤ 1 ≤ ω.

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 28 / 41

Get in the Ring

Typically, fix a resource semi-ring (M,+,×).

⇝ used to assign a measure to variable use
0 means not used
1 is exactly once

⇝ you tend to expect a little bit more structure
an order ≤ compatible with the semi-ring operations
often a maximal absorbing element ω
sometimes a max operation ⊔

Simplest example is 0 ≤ 1 ≤ ω.

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 28 / 41

Varying Variables

Variables are annotated by the semi-ring

x1 :α1 X1, . . . x :αn Xn ⊢ M : A

where αi : M

⇝ the semi-ring structure lifts to contexts naturally.

Once again, more subtleties in practice
GrTT has a separate annotation for term / type usage
QTT also annotates the sequent itself

We should concentrate on the big picture!

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 29 / 41

Varying Variables

Variables are annotated by the semi-ring

x1 :α1 X1, . . . x :αn Xn ⊢ M : A

where αi : M

⇝ the semi-ring structure lifts to contexts naturally.

Once again, more subtleties in practice
GrTT has a separate annotation for term / type usage
QTT also annotates the sequent itself

We should concentrate on the big picture!

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 29 / 41

Varying Variables

Variables are annotated by the semi-ring

x1 :α1 X1, . . . x :αn Xn ⊢ M : A

where αi : M

⇝ the semi-ring structure lifts to contexts naturally.

Once again, more subtleties in practice
GrTT has a separate annotation for term / type usage
QTT also annotates the sequent itself

We should concentrate on the big picture!

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 29 / 41

Varying Variables

Variables are annotated by the semi-ring

x1 :α1 X1, . . . x :αn Xn ⊢ M : A

where αi : M

⇝ the semi-ring structure lifts to contexts naturally.

Once again, more subtleties in practice
GrTT has a separate annotation for term / type usage
QTT also annotates the sequent itself

We should concentrate on the big picture!

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 29 / 41

Grading Types

Types and terms are annotated accordingly

A,B ::= . . . | Π(x :α A).B | . . .

Some typing rules are expected

0Γ, x :1 A ⊢ x : A

Γ, x :α A ⊢ M : B
Γ ⊢ λx.M : Π(x :α A).B

Sprinkle with subtyping induced by ≤

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 30 / 41

Grading Types

Types and terms are annotated accordingly

A,B ::= . . . | Π(x :α A).B | . . .

Some typing rules are expected

0Γ, x :1 A ⊢ x : A

Γ, x :α A ⊢ M : B
Γ ⊢ λx.M : Π(x :α A).B

Sprinkle with subtyping induced by ≤

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 30 / 41

Grading Types

Types and terms are annotated accordingly

A,B ::= . . . | Π(x :α A).B | . . .

Some typing rules are expected

0Γ, x :1 A ⊢ x : A

Γ, x :α A ⊢ M : B
Γ ⊢ λx.M : Π(x :α A).B

Sprinkle with subtyping induced by ≤

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 30 / 41

Apply Copiously

More interesting is the case of application!

Γ ∼ ∆ Γ ⊢ M : Π(x :α A).B ∆ ⊢ N : A
Γ + (α×∆) ⊢ M N : B{x := N}

where Γ ∼ ∆ means Γ and ∆ are the same context up to annotations.

This is really where the semi-ring structure shines!

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 31 / 41

Apply Copiously

More interesting is the case of application!

Γ ∼ ∆ Γ ⊢ M : Π(x :α A).B ∆ ⊢ N : A
Γ + (α×∆) ⊢ M N : B{x := N}

where Γ ∼ ∆ means Γ and ∆ are the same context up to annotations.

This is really where the semi-ring structure shines!

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 31 / 41

The Sad Truth

Why are graded types too limited?

The semi-ring gives very little expressivity!

Poor language of annotations
Despairingly simple-typed
Often needs to overapproximate
Not very modular

Let me give some examples of increasing annoyance

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 32 / 41

The Sad Truth

Why are graded types too limited?

The semi-ring gives very little expressivity!

Poor language of annotations
Despairingly simple-typed
Often needs to overapproximate
Not very modular

Let me give some examples of increasing annoyance

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 32 / 41

The Sad Truth

Why are graded types too limited?

The semi-ring gives very little expressivity!

Poor language of annotations
Despairingly simple-typed
Often needs to overapproximate
Not very modular

Let me give some examples of increasing annoyance

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 32 / 41

There is no Alternative

How to type:

if M then N1 else N2

Solution 1:
ask that Ni use variables the same number of times
... and hope that subtyping will save you

Solution 2:
assume finite semi-lattice structure
claim that the variable uses in branches are the max from Ni

Both are overapproximations: it actually depends on M

if M then (if M then N1 else N2) else N3

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 33 / 41

There is no Alternative

How to type:

if M then N1 else N2

Solution 1:
ask that Ni use variables the same number of times
... and hope that subtyping will save you

Solution 2:
assume finite semi-lattice structure
claim that the variable uses in branches are the max from Ni

Both are overapproximations: it actually depends on M

if M then (if M then N1 else N2) else N3

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 33 / 41

There is no Alternative

How to type:

if M then N1 else N2

Solution 1:
ask that Ni use variables the same number of times
... and hope that subtyping will save you

Solution 2:
assume finite semi-lattice structure
claim that the variable uses in branches are the max from Ni

Both are overapproximations: it actually depends on M

if M then (if M then N1 else N2) else N3

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 33 / 41

There is no Alternative

How to type:

if M then N1 else N2

Solution 1:
ask that Ni use variables the same number of times
... and hope that subtyping will save you

Solution 2:
assume finite semi-lattice structure
claim that the variable uses in branches are the max from Ni

Both are overapproximations: it actually depends on M

if M then (if M then N1 else N2) else N3

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 33 / 41

There is no Countable Alternative

This was the easy one! There are only two branches for B.

And if we want to quantitatively type a recursion on N?

Solution 1 works but it’s a wild overapproximation
Solution 2 requires the semiring to be a countably complete lattice

Both solutions are quite bad.

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 34 / 41

There is no Countable Alternative

This was the easy one! There are only two branches for B.

And if we want to quantitatively type a recursion on N?

Solution 1 works but it’s a wild overapproximation
Solution 2 requires the semiring to be a countably complete lattice

Both solutions are quite bad.

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 34 / 41

There is no Countable Alternative

This was the easy one! There are only two branches for B.

And if we want to quantitatively type a recursion on N?

Solution 1 works but it’s a wild overapproximation
Solution 2 requires the semiring to be a countably complete lattice

Both solutions are quite bad.

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 34 / 41

I Want My Functions Back

It is actually worse: HO functions are basically broken

(A →α B) →β C

The number of uses α is fixed once and for all

This completely prevents a fine analysis of its resources
What happens when the number of calls is not static?

What happens in practice: (a.k.a. fancy subtyping doesn’t work)

0 ⇝ runtime irrelevant terms (e.g. types)
1 ⇝ extremely rare cases (e.g. linear state-passing)
ω ⇝ all other cases

You have just reinvented a single runtime irrelevant modality

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 35 / 41

I Want My Functions Back

It is actually worse: HO functions are basically broken

(A →α B) →β C

The number of uses α is fixed once and for all

This completely prevents a fine analysis of its resources
What happens when the number of calls is not static?

What happens in practice: (a.k.a. fancy subtyping doesn’t work)

0 ⇝ runtime irrelevant terms (e.g. types)
1 ⇝ extremely rare cases (e.g. linear state-passing)
ω ⇝ all other cases

You have just reinvented a single runtime irrelevant modality

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 35 / 41

I Want My Functions Back

It is actually worse: HO functions are basically broken

(A →α B) →β C

The number of uses α is fixed once and for all

This completely prevents a fine analysis of its resources
What happens when the number of calls is not static?

What happens in practice: (a.k.a. fancy subtyping doesn’t work)

0 ⇝ runtime irrelevant terms (e.g. types)
1 ⇝ extremely rare cases (e.g. linear state-passing)
ω ⇝ all other cases

You have just reinvented a single runtime irrelevant modality

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 35 / 41

I Want My Functions Back

It is actually worse: HO functions are basically broken

(A →α B) →β C

The number of uses α is fixed once and for all

This completely prevents a fine analysis of its resources
What happens when the number of calls is not static?

What happens in practice: (a.k.a. fancy subtyping doesn’t work)

0 ⇝ runtime irrelevant terms (e.g. types)
1 ⇝ extremely rare cases (e.g. linear state-passing)
ω ⇝ all other cases

You have just reinvented a single runtime irrelevant modality

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 35 / 41

I Want My Functions Back

It is actually worse: HO functions are basically broken

(A →α B) →β C

The number of uses α is fixed once and for all

This completely prevents a fine analysis of its resources
What happens when the number of calls is not static?

What happens in practice: (a.k.a. fancy subtyping doesn’t work)

0 ⇝ runtime irrelevant terms (e.g. types)
1 ⇝ extremely rare cases (e.g. linear state-passing)
ω ⇝ all other cases

You have just reinvented a single runtime irrelevant modality

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 35 / 41

Obvious Progaganda is Obvious

To be fair, there have been proposals to extend the expressivity

... but in my opinion these are very contrived.

What if I told you

we already have a solution?

DIALECTICA
(what a surprise!)

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 36 / 41

Obvious Progaganda is Obvious

To be fair, there have been proposals to extend the expressivity

... but in my opinion these are very contrived.

What if I told you

we already have a solution?

DIALECTICA
(what a surprise!)

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 36 / 41

Obvious Progaganda is Obvious

To be fair, there have been proposals to extend the expressivity

... but in my opinion these are very contrived.

What if I told you

we already have a solution?

DIALECTICA
(what a surprise!)

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 36 / 41

The Main Idea

The semi-ring annotations should depend on terms

This is literally the only reason why we had to overapproximate.

A function should tell you dynamically its argument measure
Pattern-matching measure should depend on the scrutinee
This clearly requires dependent types

For this, we need to turn x :α X into something that looks like

Γ ⊢ M : A and x : X ∈ Γ ⇝ αx(M) : OΓ
A(X) → M

Wait, this is a Déjà Vu

Γ ⊢ M : A and x : X ∈ Γ ⇝ W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 37 / 41

The Main Idea

The semi-ring annotations should depend on terms

This is literally the only reason why we had to overapproximate.

A function should tell you dynamically its argument measure
Pattern-matching measure should depend on the scrutinee
This clearly requires dependent types

For this, we need to turn x :α X into something that looks like

Γ ⊢ M : A and x : X ∈ Γ ⇝ αx(M) : OΓ
A(X) → M

Wait, this is a Déjà Vu

Γ ⊢ M : A and x : X ∈ Γ ⇝ W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 37 / 41

The Main Idea

The semi-ring annotations should depend on terms

This is literally the only reason why we had to overapproximate.

A function should tell you dynamically its argument measure
Pattern-matching measure should depend on the scrutinee
This clearly requires dependent types

For this, we need to turn x :α X into something that looks like

Γ ⊢ M : A and x : X ∈ Γ ⇝ αx(M) : OΓ
A(X) → M

Wait, this is a Déjà Vu

Γ ⊢ M : A and x : X ∈ Γ ⇝ W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 37 / 41

The Main Idea

The semi-ring annotations should depend on terms

This is literally the only reason why we had to overapproximate.

A function should tell you dynamically its argument measure
Pattern-matching measure should depend on the scrutinee
This clearly requires dependent types

For this, we need to turn x :α X into something that looks like

Γ ⊢ M : A and x : X ∈ Γ ⇝ αx(M) : OΓ
A(X) → M

Wait, this is a Déjà Vu

Γ ⊢ M : A and x : X ∈ Γ ⇝ W(Γ) ⊢ [M]x : C(A)⟨[M]⟩ → M C(X)⟨x⟩

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 37 / 41

A Bug In the Semi-Ring Matrix

What has been seen cannot be unseen

[x]y π := ∅ [x]x π := {π}
0Γ, x :1 A ⊢ x : A

[λy.M]x (y, π) := [M]x π
Γ, x :α A ⊢ M : B

Γ ⊢ λx.M : Π(x :α A).B

[M N]x π :=
[M]x ([N], π)

⊕
([M].2 [N] π >>= [N]x)

Γ ⊢ M : Π(x :α A).B ∆ ⊢ N : A
Γ + (α×∆) ⊢ M N : B{x := N}

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 38 / 41

Dialectica, Dialectica Everywhere

Dialectica is the HO dependent graded type of a term

The semiring is replaced by its oidification (a monad + comm. add. monoid)

Semiring values are now higher-order objects
In particular they depend on the arguments

This solves the graded expressivity issue

⇝ When pattern-matching over M : B, α ⊔ β becomes basically

if M then α else β

⇝ The argument of a function f has a now a highly dynamic annotation

φ : Π(x : W(A))(π : C(B)⟨f x⟩).M C(A)⟨x⟩ (before: a fixed M)

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 39 / 41

Dialectica, Dialectica Everywhere

Dialectica is the HO dependent graded type of a term

The semiring is replaced by its oidification (a monad + comm. add. monoid)

Semiring values are now higher-order objects
In particular they depend on the arguments

This solves the graded expressivity issue

⇝ When pattern-matching over M : B, α ⊔ β becomes basically

if M then α else β

⇝ The argument of a function f has a now a highly dynamic annotation

φ : Π(x : W(A))(π : C(B)⟨f x⟩).M C(A)⟨x⟩ (before: a fixed M)

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 39 / 41

So What?

I don’t know what to do of this

Is it known? Is it useful? It is practical?
Can we get a decidable type system?
Towards a full-blown synthetic complexity theory?

What do you think about all this?

⇝ this is a call for help!

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 40 / 41

So What?

I don’t know what to do of this

Is it known? Is it useful? It is practical?
Can we get a decidable type system?
Towards a full-blown synthetic complexity theory?

What do you think about all this?

⇝ this is a call for help!

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 40 / 41

Scribitur ad narrandum, non ad probandum

Thanks for your attention.

P.-M. Pédrot (INRIA) Dialectica the Ultimate 08/07/24 41 / 41

