An Effectful Way to Eliminate Addiction to Dependence J

Pierre-Marie Pédrot! Nicolas Tabareau?

LUniversity of Ljubljana, 2INRIA

EUTYPES / SSTT
31th January 2017

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017

1/ 27

The Most Important Issue of Them All

Let's start this talk by a fundamental flaw of type theory.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 2/27

The Most Important Issue of Them All

Let's start this talk by a fundamental flaw of type theory.

o Assume you want to show the wonders of Coq to a fellow programmer
o You fire your favourite IDE
o ... and you're asked the dreadful question.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 2/27

The Most Important Issue of Them All

Let's start this talk by a fundamental flaw of type theory.

o Assume you want to show the wonders of Coq to a fellow programmer
o You fire your favourite IDE
o ... and you're asked the dreadful question.

=] F = = DA

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 2/27

This is pretty much standard. By proof-as-program correspondence,
«O>» <Fr «=Z»r «E>» = Q>
 Pédrot & al. (U. Ljubljana & INRIA) ~ An Effectful Way ~ 31/01/2017 3 /27

A Well-known Limitation

This is pretty much standard. By proof-as-program correspondence,
Intuitionistic Logic < Functional Programming

which means no effects in TT, amongst which:
@ no exceptions
@ no state
@ no non-termination
°

no printing

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017

3/27

A Well-known Limitation

This is pretty much standard. By proof-as-program correspondence,
Intuitionistic Logic < Functional Programming

which means no effects in TT, amongst which:
@ no exceptions
o no state
@ no non-termination
@ no printing
. and thus no Hello World!

©

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 3/27

On Burritos

In less expressive settings, a few workarounds are known.

Typically, on the programming side, use the monadic style.
o Atype T: 00— 0
o A combinator return: a — T «
o A combinator bind: Taa —» (a > T) —» T

A few equations

©

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 4 /27

On Burritos

In less expressive settings, a few workarounds are known.

Typically, on the programming side, use the monadic style.
o Atype T: 00— 0
o A combinator return: a — T «
o A combinator bind: Taa —» (a > T) —» T

A few equations

©

Interpret mechanically effectful programs using this (see Moggi).

This is pervasive in e.g. Haskell.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017

4/ 271

On the logic side, take the issue the other way around.
«O>» <Fr «=Z»r «E>» = Q>
 Pédrot & al. (U. Ljubljana & INRIA) ~ An Effectful Way ~ 31/01/2017 5/27

Less is More

On the logic side, take the issue the other way around.

Effects are known to implement non-intuitionistic axioms!

o callcc ~ classical logic (Griffin '90)

©

exceptions ~ Markov's rule (Friedman's trick)
global monotonous cell ~ =CH (forcing)

delimited continuations ~ double negation shift

© © o

Achieve this using logical translations, e.g. double-negation.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017

5/ 27

@ To program more (exceptions, non-termination...)
@ To prove more (classical logic, univalence...)
«O>» «F»r « > < A
 Pédrot & al. (U. Ljubljana & INRIA) ~ An Effectful Way ~ 31/01/2017 6 /27

@ To program more (exceptions, non-termination...)
@ To prove more (classical logic, univalence...)
@ To write Hello World.
«O>» «F»r « > < A
 Pédrot & al. (U. Ljubljana & INRIA) ~ An Effectful Way ~ 31/01/2017 6 /27

Problem is:

«O> <Fr o« [) .

The Expressivity Wall

Problem is:

Programming and logical techniques do not scale to type theory.

o Monads do not aknowledge dependence
bind: Ta— (a—Tp) = Tp

dbind : lIz: Ta.(lz:a. T (B x)) > T (B 7)

o They don't aknowledge types-as-terms either
o And they don't preserve the computational rules of TT

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 7/27

The Expressivity Wall

Problem is:

Programming and logical techniques do not scale to type theory.

o Monads do not aknowledge dependence
bind: Ta— (a—Tp) = Tp

dbind : lIz: Ta.(lz:a. T (B x)) > T (B 7)
o They don't aknowledge types-as-terms either
o And they don't preserve the computational rules of TT

On the other hand:

o Herbelin showed that CIC + callcc is unsound!

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017

7271

In This Talk

@ Adding a vast range of effects to (almost) full TT

o reader (already done previously with the forcing translation)
o writer, exceptions, non-termination, non-determinism...
o All with the new weaning translation!

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 8 /27

In This Talk

@ Adding a vast range of effects to (almost) full TT

o reader (already done previously with the forcing translation)
o writer, exceptions, non-termination, non-determinism...
o All with the new weaning translation!

@ Implementing them thanks to program translations

o No crazy category theory models!
o So-called syntactic models.
o Compile them on-the-fly into vanilla type theory!

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 8 /27

In This Talk

@ Adding a vast range of effects to (almost) full TT
o reader (already done previously with the forcing translation)
o writer, exceptions, non-termination, non-determinism...
o All with the new weaning translation!
@ Implementing them thanks to program translations
o No crazy category theory models!
o So-called syntactic models.
o Compile them on-the-fly into vanilla type theory!
@ Introducing a generic notion of effectful dependent type theory

o A simple, sensible restriction of dependent elimination
o Seemingly compatible with all known effects

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 8 /27

Syntactic Models

Define [-] on the syntax and derive the type interpretation [-] from it s.t.

HFM:A implies F[M] : [4]

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 9 /27

Syntactic Models

Define [-] on the syntax and derive the type interpretation [-] from it s.t.

HFM:A implies F[M] : [4]

Obviously, that's subtle.
o The correctness of [-] lies in the meta (Darn, Godell)
o The translation must preserve typing (Not easy)

o In particular, it must preserve conversion (Argh!)

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 9 /27

Syntactic Models

Define [-] on the syntax and derive the type interpretation [-] from it s.t.

HFM:A implies F[M] : [4]

Obviously, that's subtle.
o The correctness of [-] lies in the meta (Darn, Godell)
o The translation must preserve typing (Not easy)

o In particular, it must preserve conversion (Argh!)

Yet, a lot of nice consequences.

o Does not require non-type-theoretical foundations (monism)

©

Can be implemented in your favourite proof assistant

(+]

Easy to show (relative) consistency, look at [False]

(+]

Easier to understand computationally

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017

9 /27

(Mis)understanding Dependent Type Theory

There are two essential properties of TT that need to be explicited.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 10 / 27

(Mis)understanding Dependent Type Theory
There are two essential properties of TT that need to be explicited.

#1. Type theory is call-by-name by construction.

o This is because of the unrestricted conversion rule.
o But the usual monadic interpretation is call-by-value!

o We need to rely on an alternative decomposition (based on CBPV).

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 10 / 27

(Mis)understanding Dependent Type Theory
There are two essential properties of TT that need to be explicited.

#1. Type theory is call-by-name by construction.

This is because of the unrestricted conversion rule.

©

©

But the usual monadic interpretation is call-by-value!

©

We need to rely on an alternative decomposition (based on CBPV).

#2. Dependent elimination is hardcore intuitionistic.

©

It rules out non-standard inductive terms that exist in CBN 4+ effects

©

Reminiscent of Brouwer vs. Bishop mathematics

©

Needs to be weakened in presence of effects (« Bishop-style TT »)

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 10 / 27

My Name is Call, Call-by-Name

TT is intrisically call-by-name because of the conversion rule:

I'M:B A=3B
T'FM:A

where =g is generated by:

(Az: A. M) N=g M{z:= N}

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017

11/ 27

My Name is Call, Call-by-Name

TT is intrisically call-by-name because of the conversion rule:

I'M:B A=3B
T'FM:A

where =g is generated by:

(Az: A. M) N=g M{z:= N}

To be call-by-value, it would require instead =g, generated by:
(Az: A. M) V=g, M{z:=V}

where Vis a value. But that's not TT...

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017

11/ 27

Tell Me Eleinberg-Moore

Turns out it is easy to give a call-by-name monadic decomposition.

Use the Eleinberg-Moore category, i.e. the category of algebras.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 12 /27

Tell Me Eleinberg-Moore

Turns out it is easy to give a call-by-name monadic decomposition.
Use the Eleinberg-Moore category, i.e. the category of algebras.

For us, a T-algebra will be an inhabitant of:
O:=XA:0.TA— A

A few remarks:
o It is hard to formulate the notion of algebra without higher-order types
o We don't require any equations in [I (they're quite not algebras)

o It turns out it is not necessary...

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 12 /27

Required structure

We assume a monad given by universe-polymorphic terms:

ret = II(A:0)A—=>TA
bind : II(AB:0)TA—-(A—-TB) —»TB

and we require no equations!!

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017

13 / 27

Required structure

We assume a monad given by universe-polymorphic terms:

ret = II(A:0)A—=>TA
bind : II(AB:0)TA—-(A—-TB) —»TB

and we require no equations!!

Furthermore, in Type Theory, types are terms. We want the monad to be
self-algebraic. This is given by:

El : T0O,; — [,
El(ret O M) =3 M

A lot of monads appear to be self-algebraic.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 13 /27

The Weaning Translation of the Negative Fragment

FiEFORYE
- Sk
&

Pédrot & al. (U. Ljubljana & INRIA)

=

Az : [A]. [M]

[M] [N]

ret Oy (704, p0)

ret O (Iz : [A]. [B],)

(E1 [A]).m

T(TO) -0

T (z: [A].[B]) — Oz : [A].[B]

An Effectful Way 31/01/2017

14 / 27

The Weaning Translation of the Negative Fragment

[x] = =z

Az: A.M] = Az:[A]. [M]

[M N] = [M][N]

(O] = ret Oy (704, po)

[Mz: A.B] := ret [(Ilz: [A].[B],un)

[A] = (E1 [A]).m

1o T (T ﬂ]]) — 0

It T (z: [A].[B]) — Oz : [A].[B]

o Functional fragment untouched, types mangled into algebras
o [=5 TOand [IIz: A. B] =5 Hz: [A].[B]

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 14 /27

The Weaning Translation of the Negative Fragment

[z] =

Pz: A M = Az:[A].[M]

[M N = [M][N]

[DZ] (= ret Di—i—l (T ﬂ:ﬂi,/j,D)

[Mz: A.B] = ret [(x:[A].[B],pn)

[A] = (E1 [4]).m

1O T(TO) —0

JTT T (z: [A].[B]) — Oz : [A].[B]

o Functional fragment untouched, types mangled into algebras
o [=5 TOand [IIz: A. B] =5 Hz: [A].[B]

Soundness

If '+ M: A then [I'] - [M] : [A]. (In particular, conversion is preserved.)

o =) E E E DAl
Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 14 /27

Reduction vs. Effects

Nothing fancy in the negative fragment, by the well-known duality.
o Call-by-name: functions well-behaved vs. inductives ill-behaved

o Call-by-value: inductives well-behaved vs. functions ill-behaved

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 15 / 27

Reduction vs. Effects

Nothing fancy in the negative fragment, by the well-known duality.

o Call-by-name: functions well-behaved vs. inductives ill-behaved

o Call-by-value: inductives well-behaved vs. functions ill-behaved
Why is that?
In call-by-name + effects, consider:

(Ab: bool. M) fail ~- non-standard inductive terms

In call-by-value + effects, consider:

(Ab:unit.fail) ~» invalid n-rule

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017

15 / 27

Weaning Inductive Types

For the sake of explanation, let's focus on a very simple type:

Inductive bool := true | false.

We pose:
[bool] = ret O (T b00l, liveo1)
[true] = ret bool true
[false] := ret bool false
Ibool : T (T bool) — T bool

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017

16 / 27

Weaning Inductive Types

For the sake of explanation, let's focus on a very simple type:

Inductive bool := true | false.

We pose:
[bool] = ret [(T b0ool, tiveo1)
[true] := ret bool true
[false] := ret bool false
Ibool : T (T bool) — T bool

Remark that [bool] =g T bool.

Soundness
IfT'F M: A then [I'] - [M] : [A].

o =) E E DA
Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 16 / 27

E-LI-MI-NATE!

We need a bit more structure on T to implement elimination:

hbind : I(A:O)(B:T0O).TA— (A—[B]) — [B]
dbind : II(A:0O0)(B:A— T0O).I(z: T A).
(II(z: A).[B 2]) — (E1 (hbind A [O] & B)).m;

subject to:

hbind A B(ret AM)F =3 FM
dbind AB(ret AM)F =3 FM

Essentially, hbind and dbind are variants of bind.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017

17 / 27

E-LI-MI-NATE!

We need a bit more structure on T to implement elimination:
hbind : I(A:O)(B:T0O).TA— (A—[B]) — [B]
dbind : II(A:0O0)(B:A— T0O).I(z: T A).
(II(z: A).[B 2]) — (E1 (hbind A [O] & B)).m;

subject to:

hbind A B(ret AM)F =3 FM
dbind AB(ret AM)F =3 FM

Essentially, hbind and dbind are variants of bind.

Remark that the second equation is well-typed iff the first holds.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017

17 / 27

Interpreting Non-Dependent Elimination

It is easy to provide a non-dependent eliminator using hbind:

[bool case] : [IP:0.P— P— bool = P
= AP:T0O) (ptpfi[[P]])(b: T bool).
hbind bool P b (Ab.if b then p; else py)

which has the right reduction rules:

[bool_case P p; pftrue] =5 p;
[bool_case P p; py false] =5 ps

Remember:

hbind : II(A: O)(B: TO). T A — (A — [B]) — [B]
hbind A B (ret A M) F=g F M

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017

18 / 27

Eliminating Addiction to Dependence

We would like to recover dependent elimination...

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 19 / 27

Eliminating Addiction to Dependence

We would like to recover dependent elimination...

As [bool] =g T bool, if T'is not the identity then there are closed
booleans in the translation which are neither [true| nor [false].

o =) E E E DAl
Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 19 / 27

Eliminating Addiction to Dependence

We would like to recover dependent elimination...

As [bool] =g T bool, if T'is not the identity then there are closed
booleans in the translation which are neither [true| nor [false].

o Typical of CBN + effects: recall Herbelin's paradox

o Already arose in our forcing translation

o We need to restrict dependent elimination the same way!

Pédrot & al. (U. Ljubljana & INRIA)

=] F
An Effectful Way

DA

31/01/2017 19 /27

Eliminating Addiction to Dependence Il

The trick consists in sprinkling a few storage operators. For bool:

[Ovoor] @ [bool — (bool —) — J]
;= [Ab.bool_case (bool —) (Ak. k true) (A\k. k false) b]

©

Only defined in the source via non-dependent eliminator

©

In particular, agnostic to the actual translation
CPS-like to enforce CBV in a CBN world
Trivial in CIC: = 1Ib : bool.Opeor b P=P b

©

©

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 20 / 27

Eliminating Addiction to Dependence Il

The trick consists in sprinkling a few storage operators. For bool:

[Ovoor] @ [bool — (bool —) — J]
;= [Ab.bool_case (bool —) (Ak. k true) (A\k. k false) b]

©

Only defined in the source via non-dependent eliminator

©

In particular, agnostic to the actual translation
CPS-like to enforce CBV in a CBN world
Trivial in CIC: = 1Ib : bool.Opeor b P=P b

©

©

Using dbind, this allows to implement:

[bool rect]: [IIP: bool — . P true — P false — I1b: bool. fhee1 b P

with the expected reduction rules.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 20 / 27

Weaning Everywhere

There are a lot of monads that satisfy the weaning conditions.
o Exception monad TA:= A+ F
o Non-determinism T A := A x list A
o Non-termination T A :=vX. A+ X
o Writer T A := A x list Q (the one we need for HELLO WORLP)

Note that some lead to a logically inconsistent model.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 21 /27

Weaning Everywhere

There are a lot of monads that satisfy the weaning conditions.
o Exception monad TA:= A+ F
o Non-determinism T A := A x list A
o Non-termination T A :=vX. A+ X
o Writer T A := A x list Q (the one we need for HELLO WORLP)

Note that some lead to a logically inconsistent model.

A few monads aren't self-algebraic, e.g. state, reader and continuation.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 21 /27

Logic, at Last

In some inconsistent cases, full dependent elimination is valid.
Most notably, this is the case for the exception monad.

Let's use that to do a Friedman A-translation on steroids!

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 22 /27

Logic, at Last

In some inconsistent cases, full dependent elimination is valid.
Most notably, this is the case for the exception monad.

Let's use that to do a Friedman A-translation on steroids!

Lemmatas
With the exception monad T' A := A + E:

o Full dependent elimination is valid (at the expense of consistency)
o We have [--4] = ([A] = E) = E
o If Ais a first-order type, then [A] — A + E.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 22 /27

Logic, at Last

In some inconsistent cases, full dependent elimination is valid.
Most notably, this is the case for the exception monad.

Let's use that to do a Friedman A-translation on steroids!

Lemmatas

With the exception monad T A := A + E:
o Full dependent elimination is valid (at the expense of consistency)
o We have [--A] = ([A] - E) = E
o If Ais a first-order type, then [A] — A + F.

Admissibility of Markov's rule in CIC
If A is first-order and ¢ =—A4 then oo A.

] = = E PENE
Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 22 /27

Moi, j'ai dit linéaire, linéaire ? Comme c'est étrange...

Back to restricted elimination. It turns out we have a semantic criterion
for valid dependent predicates.

LINEARITY.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 23 /27

Moi, j'ai dit linéaire, linéaire ? Comme c'est étrange...

Back to restricted elimination. It turns out we have a semantic criterion

for valid dependent predicates.

LINEARITY.

Little to do with « linear use of variables »

Essentially, f: A — B linear in CBN if semantically CBV in A.
Categorically, f linear iff it is an algebra morphism.

Storage operators turn freely any morphism into a linear one.

© 06 06 © o o

Can be approximated by a syntactic guard condition.

I' = M: bool P linear in b
'k if M return Ab. P then N; else Ny : P{b:= M}

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017

A concept invented by G. Munch, rephrased recently by P. Levy.

23 / 27

A Bishop-style Type Theory

We can generalize this restriction to form Baclofen Type Theory.
o Subset of CIC
o Independent from the actual translation.
o Works with forcing

©

Works with weaning

©

Prevents Herbelin's paradox

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 24 /27

A Bishop-style Type Theory

We can generalize this restriction to form Baclofen Type Theory.
o Subset of CIC
o Independent from the actual translation.
o Works with forcing
o Works with weaning

o Prevents Herbelin's paradox

BTT is the generic theory to deal with dependent effects
« Bishop-style, effect-agnostic type theory »

(Take that, Brouwerian HoTT!)

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 24 /27

Implementation

A nice paper summarizing this talk.

https://www.pédrot.fr/articles/weaning.pdf

Just as for the forcing translation we have a Coq plugin for weaning.

https://github.com/CogHott/coq-effects

(]

Allows to add effects to Coq just today.

o Implement your favourite effectful operators: fail, fix...

©

Compile effectful terms on the fly.

©

Allows to reason about them in Coq.

(If time permits, small demo here.)

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 25 /27

https://www.pédrot.fr/articles/weaning.pdf
https://github.com/CoqHott/coq-effects

Conclusion

o A new effectful translation of TT, the weaning translation
o Cosmic version of Eilenberg-Moore categories
o Gives both programming and logical features
o An experimentally confirmed notion of effectful type theories, BTT

o Works for forcing, weaning and CPS
o Restriction of dependent elimination on linearity guard condition
o Conjecture: the correct way to add effects to TT

o Implementation of a plugin in Coq
o Try it out today!

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 26 / 27

Scribitur ad narrandum, non ad probandum

Thanks for your attention.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 27 / 27

