
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

An Effectful Way to Eliminate Addiction to Dependence

Pierre-Marie Pédrot1 Nicolas Tabareau2

1University of Ljubljana, 2INRIA

EUTYPES / SSTT
31th January 2017

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 1 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Most Important Issue of Them All
Let's start this talk by a fundamental flaw of type theory.

Assume you want to show the wonders of Coq to a fellow programmer
You fire your favourite IDE
... and you're asked the dreadful question.

Could you write a Hello

World program please?

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 2 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Most Important Issue of Them All
Let's start this talk by a fundamental flaw of type theory.

Assume you want to show the wonders of Coq to a fellow programmer
You fire your favourite IDE
... and you're asked the dreadful question.

Could you write a Hello

World program please?

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 2 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Most Important Issue of Them All
Let's start this talk by a fundamental flaw of type theory.

Assume you want to show the wonders of Coq to a fellow programmer
You fire your favourite IDE
... and you're asked the dreadful question.

Could you write a Hello

World program please?

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 2 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A Well-known Limitation

This is pretty much standard. By proof-as-program correspondence,

Intuitionistic Logic ⇔ Functional Programming

which means no effects in TT, amongst which:
no exceptions
no state
no non-termination
no printing
... and thus no Hello World!

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 3 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A Well-known Limitation

This is pretty much standard. By proof-as-program correspondence,

Intuitionistic Logic ⇔ Functional Programming

which means no effects in TT, amongst which:
no exceptions
no state
no non-termination
no printing

... and thus no Hello World!

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 3 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A Well-known Limitation

This is pretty much standard. By proof-as-program correspondence,

Intuitionistic Logic ⇔ Functional Programming

which means no effects in TT, amongst which:
no exceptions
no state
no non-termination
no printing
... and thus no Hello World!

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 3 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

On Burritos

In less expressive settings, a few workarounds are known.

Typically, on the programming side, use the monadic style.
A type T : □→ □
A combinator return : α → T α

A combinator bind : T α → (α → T β) → T β

A few equations

Interpret mechanically effectful programs using this (see Moggi).

This is pervasive in e.g. Haskell.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 4 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

On Burritos

In less expressive settings, a few workarounds are known.

Typically, on the programming side, use the monadic style.
A type T : □→ □
A combinator return : α → T α

A combinator bind : T α → (α → T β) → T β

A few equations

Interpret mechanically effectful programs using this (see Moggi).

This is pervasive in e.g. Haskell.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 4 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Less is More

On the logic side, take the issue the other way around.

Effects are known to implement non-intuitionistic axioms!
callcc ∼ classical logic (Griffin '90)
exceptions ∼ Markov's rule (Friedman's trick)
global monotonous cell ∼ ¬CH (forcing)
delimited continuations ∼ double negation shift
…

Achieve this using logical translations, e.g. double-negation.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 5 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Less is More

On the logic side, take the issue the other way around.

Effects are known to implement non-intuitionistic axioms!
callcc ∼ classical logic (Griffin '90)
exceptions ∼ Markov's rule (Friedman's trick)
global monotonous cell ∼ ¬CH (forcing)
delimited continuations ∼ double negation shift
…

Achieve this using logical translations, e.g. double-negation.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 5 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Alternative Facts

We want a type theory with effects!
1 To program more (exceptions, non-termination...)
2 To prove more (classical logic, univalence...)

3 To write Hello World.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 6 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Alternative Facts

We want a type theory with effects!
1 To program more (exceptions, non-termination...)
2 To prove more (classical logic, univalence...)
3 To write Hello World.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 6 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Expressivity Wall

Problem is:

Programming and logical techniques do not scale to type theory.

Monads do not aknowledge dependence

bind : T α → (α → T β) → T β

dbind : Πx̂ : T α. (Πx : α.T (β x)) → T (β ?)

They don't aknowledge types-as-terms either
And they don't preserve the computational rules of TT

On the other hand:
Herbelin showed that CIC + callcc is unsound!

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 7 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Expressivity Wall

Problem is:

Programming and logical techniques do not scale to type theory.

Monads do not aknowledge dependence

bind : T α → (α → T β) → T β

dbind : Πx̂ : T α. (Πx : α.T (β x)) → T (β ?)

They don't aknowledge types-as-terms either
And they don't preserve the computational rules of TT

On the other hand:
Herbelin showed that CIC + callcc is unsound!

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 7 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Expressivity Wall

Problem is:

Programming and logical techniques do not scale to type theory.

Monads do not aknowledge dependence

bind : T α → (α → T β) → T β

dbind : Πx̂ : T α. (Πx : α.T (β x)) → T (β ?)

They don't aknowledge types-as-terms either
And they don't preserve the computational rules of TT

On the other hand:
Herbelin showed that CIC + callcc is unsound!

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 7 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

In This Talk

1 Adding a vast range of effects to (almost) full TT
reader (already done previously with the forcing translation)
writer, exceptions, non-termination, non-determinism...
All with the new weaning translation!

2 Implementing them thanks to program translations
No crazy category theory models!
So-called syntactic models.
Compile them on-the-fly into vanilla type theory!

3 Introducing a generic notion of effectful dependent type theory
A simple, sensible restriction of dependent elimination
Seemingly compatible with all known effects

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 8 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

In This Talk

1 Adding a vast range of effects to (almost) full TT
reader (already done previously with the forcing translation)
writer, exceptions, non-termination, non-determinism...
All with the new weaning translation!

2 Implementing them thanks to program translations
No crazy category theory models!
So-called syntactic models.
Compile them on-the-fly into vanilla type theory!

3 Introducing a generic notion of effectful dependent type theory
A simple, sensible restriction of dependent elimination
Seemingly compatible with all known effects

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 8 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

In This Talk

1 Adding a vast range of effects to (almost) full TT
reader (already done previously with the forcing translation)
writer, exceptions, non-termination, non-determinism...
All with the new weaning translation!

2 Implementing them thanks to program translations
No crazy category theory models!
So-called syntactic models.
Compile them on-the-fly into vanilla type theory!

3 Introducing a generic notion of effectful dependent type theory
A simple, sensible restriction of dependent elimination
Seemingly compatible with all known effects

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 8 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Syntactic Models
Define [·] on the syntax and derive the type interpretation [[·]] from it s.t.

⊢ M : A implies ⊢ [M ] : [[A]]

Obviously, that's subtle.
The correctness of [·] lies in the meta (Darn, Gödel!)
The translation must preserve typing (Not easy)
In particular, it must preserve conversion (Argh!)

Yet, a lot of nice consequences.
Does not require non-type-theoretical foundations (monism)
Can be implemented in your favourite proof assistant
Easy to show (relative) consistency, look at [[False]]
Easier to understand computationally

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 9 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Syntactic Models
Define [·] on the syntax and derive the type interpretation [[·]] from it s.t.

⊢ M : A implies ⊢ [M ] : [[A]]

Obviously, that's subtle.
The correctness of [·] lies in the meta (Darn, Gödel!)
The translation must preserve typing (Not easy)
In particular, it must preserve conversion (Argh!)

Yet, a lot of nice consequences.
Does not require non-type-theoretical foundations (monism)
Can be implemented in your favourite proof assistant
Easy to show (relative) consistency, look at [[False]]
Easier to understand computationally

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 9 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Syntactic Models
Define [·] on the syntax and derive the type interpretation [[·]] from it s.t.

⊢ M : A implies ⊢ [M ] : [[A]]

Obviously, that's subtle.
The correctness of [·] lies in the meta (Darn, Gödel!)
The translation must preserve typing (Not easy)
In particular, it must preserve conversion (Argh!)

Yet, a lot of nice consequences.
Does not require non-type-theoretical foundations (monism)
Can be implemented in your favourite proof assistant
Easy to show (relative) consistency, look at [[False]]
Easier to understand computationally

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 9 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

(Mis)understanding Dependent Type Theory

There are two essential properties of TT that need to be explicited.

#1. Type theory is call-by-name by construction.

This is because of the unrestricted conversion rule.
But the usual monadic interpretation is call-by-value!
We need to rely on an alternative decomposition (based on CBPV).

#2. Dependent elimination is hardcore intuitionistic.

It rules out non-standard inductive terms that exist in CBN + effects
Reminiscent of Brouwer vs. Bishop mathematics
Needs to be weakened in presence of effects (« Bishop-style TT »)

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 10 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

(Mis)understanding Dependent Type Theory

There are two essential properties of TT that need to be explicited.

#1. Type theory is call-by-name by construction.

This is because of the unrestricted conversion rule.
But the usual monadic interpretation is call-by-value!
We need to rely on an alternative decomposition (based on CBPV).

#2. Dependent elimination is hardcore intuitionistic.

It rules out non-standard inductive terms that exist in CBN + effects
Reminiscent of Brouwer vs. Bishop mathematics
Needs to be weakened in presence of effects (« Bishop-style TT »)

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 10 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

(Mis)understanding Dependent Type Theory

There are two essential properties of TT that need to be explicited.

#1. Type theory is call-by-name by construction.

This is because of the unrestricted conversion rule.
But the usual monadic interpretation is call-by-value!
We need to rely on an alternative decomposition (based on CBPV).

#2. Dependent elimination is hardcore intuitionistic.

It rules out non-standard inductive terms that exist in CBN + effects
Reminiscent of Brouwer vs. Bishop mathematics
Needs to be weakened in presence of effects (« Bishop-style TT »)

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 10 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

My Name is Call, Call-by-Name

TT is intrisically call-by-name because of the conversion rule:

Γ ⊢ M : B A ≡β B
Γ ⊢ M : A

where ≡β is generated by:

(λx : A.M) N ≡β M{x := N}

To be call-by-value, it would require instead ≡βv generated by:

(λx : A.M) V ≡βv M{x := V}

where V is a value. But that's not TT...

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 11 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

My Name is Call, Call-by-Name

TT is intrisically call-by-name because of the conversion rule:

Γ ⊢ M : B A ≡β B
Γ ⊢ M : A

where ≡β is generated by:

(λx : A.M) N ≡β M{x := N}

To be call-by-value, it would require instead ≡βv generated by:

(λx : A.M) V ≡βv M{x := V}

where V is a value. But that's not TT...

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 11 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Tell Me Eleinberg-Moore

Turns out it is easy to give a call-by-name monadic decomposition.

Use the Eleinberg-Moore category, i.e. the category of algebras.

For us, a T-algebra will be an inhabitant of:

□□ := ΣA : □.T A → A

A few remarks:
It is hard to formulate the notion of algebra without higher-order types
We don't require any equations in □□ (they're quite not algebras)
It turns out it is not necessary...

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 12 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Tell Me Eleinberg-Moore

Turns out it is easy to give a call-by-name monadic decomposition.

Use the Eleinberg-Moore category, i.e. the category of algebras.

For us, a T-algebra will be an inhabitant of:

□□ := ΣA : □.T A → A

A few remarks:
It is hard to formulate the notion of algebra without higher-order types
We don't require any equations in □□ (they're quite not algebras)
It turns out it is not necessary...

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 12 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Required structure

We assume a monad given by universe-polymorphic terms:

T : □i → □i
ret : Π(A : □).A → T A
bind : Π(A B : □).T A → (A → T B) → T B

and we require no equations!!

Furthermore, in Type Theory, types are terms. We want the monad to be
self-algebraic. This is given by:

El : T □□i → □□i
El (ret □□ M) ≡β M

A lot of monads appear to be self-algebraic.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 13 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Required structure

We assume a monad given by universe-polymorphic terms:

T : □i → □i
ret : Π(A : □).A → T A
bind : Π(A B : □).T A → (A → T B) → T B

and we require no equations!!

Furthermore, in Type Theory, types are terms. We want the monad to be
self-algebraic. This is given by:

El : T □□i → □□i
El (ret □□ M) ≡β M

A lot of monads appear to be self-algebraic.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 13 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Weaning Translation of the Negative Fragment

[x ] := x
[λx : A.M ] := λx : [[A]]. [M ]
[M N ] := [M ] [N ]
[□i ] := ret □□i+1 (T □□i, µ□)
[Πx : A.B ] := ret □□ (Πx : [[A]]. [[B]], µΠ)
[[A]] := (El [A ]).π1

µ□ : T (T □□) → □□
µΠ : T (Πx : [[A]]. [[B]]) → Πx : [[A]]. [[B]]

Functional fragment untouched, types mangled into algebras
[[□]] ≡β T □□ and [[Πx : A.B]] ≡β Πx : [[A]]. [[B]]

Soundness
If Γ ⊢ M : A then [[Γ]] ⊢ [M ] : [[A]]. (In particular, conversion is preserved.)

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 14 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Weaning Translation of the Negative Fragment

[x ] := x
[λx : A.M ] := λx : [[A]]. [M ]
[M N ] := [M ] [N ]
[□i ] := ret □□i+1 (T □□i, µ□)
[Πx : A.B ] := ret □□ (Πx : [[A]]. [[B]], µΠ)
[[A]] := (El [A ]).π1

µ□ : T (T □□) → □□
µΠ : T (Πx : [[A]]. [[B]]) → Πx : [[A]]. [[B]]

Functional fragment untouched, types mangled into algebras
[[□]] ≡β T □□ and [[Πx : A.B]] ≡β Πx : [[A]]. [[B]]

Soundness
If Γ ⊢ M : A then [[Γ]] ⊢ [M ] : [[A]]. (In particular, conversion is preserved.)

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 14 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Weaning Translation of the Negative Fragment

[x ] := x
[λx : A.M ] := λx : [[A]]. [M ]
[M N ] := [M ] [N ]
[□i ] := ret □□i+1 (T □□i, µ□)
[Πx : A.B ] := ret □□ (Πx : [[A]]. [[B]], µΠ)
[[A]] := (El [A ]).π1

µ□ : T (T □□) → □□
µΠ : T (Πx : [[A]]. [[B]]) → Πx : [[A]]. [[B]]

Functional fragment untouched, types mangled into algebras
[[□]] ≡β T □□ and [[Πx : A.B]] ≡β Πx : [[A]]. [[B]]

Soundness
If Γ ⊢ M : A then [[Γ]] ⊢ [M ] : [[A]]. (In particular, conversion is preserved.)

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 14 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Reduction vs. Effects

Nothing fancy in the negative fragment, by the well-known duality.
Call-by-name: functions well-behaved vs. inductives ill-behaved
Call-by-value: inductives well-behaved vs. functions ill-behaved

Why is that?

In call-by-name + effects, consider:

(λb : bool.M) fail ⇝ non-standard inductive terms

In call-by-value + effects, consider:

(λb : unit. fail) ⇝ invalid η-rule

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 15 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Reduction vs. Effects

Nothing fancy in the negative fragment, by the well-known duality.
Call-by-name: functions well-behaved vs. inductives ill-behaved
Call-by-value: inductives well-behaved vs. functions ill-behaved

Why is that?

In call-by-name + effects, consider:

(λb : bool.M) fail ⇝ non-standard inductive terms

In call-by-value + effects, consider:

(λb : unit. fail) ⇝ invalid η-rule

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 15 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Weaning Inductive Types

For the sake of explanation, let's focus on a very simple type:

Inductive bool := true | false.

We pose:

[bool ] := ret □□ (T bool, µbool)
[true ] := ret bool true
[false ] := ret bool false
µbool : T (T bool) → T bool

Remark that [[bool]] ≡β T bool.

Soundness
If Γ ⊢ M : A then [[Γ]] ⊢ [M ] : [[A]].

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 16 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Weaning Inductive Types

For the sake of explanation, let's focus on a very simple type:

Inductive bool := true | false.

We pose:

[bool ] := ret □□ (T bool, µbool)
[true ] := ret bool true
[false ] := ret bool false
µbool : T (T bool) → T bool

Remark that [[bool]] ≡β T bool.

Soundness
If Γ ⊢ M : A then [[Γ]] ⊢ [M ] : [[A]].

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 16 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

E-LI-MI-NATE!

We need a bit more structure on T to implement elimination:

hbind : Π(A : □)(B : T □□).T A → (A → [[B]]) → [[B]]
dbind : Π(A : □)(B : A → T □□).Π(x̂ : T A).

(Π(x : A). [[B x]]) → (El (hbind A [□] x̂ B)).π1

subject to:

hbind A B (ret A M) F ≡β F M
dbind A B (ret A M) F ≡β F M

Essentially, hbind and dbind are variants of bind.

Remark that the second equation is well-typed iff the first holds.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 17 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

E-LI-MI-NATE!

We need a bit more structure on T to implement elimination:

hbind : Π(A : □)(B : T □□).T A → (A → [[B]]) → [[B]]
dbind : Π(A : □)(B : A → T □□).Π(x̂ : T A).

(Π(x : A). [[B x]]) → (El (hbind A [□] x̂ B)).π1

subject to:

hbind A B (ret A M) F ≡β F M
dbind A B (ret A M) F ≡β F M

Essentially, hbind and dbind are variants of bind.

Remark that the second equation is well-typed iff the first holds.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 17 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Interpreting Non-Dependent Elimination

It is easy to provide a non-dependent eliminator using hbind:

[bool case ] : [[ΠP : □.P → P → bool → P]]
:= λ(P : T □□) (pt pf : [[P]]) (b̂ : T bool).

hbind bool P b̂ (λb. if b then pt else pf)

which has the right reduction rules:

[bool case P pt pf true ] ≡β pt
[bool case P pt pf false ] ≡β pf

Remember:
hbind : Π(A : □)(B : T □□).T A → (A → [[B]]) → [[B]]
hbind A B (ret A M) F ≡β F M

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 18 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Eliminating Addiction to Dependence

We would like to recover dependent elimination...

... but it's not valid anymore in presence of effects!

As [[bool]] ≡β T bool, if T is not the identity then there are closed
booleans in the translation which are neither [true ] nor [false ].

Typical of CBN + effects: recall Herbelin's paradox
Already arose in our forcing translation
We need to restrict dependent elimination the same way!

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 19 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Eliminating Addiction to Dependence

We would like to recover dependent elimination...

... but it's not valid anymore in presence of effects!

As [[bool]] ≡β T bool, if T is not the identity then there are closed
booleans in the translation which are neither [true ] nor [false ].

Typical of CBN + effects: recall Herbelin's paradox
Already arose in our forcing translation
We need to restrict dependent elimination the same way!

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 19 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Eliminating Addiction to Dependence

We would like to recover dependent elimination...

... but it's not valid anymore in presence of effects!

As [[bool]] ≡β T bool, if T is not the identity then there are closed
booleans in the translation which are neither [true ] nor [false ].

Typical of CBN + effects: recall Herbelin's paradox
Already arose in our forcing translation
We need to restrict dependent elimination the same way!

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 19 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Eliminating Addiction to Dependence II

The trick consists in sprinkling a few storage operators. For bool:

[θbool ] : [[bool → (bool → □) → □]]
:= [λb. bool case (bool → □) (λk. k true) (λk. k false) b ]

Only defined in the source via non-dependent eliminator
In particular, agnostic to the actual translation
CPS-like to enforce CBV in a CBN world
Trivial in CIC: ⊢ Πb : bool. θbool b P = P b

Using dbind, this allows to implement:

[bool rect ] : [[ΠP : bool → □.P true → P false → Πb : bool. θbool b P]]

with the expected reduction rules.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 20 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Eliminating Addiction to Dependence II

The trick consists in sprinkling a few storage operators. For bool:

[θbool ] : [[bool → (bool → □) → □]]
:= [λb. bool case (bool → □) (λk. k true) (λk. k false) b ]

Only defined in the source via non-dependent eliminator
In particular, agnostic to the actual translation
CPS-like to enforce CBV in a CBN world
Trivial in CIC: ⊢ Πb : bool. θbool b P = P b

Using dbind, this allows to implement:

[bool rect ] : [[ΠP : bool → □.P true → P false → Πb : bool. θbool b P]]

with the expected reduction rules.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 20 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Weaning Everywhere

There are a lot of monads that satisfy the weaning conditions.
Exception monad T A := A + E
Non-determinism T A := A × list A
Non-termination T A := νX.A + X
Writer T A := A × list Ω (the one we need for Hello World)

Note that some lead to a logically inconsistent model.

A few monads aren't self-algebraic, e.g. state, reader and continuation.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 21 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Weaning Everywhere

There are a lot of monads that satisfy the weaning conditions.
Exception monad T A := A + E
Non-determinism T A := A × list A
Non-termination T A := νX.A + X
Writer T A := A × list Ω (the one we need for Hello World)

Note that some lead to a logically inconsistent model.

A few monads aren't self-algebraic, e.g. state, reader and continuation.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 21 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Logic, at Last

In some inconsistent cases, full dependent elimination is valid.
Most notably, this is the case for the exception monad.

Let's use that to do a Friedman A-translation on steroids!

Lemmatas
With the exception monad T A := A + E:

Full dependent elimination is valid (at the expense of consistency)
We have [[¬¬A]] ∼= ([[A]] → E) → E
If A is a first-order type, then [[A]] → A + E.

Admissibility of Markov's rule in CIC
If A is first-order and ⊢CIC ¬¬A then ⊢CIC A.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 22 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Logic, at Last

In some inconsistent cases, full dependent elimination is valid.
Most notably, this is the case for the exception monad.

Let's use that to do a Friedman A-translation on steroids!

Lemmatas
With the exception monad T A := A + E:

Full dependent elimination is valid (at the expense of consistency)
We have [[¬¬A]] ∼= ([[A]] → E) → E
If A is a first-order type, then [[A]] → A + E.

Admissibility of Markov's rule in CIC
If A is first-order and ⊢CIC ¬¬A then ⊢CIC A.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 22 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Logic, at Last

In some inconsistent cases, full dependent elimination is valid.
Most notably, this is the case for the exception monad.

Let's use that to do a Friedman A-translation on steroids!

Lemmatas
With the exception monad T A := A + E:

Full dependent elimination is valid (at the expense of consistency)
We have [[¬¬A]] ∼= ([[A]] → E) → E
If A is a first-order type, then [[A]] → A + E.

Admissibility of Markov's rule in CIC
If A is first-order and ⊢CIC ¬¬A then ⊢CIC A.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 22 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Moi, j'ai dit linéaire, linéaire ? Comme c'est étrange...

Back to restricted elimination. It turns out we have a semantic criterion
for valid dependent predicates.

LINEARITY.

A concept invented by G. Munch, rephrased recently by P. Levy.
Little to do with « linear use of variables »
Essentially, f : A → B linear in CBN if semantically CBV in A.
Categorically, f linear iff it is an algebra morphism.
Storage operators turn freely any morphism into a linear one.
Can be approximated by a syntactic guard condition.

Γ ⊢ M : bool . . . P linear in b
Γ ⊢ if M return λb.P then N1 else N2 : P{b := M}

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 23 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Moi, j'ai dit linéaire, linéaire ? Comme c'est étrange...

Back to restricted elimination. It turns out we have a semantic criterion
for valid dependent predicates.

LINEARITY.
A concept invented by G. Munch, rephrased recently by P. Levy.
Little to do with « linear use of variables »
Essentially, f : A → B linear in CBN if semantically CBV in A.
Categorically, f linear iff it is an algebra morphism.
Storage operators turn freely any morphism into a linear one.
Can be approximated by a syntactic guard condition.

Γ ⊢ M : bool . . . P linear in b
Γ ⊢ if M return λb.P then N1 else N2 : P{b := M}

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 23 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A Bishop-style Type Theory

We can generalize this restriction to form Baclofen Type Theory.
Subset of CIC
Independent from the actual translation.
Works with forcing
Works with weaning
Prevents Herbelin's paradox

BTT is the generic theory to deal with dependent effects
« Bishop-style, effect-agnostic type theory »

(Take that, Brouwerian HoTT!)

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 24 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A Bishop-style Type Theory

We can generalize this restriction to form Baclofen Type Theory.
Subset of CIC
Independent from the actual translation.
Works with forcing
Works with weaning
Prevents Herbelin's paradox

BTT is the generic theory to deal with dependent effects
« Bishop-style, effect-agnostic type theory »

(Take that, Brouwerian HoTT!)

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 24 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Implementation

A nice paper summarizing this talk.

https://www.pédrot.fr/articles/weaning.pdf
Just as for the forcing translation we have a Coq plugin for weaning.

https://github.com/CoqHott/coq-effects

Allows to add effects to Coq just today.
Implement your favourite effectful operators: fail, fix...
Compile effectful terms on the fly.
Allows to reason about them in Coq.

(If time permits, small demo here.)

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 25 / 27

https://www.pédrot.fr/articles/weaning.pdf
https://github.com/CoqHott/coq-effects


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conclusion

A new effectful translation of TT, the weaning translation
Cosmic version of Eilenberg-Moore categories
Gives both programming and logical features

An experimentally confirmed notion of effectful type theories, BTT
Works for forcing, weaning and CPS
Restriction of dependent elimination on linearity guard condition
Conjecture: the correct way to add effects to TT

Implementation of a plugin in Coq
Try it out today!

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 26 / 27



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Scribitur ad narrandum, non ad probandum

Thanks for your attention.

Pédrot & al. (U. Ljubljana & INRIA) An Effectful Way 31/01/2017 27 / 27


