
A Survey of Coinduction in Coq

Pierre-Marie Pédrot

PPS/πr2

18 June 2015

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 1 / 27

Plan

1 A Quick Recap on Coq

2 To In�nite and Beyond: Coinduction in Coq

3 Those In�nite Spaces Frighten Me: Story of a Demise

4 Section IV: A New Hope

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 2 / 27

Coq

Both your favourite proof assistant and programming language

Based on the pCIC type theory

Famous developments: CompCert, 4-colour theorem...

Two prestigious ACM Awards last year

O
R

IG
INAL S

E
A

L
 O

F

 Q U A L I T
YVOEVODSKYAPPROVED

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 3 / 27

Coq

Both your favourite proof assistant and programming language

Based on the pCIC type theory

Famous developments: CompCert, 4-colour theorem...

Two prestigious ACM Awards last year

O
R

IG
INAL S

E
A

L
 O

F

 Q U A L I T
YVOEVODSKYAPPROVED

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 3 / 27

In the beginning was the Lambda

First versions of Coq only implemented CoC (Coquand-Huet, 1984).

Terms were essentially λ-terms (with rich typing)

The only type former was Πx : A.B

Poor expressivity as a logical system: 6` 0 6= 1

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 4 / 27

In the beginning was the Lambda

First versions of Coq only implemented CoC (Coquand-Huet, 1984).

Terms were essentially λ-terms (with rich typing)

The only type former was Πx : A.B

Poor expressivity as a logical system: 6` 0 6= 1

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 4 / 27

Then came the Inductive types

Inductive types were introduced by Christine Paulin-Mohring (1990).

New type formers: nat, list. . .

New terms

Constructors: 0, 1, cons. . .
Destructor: match t with ~p⇒ ~u end

Fixpoint: fix F n := t

New fantasmabulous theorems: ` 0 6= 1

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 5 / 27

Then came the Inductive types

Inductive types were introduced by Christine Paulin-Mohring (1990).

New type formers: nat, list. . .

New terms

Constructors: 0, 1, cons. . .
Destructor: match t with ~p⇒ ~u end

Fixpoint: fix F n := t

New fantasmabulous theorems: ` 0 6= 1

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 5 / 27

A natural case study

Inductive nat := O : nat | S : nat → nat.

Must be a positive functor! Syntactic �positivity condition�

Definition nat_rect :

∀ (P : nat → Type)

(p0 : P O) (pS : ∀ n, P n → P (S n)) n, P n :=

fun P p0 pS ⇒
fix F n := match n with

| O ⇒ p0

| S m ⇒ pS m (F m)

end.

Must be a well-founded recursion! Syntactic �guard condition�

Recursive calls must be �smaller�.

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 6 / 27

A natural case study

Inductive nat := O : nat | S : nat → nat.

Must be a positive functor! Syntactic �positivity condition�

Definition nat_rect :

∀ (P : nat → Type)

(p0 : P O) (pS : ∀ n, P n → P (S n)) n, P n :=

fun P p0 pS ⇒
fix F n := match n with

| O ⇒ p0

| S m ⇒ pS m (F m)

end.

Must be a well-founded recursion! Syntactic �guard condition�

Recursive calls must be �smaller�.

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 6 / 27

A natural case study

Inductive nat := O : nat | S : nat → nat.

Must be a positive functor! Syntactic �positivity condition�

Definition nat_rect :

∀ (P : nat → Type)

(p0 : P O) (pS : ∀ n, P n → P (S n)) n, P n :=

fun P p0 pS ⇒
fix F n := match n with

| O ⇒ p0

| S m ⇒ pS m (F m)

end.

Must be a well-founded recursion! Syntactic �guard condition�

Recursive calls must be �smaller�.

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 6 / 27

A natural case study

Inductive nat := O : nat | S : nat → nat.

Must be a positive functor! Syntactic �positivity condition�

Definition nat_rect :

∀ (P : nat → Type)

(p0 : P O) (pS : ∀ n, P n → P (S n)) n, P n :=

fun P p0 pS ⇒
fix F n := match n with

| O ⇒ p0

| S m ⇒ pS m (F m)

end.

Must be a well-founded recursion! Syntactic �guard condition�

Recursive calls must be �smaller�.

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 6 / 27

An aftertought on dynamics

To ensure strong normalization, one must restrict fix reduction.

(fix F n := t) 0 → (fun n ⇒ t[F := (fix F n := t)]) 0

(fix F n := t) (S m) → (fun n ⇒ t[F := (fix F n := t)]) (S m)

(fix F n := t) r 6→

when r is not an applied constructor.

Otherwise in�nite loop due to strong reduction...

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 7 / 27

An aftertought on dynamics

To ensure strong normalization, one must restrict fix reduction.

(fix F n := t) 0 → (fun n ⇒ t[F := (fix F n := t)]) 0

(fix F n := t) (S m) → (fun n ⇒ t[F := (fix F n := t)]) (S m)

(fix F n := t) r 6→

when r is not an applied constructor.

Otherwise in�nite loop due to strong reduction...

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 7 / 27

Enters Coinduction

Coinduction was introduced by Eduardo Giménez (1994).

Handling in�nite datastructures as greatest �xpoints

Kind of dual of inductive datatypes

Inductive objects are to be destructed

induction: (FS → S)→ µX.FX → S

Coinductive objects are to be constructed

coinduction: (S → FS)→ S → νX.FX

New term: cofix F := t constructs a coinductive

Otherwise use the same constructions as for inductive types

Constructors
Pattern-matching

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 8 / 27

Enters Coinduction

Coinduction was introduced by Eduardo Giménez (1994).

Handling in�nite datastructures as greatest �xpoints

Kind of dual of inductive datatypes

Inductive objects are to be destructed

induction: (FS → S)→ µX.FX → S

Coinductive objects are to be constructed

coinduction: (S → FS)→ S → νX.FX

New term: cofix F := t constructs a coinductive

Otherwise use the same constructions as for inductive types

Constructors
Pattern-matching

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 8 / 27

�That's easy!�

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 9 / 27

What is your favourite coinductive?

CoInductive stream := cons : nat → stream → stream.

Same syntactic �positivity condition� as for inductive types

Definition nats : stream :=

(cofix F := fun n : nat ⇒ cons n (F (S n))) 0.

Must be a anti-founded corecursion! Syntactic �guard condition�

Corecursive calls must be �blocked�.

Fairness assumption: the co�x must be productive at each unfolding

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 10 / 27

What is your favourite coinductive?

CoInductive stream := cons : nat → stream → stream.

Same syntactic �positivity condition� as for inductive types

Definition nats : stream :=

(cofix F := fun n : nat ⇒ cons n (F (S n))) 0.

Must be a anti-founded corecursion! Syntactic �guard condition�

Corecursive calls must be �blocked�.

Fairness assumption: the co�x must be productive at each unfolding

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 10 / 27

What is your favourite coinductive?

CoInductive stream := cons : nat → stream → stream.

Same syntactic �positivity condition� as for inductive types

Definition nats : stream :=

(cofix F := fun n : nat ⇒ cons n (F (S n))) 0.

Must be a anti-founded corecursion! Syntactic �guard condition�

Corecursive calls must be �blocked�.

Fairness assumption: the co�x must be productive at each unfolding

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 10 / 27

What is your favourite coinductive?

CoInductive stream := cons : nat → stream → stream.

Same syntactic �positivity condition� as for inductive types

Definition nats : stream :=

(cofix F := fun n : nat ⇒ cons n (F (S n))) 0.

Must be a anti-founded corecursion! Syntactic �guard condition�

Corecursive calls must be �blocked�.

Fairness assumption: the co�x must be productive at each unfolding

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 10 / 27

To in�nity and beyond

As for inductive types one must restrict cofix reduction.

fix was restricted by arguments being constructors

Dually cofix is restricted by surrounding context:

(cofix F := t) 6−→ t[F := (cofix F := t)]

E[cofix F := t] −→ E[t[F := (cofix F := t)]]

only when the innermost component of E is a pattern-matching.

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 11 / 27

To in�nity and beyond

As for inductive types one must restrict cofix reduction.

fix was restricted by arguments being constructors

Dually cofix is restricted by surrounding context:

(cofix F := t) 6−→ t[F := (cofix F := t)]

E[cofix F := t] −→ E[t[F := (cofix F := t)]]

only when the innermost component of E is a pattern-matching.

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 11 / 27

Some Examples

Definition hd (s : stream) : nat :=

match s with cons n _ ⇒ n end.

Definition tl (s : stream) : stream :=

match s with cons _ s' ⇒ s' end.

Definition X : stream := (cofix F := cons 1 (cons 2 F)).

The reduction behaviour forces to write unfolding lemmas.

Lemma stream_unfold : forall s : stream, s = cons (hd s) (tl s).

This is provable thanks to the fact hd and tl are pattern-matchings.

 without such unfoldings, proofs are horrendous (if doable).

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 12 / 27

Some Examples

Definition hd (s : stream) : nat :=

match s with cons n _ ⇒ n end.

Definition tl (s : stream) : stream :=

match s with cons _ s' ⇒ s' end.

Definition X : stream := (cofix F := cons 1 (cons 2 F)).

The reduction behaviour forces to write unfolding lemmas.

Lemma stream_unfold : forall s : stream, s = cons (hd s) (tl s).

This is provable thanks to the fact hd and tl are pattern-matchings.

 without such unfoldings, proofs are horrendous (if doable).

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 12 / 27

More Examples

Luckily or not, manipulating coinductive objects foregoes equality.

Definition ones : stream := (cofix F := cons 1 F).

Definition onesones : stream := (cofix F := cons 1 (cons 1 F)).

One cannot prove that ones = onesones.

... only that they are bisimilar.

CoInductive bisimilar : stream -> stream -> Prop :=

bisim : forall x s1 s2, bisimilar s1 s2 ->

bisimilar (cons x s1) (cons x s2).

Lemma ones_onesones : bisimilar ones onesones.

(By a proof by coinduction.)

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 13 / 27

More Examples

Luckily or not, manipulating coinductive objects foregoes equality.

Definition ones : stream := (cofix F := cons 1 F).

Definition onesones : stream := (cofix F := cons 1 (cons 1 F)).

One cannot prove that ones = onesones.

... only that they are bisimilar.

CoInductive bisimilar : stream -> stream -> Prop :=

bisim : forall x s1 s2, bisimilar s1 s2 ->

bisimilar (cons x s1) (cons x s2).

Lemma ones_onesones : bisimilar ones onesones.

(By a proof by coinduction.)

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 13 / 27

A Theoretical Failure

CoInductive tick := Tick : tick -> tick.

CoFixpoint loop := Tick loop.

Definition etaeq : loop = loop :=

match loop with

| Tick t ⇒ eq_refl (Tick t)

end.

Definition BOOM := Eval compute in (etaeq : loop = loop).

Error: Found type Tick loop = Tick loop

but expected type loop = loop.

Failure of subject reduction
(a serious matter)

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 14 / 27

A Theoretical Failure

CoInductive tick := Tick : tick -> tick.

CoFixpoint loop := Tick loop.

Definition etaeq : loop = loop :=

match loop with

| Tick t ⇒ eq_refl (Tick t)

end.

Definition BOOM := Eval compute in (etaeq : loop = loop).

Error: Found type Tick loop = Tick loop

but expected type loop = loop.

Failure of subject reduction
(a serious matter)

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 14 / 27

A Theoretical Failure

CoInductive tick := Tick : tick -> tick.

CoFixpoint loop := Tick loop.

Definition etaeq : loop = loop :=

match loop with

| Tick t ⇒ eq_refl (Tick t)

end.

Definition BOOM := Eval compute in (etaeq : loop = loop).

Error: Found type Tick loop = Tick loop

but expected type loop = loop.

Failure of subject reduction
(a serious matter)

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 14 / 27

A Theoretical Failure

CoInductive tick := Tick : tick -> tick.

CoFixpoint loop := Tick loop.

Definition etaeq : loop = loop :=

match loop with

| Tick t ⇒ eq_refl (Tick t)

end.

Definition BOOM := Eval compute in (etaeq : loop = loop).

Error: Found type Tick loop = Tick loop

but expected type loop = loop.

Failure of subject reduction
(a serious matter)

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 14 / 27

�I didn't know that.�

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 15 / 27

Analysis of the failure

The problem stems from the use of pattern-matching in etaeq.

The reduction rule allows for more precise information about loop

The dependency of the matching allows this information to escape

Reducing the matching loses this information

Definition etaeq : loop = loop :=

match loop with

| Tick t ⇒ eq_refl (Tick t)

end.

etaeq −→ eq_refl (Tick loop)

Dependent pattern-matching on coinductive types is evil.
(we're doing it wrong)

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 16 / 27

Analysis of the failure

The problem stems from the use of pattern-matching in etaeq.

The reduction rule allows for more precise information about loop

The dependency of the matching allows this information to escape

Reducing the matching loses this information

Definition etaeq : loop = loop :=

match loop with

| Tick t ⇒ eq_refl (Tick t)

end.

etaeq −→ eq_refl (Tick loop)

Dependent pattern-matching on coinductive types is evil.
(we're doing it wrong)

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 16 / 27

A More Practical Issue

The current handling of guardedness is also problematic in practice.

Inductive proofs allowed by an induction principle

abstract over the guard condition
forces at least one step of the �xpoint
modularizes proofs: the induction tactic

No such abstraction for coinductive proofs

co�xpoints are built by hand (the infamous cofix tactic)
steps must be provided as syntactic constructors
cannot abstract over them (no functions, no opaque terms)
thus no granularity

One cannot chain coinductive lemmas in proofs.
Everything must be done in one go.

In theory: no problem.

In practice: Really, really painful.

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 17 / 27

A More Practical Issue

The current handling of guardedness is also problematic in practice.

Inductive proofs allowed by an induction principle

abstract over the guard condition
forces at least one step of the �xpoint
modularizes proofs: the induction tactic

No such abstraction for coinductive proofs

co�xpoints are built by hand (the infamous cofix tactic)
steps must be provided as syntactic constructors
cannot abstract over them (no functions, no opaque terms)
thus no granularity

One cannot chain coinductive lemmas in proofs.
Everything must be done in one go.

In theory: no problem.

In practice: Really, really painful.

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 17 / 27

A More Practical Issue

The current handling of guardedness is also problematic in practice.

Inductive proofs allowed by an induction principle

abstract over the guard condition
forces at least one step of the �xpoint
modularizes proofs: the induction tactic

No such abstraction for coinductive proofs

co�xpoints are built by hand (the infamous cofix tactic)
steps must be provided as syntactic constructors
cannot abstract over them (no functions, no opaque terms)
thus no granularity

One cannot chain coinductive lemmas in proofs.
Everything must be done in one go.

In theory: no problem.

In practice: Really, really painful.

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 17 / 27

A More Practical Issue

The current handling of guardedness is also problematic in practice.

Inductive proofs allowed by an induction principle

abstract over the guard condition
forces at least one step of the �xpoint
modularizes proofs: the induction tactic

No such abstraction for coinductive proofs

co�xpoints are built by hand (the infamous cofix tactic)
steps must be provided as syntactic constructors
cannot abstract over them (no functions, no opaque terms)
thus no granularity

One cannot chain coinductive lemmas in proofs.
Everything must be done in one go.

In theory: no problem.

In practice: Really, really painful.

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 17 / 27

Through the Looking Glass

The failure of subject reduction is due to a misinterpretation.

�Coinductives are like inductives, save that they're greatest �xpoints.�

∗ ½No! ∗
+ Inductives lie on the positive side: ⊕,⊗, µ

Built out of constructors
Destructed by �xpoint + pattern-matching
Normal inhabitants have a constrained form

− Coinductives lie on the negative side: &,`, ν
Built out of co�xpoints + records
Destructed by projections
Normal inhabitants can be about anything

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 18 / 27

Through the Looking Glass

The failure of subject reduction is due to a misinterpretation.

�Coinductives are like inductives, save that they're greatest �xpoints.�

∗ ½No! ∗

+ Inductives lie on the positive side: ⊕,⊗, µ
Built out of constructors
Destructed by �xpoint + pattern-matching
Normal inhabitants have a constrained form

− Coinductives lie on the negative side: &,`, ν
Built out of co�xpoints + records
Destructed by projections
Normal inhabitants can be about anything

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 18 / 27

Through the Looking Glass

The failure of subject reduction is due to a misinterpretation.

�Coinductives are like inductives, save that they're greatest �xpoints.�

∗ ½No! ∗
+ Inductives lie on the positive side: ⊕,⊗, µ

Built out of constructors
Destructed by �xpoint + pattern-matching
Normal inhabitants have a constrained form

− Coinductives lie on the negative side: &,`, ν
Built out of co�xpoints + records
Destructed by projections
Normal inhabitants can be about anything

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 18 / 27

A Solution to the Subject Reduction Issue

Matthieu Sozeau introduced in Coq 8.5 the so-called primitive projections.

Records de�ned by projection rather than pattern-matching

 True negative products
 Projections are �rst-class terms

Originally for e�ciency and semi-theoretical (η-equivalence) purposes

Happens to solve the subject reduction issue

 �Copattern�-style coinduction
 Can only observe projections, not the object itself
 When Coq turns Object-Oriented?

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 19 / 27

Revisiting the Example

CoInductive stream := { hd : nat; tl : stream }.

Definition cons n s := {| hd := n; tl := s |}.

Definition nats :=

(cofix F := fun n => {| hd := n; tl := F (S n) |}) 0.

Definition ones := cofix F := {| hd := 1; tl := F |}.

CoFixpoint ones2 :=

cofix F := {| hd := 1; tl := {| hd := 1; tl := F |} |}.

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 20 / 27

Drastic Changes

Positivity condition is similar

Guardedness is adapted as:

Corecursive calls must be under a record �eld

Reduction is adapted as:
(cofix F := t).p −→ (t[F := (cofix F := t)]).p

Bisimilarity becomes essential

 One cannot prove anymore that s = cons (hd s) (tl s)

 Equality over coinductives becomes trivial
 Coinductives as blackboxes

The problematic example is not writable anymore

 Less equality for a safer world!

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 21 / 27

A solution to the practical problem

The co�xpoint abstraction problem can be worked around.

The notions of �positive� or �being productive� are too syntactical.

Let's make them semantical!

We will use Mendler-style coinduction.

A program translation making everything positive for free

Works by expliciting the inner state of the inductive

A technique successfully used by the Paco library (Chung-Kil Hur)

�Open recursion approach�

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 22 / 27

A solution to the practical problem

The co�xpoint abstraction problem can be worked around.

The notions of �positive� or �being productive� are too syntactical.

Let's make them semantical!

We will use Mendler-style coinduction.

A program translation making everything positive for free

Works by expliciting the inner state of the inductive

A technique successfully used by the Paco library (Chung-Kil Hur)

�Open recursion approach�

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 22 / 27

The Underlying Mathematical Justi�cation

Let H be the complete lattice of propositions.

Let F : H→ H be some function and pose

dF e : (H→ H)→ H→ H
:= λGX.∃Y. (F Y) ∧ (Y → X ∨GX)

Theorem

dF e is syntactically positive in G.

In particular νdF e : H→ H exists.

Moreover, if F is monotone, νdF e(Y) ≡ νX. F (X ∨ Y).

In particular νdF e(⊥) ≡ νF .

Here νdF e acts as �νF with explicit inner state�.

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 23 / 27

Reasonment Principles

By applying the previous results, one gets for free three principles.

(Init) νF ≡ νdF e(⊥)

(Unfold) νdF e(X) ≡ F (X ∨ νdF e(X))

(Coiter) (Y → νdF e(X)) ≡ (Y → νdF e(X ∨ Y))

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 24 / 27

The Mendleri�ed Example

CoInductive stream :=

cons : nat -> stream -> stream.

CoInductive stream (R : Type) :=

cons : nat -> (R + stream R) -> stream R.

Definition coiter :

forall L R, (L -> stream (L + R)) -> L -> stream R.

The corecursion combinator allows for cofix-free reasoning.

Definition nats : stream False :=

coiter (fun n => cons n (inr (inl (S n)))) 0.

Definition ones : stream False :=

coiter (fun _ => cons 0 (inr (inl tt))) tt.

Definition ones2 : stream False :=

coiter (fun _ => cons 0 (inl (cons 0 (inr (inl tt))))) tt.

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 25 / 27

Conclusion

Coinduction is a bit tricky in Coq

... but things are getting better

... and we have kludges to work around its defects

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 26 / 27

Scribitur ad narrandum non ad probandum

Thanks for your attention.

Pierre-Marie Pédrot (PPS/πr2) A Survey of Coinduction in Coq 18/06/2015 27 / 27

	A Quick Recap on Coq
	To Infinite and Beyond: Coinduction in Coq
	Those Infinite Spaces Frighten Me: Story of a Demise
	Section IV: A New Hope

