Pierre-Marie Pédrot

PPS/7r?

18 June 2015

«O> 4« Fr A=) « =) QA

Plan

@ A Quick Recap on Coq

(@ To Infinite and Beyond: Coinduction in Coq

(3 Those Infinite Spaces Frighten Me: Story of a Demise

(@ Section IV: A New Hope

Pierre-Marie Pédrot (PPS/nr2) A Survey of Coinduction in Coq 18/06/2015 2 /27

Coq

Both your favourite proof assistant and programming language
Based on the pCIC type theory

Famous developments: CompCert, 4-colour theorem...

© © o o

Two prestigious ACM Awards last year

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015

3 /27

Coq

o Both your favourite proof assistant and programming language
o Based on the pCIC type theory

o Famous developments: CompCert, 4-colour theorem...

o Two prestigious ACM Awards last year

Qe

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015 3/27

In the beginning was the Lambda

First versions of Coq only implemented CoC (Coquand-Huet, 1984).

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015 4 /27

In the beginning was the Lambda

First versions of Coq only implemented CoC (Coquand-Huet, 1984).
o Terms were essentially A-terms (with rich typing)
o The only type former was Ilx : A.B

o Poor expressivity as a logical system: /0 # 1

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015 4 /27

Then came the Inductive types

Inductive types were introduced by Christine Paulin-Mohring (1990).

Pierre-Marie Pédrot (PPS/nr2) A Survey of Coinduction in Coq 18/06/2015 5 /27

Then came the Inductive types

Inductive types were introduced by Christine Paulin-Mohring (1990).

o New type formers: nat, list...
o New terms

o Constructors: 0,1, cons...
o Destructor: match ¢ with p= « end
o Fixpoint: fix F n:=t

o New fantasmabulous theorems: -0 # 1

Pierre-Marie Pédrot (PPS/nr2) A Survey of Coinduction in Coq 18/06/2015 5 /27

Inductive nat := 0 : nat

| S :

nat — nat.

<O «Fr o« [> Q>

A natural case study

Inductive nat := 0 : nat | S : nat — nat.

Must be a positive functor! ~» Syntactic “positivity condition”

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015 6 /27

A natural case study

Inductive nat := 0 : nat | S : nat — nat.

Must be a positive functor! ~» Syntactic “positivity condition”

Definition nat_rect :
V (P : nat — Type)
(p0 : PO) (pS : Vo, Pn - P (Sn)) n, Pn :=
fun P p0 pS =

fix F n := match n with
| 0 = po
| Sm = pSm (F m)
end.
Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015

6 /27

A natural case study

Inductive nat := 0 : nat | S : nat — nat.
Must be a positive functor! ~» Syntactic “positivity condition”

Definition nat_rect :
V (P : nat — Type)
(p0 : PO) (pS : Vo, Pn - P (Sn)) n, Pn :=
fun P p0 pS =

fix F n := match n with
| 0 = po

| Sm = pSm (F m)
end.

Must be a well-founded recursion! ~~ Syntactic “guard condition”

Recursive calls must be “smaller”.

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015

6 /27

An aftertought on dynamics

To ensure strong normalization, one must restrict £ix reduction.

(fix Fn :=t) 0 — (fun n = t[F := (fix Fn :=t)]) O

(fix Fn :=t) (Sm) - ((funn = t[F := (fix Fn := t)]) (S m)

Pierre-Marie Pédrot (PPS/nr2) A Survey of Coinduction in Coq 18/06/2015 7/27

An aftertought on dynamics

To ensure strong normalization, one must restrict £ix reduction.

(fix Fn :=t) 0 — (fun n = t[F := (fix Fn :=t)]) O
(fix Fn :=t) (Sm) - ((funn = t[F := (fix Fn := t)]) (S m)

(fix Fn :=t) r A

when r is not an applied constructor.
Otherwise infinite loop due to strong reduction...

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015 7/27

Enters Coinduction

Coinduction was introduced by Eduardo Giménez (1994).

o Handling infinite datastructures as greatest fixpoints
o Kind of dual of inductive datatypes
o Inductive objects are to be destructed

induction: (FS —S) - uX.FX — S
o Coinductive objects are to be constructed

coinduction: (S — FS) —» S - vX.FX

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015

8 /27

Enters Coinduction

Coinduction was introduced by Eduardo Giménez (1994).

o Handling infinite datastructures as greatest fixpoints
o Kind of dual of inductive datatypes
o Inductive objects are to be destructed

induction: (FS —S) - uX.FX — S
o Coinductive objects are to be constructed

coinduction: (S — FS) —» S - vX.FX

o New term: cofix F' :=t constructs a coinductive
o Otherwise use the same constructions as for inductive types

o Constructors
o Pattern-matching

Pierre-Marie Pédrot (PPS/nr2) A Survey of Coinduction in Coq 18/06/2015

8 /27

“That's easy!”

DA

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015 9 /27

CoInductive stream

N
v
N
v
N
it
.
N
it
.
iy

cons

nat — stream — stream.

RN Ge

What is your favourite coinductive?

CoInductive stream := cons : nat — stream — stream.

Same syntactic “positivity condition” as for inductive types

Pierre-Marie Pédrot (PPS/nr2) A Survey of Coinduction in Coq 18/06/2015 10 / 27

What is your favourite coinductive?

CoInductive stream := cons : nat — stream — stream.

Same syntactic “positivity condition” as for inductive types

Definition nats : stream :=
(cofix F := fun n : nat = cons n (F (S n))) 0.

Pierre-Marie Pédrot (PPS/nr2) A Survey of Coinduction in Coq 18/06/2015

10 / 27

What is your favourite coinductive?

CoInductive stream := cons : nat — stream — stream.

Same syntactic “positivity condition” as for inductive types

Definition nats : stream :=
(cofix F := fun n : nat = cons n (F (S n))) 0.

Must be a anti-founded corecursion! ~~ Syntactic “guard condition”
o Corecursive calls must be “blocked”.
o Fairness assumption: the cofix must be productive at each unfolding

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015 10 / 27

To infinity and beyond

As for inductive types one must restrict cofix reduction.
o fix was restricted by arguments being constructors

o Dually cofix is restricted by surrounding context:

(cofix F := t) +/— t[F := (cofix F := t)]

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015

11 / 27

To infinity and beyond

As for inductive types one must restrict cofix reduction.
o fix was restricted by arguments being constructors

o Dually cofix is restricted by surrounding context:

(cofix F := t) +/— t[F := (cofix F := t)]
FElcofix F :=t] — FE[t[F := (cofix F := t)]]

only when the innermost component of F is a pattern-matching.

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015

11 / 27

Some Examples

Definition hd (s : stream) : nat :=
match s with cons n = n end.

Definition tl (s : stream) : stream :=
match s with cons _ s’ = s’ end.

Definition X : stream := (cofix F := cons 1 (cons 2 F)).

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015

12 / 27

Some Examples

Definition hd (s : stream) : nat :=
match s with cons n = n end.

Definition tl (s : stream) : stream :=
match s with cons _ s’ = s’ end.

Definition X : stream := (cofix F := cons 1 (cons 2 F)).
The reduction behaviour forces to write unfolding lemmas.

Lemma stream_unfold : forall s : stream, s = cons (hd s) (tl s).

This is provable thanks to the fact hd and t1 are pattern-matchings.

~ without such unfoldings, proofs are horrendous (if doable).

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015 12 / 27

More Examples

Luckily or not, manipulating coinductive objects foregoes equality.

Definition ones : stream := (cofix F := cons 1 F).
Definition onesones : stream := (cofix F := cons 1 (cons 1 F)).

One cannot prove that ones = onesones.

Pierre-Marie Pédrot (PPS/nr2) A Survey of Coinduction in Coq 18/06/2015 13 / 27

More Examples

Luckily or not, manipulating coinductive objects foregoes equality.

Definition ones : stream := (cofix F := cons 1 F).
Definition onesones : stream := (cofix F := cons 1 (cons 1 F)).

One cannot prove that ones = onesones.
. only that they are bisimilar.

CoInductive bisimilar : stream -> stream -> Prop :=
bisim : forall x sl s2, bisimilar sl s2 ->
bisimilar (cons x s1) (comns x s2).

Lemma ones_onesones : bisimilar ones onesones.

(By a proof by coinduction.)

Pierre-Marie Pédrot (PPS/nr2) A Survey of Coinduction in Coq 18/06/2015 13 / 27

A Theoretical Failure

CoInductive tick := Tick : tick -> tick.
CoFixpoint loop := Tick loop.
Definition etaeq : loop = loop :=

match loop with

| Tick t = eq_refl (Tick t)

end.

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015

14 / 27

A Theoretical Failure

CoInductive tick := Tick : tick -> tick.
CoFixpoint loop := Tick loop.
Definition etaeq : loop = loop :=

match loop with

| Tick t = eq_refl (Tick t)

end.

Definition BOOM := Eval compute in (etaeq : loop = loop).

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015

14 / 27

A Theoretical Failure

CoInductive tick := Tick : tick -> tick.
CoFixpoint loop := Tick loop.
Definition etaeq : loop = loop :=

match loop with

| Tick t = eq_refl (Tick t)

end.

Definition BOOM := Eval compute in (etaeq : loop = loop).

Error: Found type Tick loop = Tick loop
but expected type loop = loop.

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015

14 / 27

A Theoretical Failure

CoInductive tick := Tick : tick -> tick.
CoFixpoint loop := Tick loop.
Definition etaeq : loop = loop :=

match loop with

| Tick t = eq_refl (Tick t)

end.

Definition BOOM := Eval compute in (etaeq : loop = loop).

Error: Found type Tick loop = Tick loop
but expected type loop = loop.

Failure of subject reduction
(a serious matter)

Pierre-Marie Pédrot (PPS/nr2) A Survey of Coinduction in Coq 18/06/2015

14 / 27

“l didn't know that.”

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015 15 / 27

Analysis of the failure

The problem stems from the use of pattern-matching in etaeq.
o The reduction rule allows for more precise information about loop
o The dependency of the matching allows this information to escape

o Reducing the matching loses this information

Definition etaeq : loop = loop :=
match loop with

| Tick t = eq_refl (Tick t)

end.

etaeq — eq_refl (Tick loop)

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015 16 / 27

Analysis of the failure

The problem stems from the use of pattern-matching in etaeq.
o The reduction rule allows for more precise information about loop
o The dependency of the matching allows this information to escape

o Reducing the matching loses this information

Definition etaeq : loop = loop :=
match loop with

| Tick t = eq_refl (Tick t)

end.

etaeq — eq_refl (Tick loop)

Dependent pattern-matching on coinductive types is evil.
(we're doing it wrong)

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015 16 / 27

A More Practical Issue

The current handling of guardedness is also problematic in practice.

o Inductive proofs allowed by an induction principle

o abstract over the guard condition
o forces at least one step of the fixpoint
o modularizes proofs: the induction tactic

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015 17 / 27

A More Practical Issue

The current handling of guardedness is also problematic in practice.

o Inductive proofs allowed by an induction principle
o abstract over the guard condition
o forces at least one step of the fixpoint
o modularizes proofs: the induction tactic
o No such abstraction for coinductive proofs
o cofixpoints are built by hand (the infamous cofix tactic)
o steps must be provided as syntactic constructors
o cannot abstract over them (no functions, no opaque terms)
o thus no granularity

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015 17 / 27

A More Practical Issue

The current handling of guardedness is also problematic in practice.

o Inductive proofs allowed by an induction principle
o abstract over the guard condition
o forces at least one step of the fixpoint
o modularizes proofs: the induction tactic
o No such abstraction for coinductive proofs
o cofixpoints are built by hand (the infamous cofix tactic)
o steps must be provided as syntactic constructors
o cannot abstract over them (no functions, no opaque terms)
o thus no granularity

One cannot chain coinductive lemmas in proofs.
Everything must be done in one go.

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015

17 / 27

A More Practical Issue

The current handling of guardedness is also problematic in practice.

o Inductive proofs allowed by an induction principle
o abstract over the guard condition
o forces at least one step of the fixpoint
o modularizes proofs: the induction tactic
o No such abstraction for coinductive proofs
o cofixpoints are built by hand (the infamous cofix tactic)
o steps must be provided as syntactic constructors
o cannot abstract over them (no functions, no opaque terms)
o thus no granularity

One cannot chain coinductive lemmas in proofs.
Everything must be done in one go.

In theory: no problem.
In practice: Really, really painful.

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015

17 / 27

Through the Looking Glass

The failure of subject reduction is due to a misinterpretation.

“Coinductives are like inductives, save that they're greatest fixpoints.”

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015 18 / 27

Through the Looking Glass

The failure of subject reduction is due to a misinterpretation.

“Coinductives are like inductives, save that they're greatest fixpoints.”

* iNo! x

Pierre-Marie Pédrot (PPS/nr2) A Survey of Coinduction in Coq 18/06/2015 18 / 27

Through the Looking Glass

The failure of subject reduction is due to a misinterpretation.

“Coinductives are like inductives, save that they're greatest fixpoints.”

* iNo! x

+ Inductives lie on the positive side: &, ®, u
o Built out of constructors
o Destructed by fixpoint + pattern-matching
o Normal inhabitants have a constrained form
— Coinductives lie on the negative side: &,%, v
o Built out of cofixpoints + records
o Destructed by projections
o Normal inhabitants can be about anything

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015 18 / 27

A Solution to the Subject Reduction Issue

Matthieu Sozeau introduced in Coq 8.5 the so-called primitive projections.

o Records defined by projection rather than pattern-matching

~» True negative products

~> Projections are first-class terms
o Originally for efficiency and semi-theoretical (n-equivalence) purposes
o Happens to solve the subject reduction issue

~» "“Copattern”-style coinduction
~» Can only observe projections, not the object itself
~» When Coq turns Object-Oriented?

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015 19 / 27

Revisiting the Example

CoInductive stream := { hd : nat; tl1 : stream }.
Definition cons n s := {| hd := n; t1 := s |}.

Definition nats :=
(cofix F := fun n => {| hd :=n; t1 :=F (Sn) |}) 0.

Definition ones := cofix F := {| hd := 1; t1 :=F |}.

CoFixpoint ones2 :=
cofix F := {| hd :=1; t1 := {| hd :=1; t1 :=F |} |}.

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015 20 / 27

Drastic Changes

(]

Positivity condition is similar

(]

Guardedness is adapted as:

Corecursive calls must be under a record field

©

Reduction is adapted as:
(cofix F := t).p — (t[F := (cofix F := t)]).p

©

Bisimilarity becomes essential
~» One cannot prove anymore that s = cons (hd s) (tl1 s)
~~ Equality over coinductives becomes trivial
~~ Coinductives as blackboxes

©

The problematic example is not writable anymore
~ Less equality for a safer world!

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015 21 /27

A solution to the practical problem

The cofixpoint abstraction problem can be worked around.

o The notions of “positive” or “being productive” are too syntactical.

o Let’s make them semantical!

Pierre-Marie Pédrot (PPS/nr2) A Survey of Coinduction in Coq 18/06/2015 22 /27

A solution to the practical problem

The cofixpoint abstraction problem can be worked around.

o The notions of “positive” or “being productive” are too syntactical.

o Let’s make them semantical!

We will use Mendler-style coinduction.
o A program translation making everything positive for free
o Works by expliciting the inner state of the inductive
o A technique successfully used by the Paco library (Chung-Kil Hur)

©

“Open recursion approach”

Pierre-Marie Pédrot (PPS/nr2) A Survey of Coinduction in Coq 18/06/2015 22 /27

The Underlying Mathematical Justification

Let H be the complete lattice of propositions.
Let F': H — H be some function and pose

[FF] : H-H->-H-H
= AGX.IY.(FY)A(Y - X VGEX)

Theorem
o [F'] is syntactically positive in G.
o In particular v[F| : H — H exists.
o Moreover, if F' is monotone, v[F|(Y)=vX.F(XVY).
o In particular v[F|(L) = vF.

Here v[F'| acts as “vF with explicit inner state”.

Pierre-Marie Pédrot (PPS/nr2) A Survey of Coinduction in Coq 18/06/2015

23 / 27

Reasonment Principles

By applying the previous results, one gets for free three principles.

(Init) vF =v[F](1)
(Unfold) v[F](X) = F(X VV[F]|(X))
(Coiter) (Y - v[F](X))= (Y - v[F](XVY))

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015 24 /27

The Mendlerified Example

CoInductive stream :=
cons : nat -> stream -> stream.

CoInductive stream (R : Type) :=
cons : nat -> (R + stream R) -> stream R.

Definition coiter

forall L R, (L -> stream (L + R)) -> L -> stream R.

The corecursion combinator allows for cofix-free reasoning.

Definition nats : stream False :=
coiter (fun n => cons n (inr (inl (S n)))) O.

Definition ones : stream False :=

coiter (fun _ => cons 0 (inr (inl tt))) tt.

Definition ones2 : stream False :=

coiter (fun _ => cons 0 (inl (cons O (inr (inl tt))))) tt.

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015

25 / 27

Conclusion

o Coinduction is a bit tricky in Coq
o ... but things are getting better

o ... and we have kludges to work around its defects

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015 26 / 27

Scribitur ad narrandum non ad probandum

Thanks for your attention.

Pierre-Marie Pédrot (PPS/mr2) A Survey of Coinduction in Coq 18/06/2015 27 / 27

	A Quick Recap on Coq
	To Infinite and Beyond: Coinduction in Coq
	Those Infinite Spaces Frighten Me: Story of a Demise
	Section IV: A New Hope

