
Dans les Boyaux de mon Noyau

Pierre-Marie Pédrot
(Gallinette, INRIA)

JNIM’24
Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 1 / 49

Des joies† de l’Assistanat à la Preuve

Laborious interactive input:
Theorem statements and object definitions
Proof arguments e.g. tactics
Copious amounts of insults

Cold mechanical output:
Good! Here’s what remains to do.
Nope.
(undecypherable dump of some low-level data)

† Your mileage may vary.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 2 / 49

Des joies† de l’Assistanat à la Preuve

Laborious interactive input:
Theorem statements and object definitions

Proof arguments e.g. tactics
Copious amounts of insults

Cold mechanical output:
Good! Here’s what remains to do.
Nope.
(undecypherable dump of some low-level data)

† Your mileage may vary.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 2 / 49

Des joies† de l’Assistanat à la Preuve

Laborious interactive input:
Theorem statements and object definitions
Proof arguments e.g. tactics

Copious amounts of insults
Cold mechanical output:

Good! Here’s what remains to do.
Nope.
(undecypherable dump of some low-level data)

† Your mileage may vary.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 2 / 49

Des joies† de l’Assistanat à la Preuve

Laborious interactive input:
Theorem statements and object definitions
Proof arguments e.g. tactics
Copious amounts of insults

Cold mechanical output:
Good! Here’s what remains to do.
Nope.
(undecypherable dump of some low-level data)

† Your mileage may vary.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 2 / 49

Des joies† de l’Assistanat à la Preuve

Laborious interactive input:
Theorem statements and object definitions
Proof arguments e.g. tactics
Copious amounts of insults

Cold mechanical output:
Good! Here’s what remains to do.
Nope.
(undecypherable dump of some low-level data)

† Your mileage may vary.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 2 / 49

Des joies† de l’Assistanat à la Preuve

Laborious interactive input:
Theorem statements and object definitions
Proof arguments e.g. tactics
Copious amounts of insults

Cold mechanical output:
Good! Here’s what remains to do.
Nope.
(undecypherable dump of some low-level data)

† Your mileage may vary.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 2 / 49

Elle C’est Heffe

A well-known design: The LCF Model

Clearly delineated Trusted Code Base
All fancy stuff is outside the TCB
Soundness is reduced to a small hopefully understandable kernel

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 3 / 49

Elle C’est Heffe

A well-known design: The LCF Model

Clearly delineated Trusted Code Base
All fancy stuff is outside the TCB
Soundness is reduced to a small hopefully understandable kernel

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 3 / 49

Noyal-λµzillac

Two standard kind of kernels in the wild

First kind: canal historique still living in the HOL family
Kernel is a trusted minimal API of HOL tactics
Proofs not recorded, soundness ensured by the metalanguage

Second kind: when proofs matter as e.g. in dependent type theories
Kernel is a type-checker
Proofs are well-typed terms

Official Position
In this talk, we care about dependent type theories

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 4 / 49

Noyal-λµzillac

Two standard kind of kernels in the wild

First kind: canal historique still living in the HOL family
Kernel is a trusted minimal API of HOL tactics
Proofs not recorded, soundness ensured by the metalanguage

Second kind: when proofs matter as e.g. in dependent type theories
Kernel is a type-checker
Proofs are well-typed terms

Official Position
In this talk, we care about dependent type theories

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 4 / 49

Noyal-λµzillac

Two standard kind of kernels in the wild

First kind: canal historique still living in the HOL family
Kernel is a trusted minimal API of HOL tactics
Proofs not recorded, soundness ensured by the metalanguage

Second kind: when proofs matter as e.g. in dependent type theories
Kernel is a type-checker
Proofs are well-typed terms

Official Position
In this talk, we care about dependent type theories

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 4 / 49

Noyal-λµzillac

Two standard kind of kernels in the wild

First kind: canal historique still living in the HOL family
Kernel is a trusted minimal API of HOL tactics
Proofs not recorded, soundness ensured by the metalanguage

Second kind: when proofs matter as e.g. in dependent type theories
Kernel is a type-checker
Proofs are well-typed terms

Official Position
In this talk, we care about dependent type theories

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 4 / 49

« Constructions dans un monde qui bouge »

CIC, the calculus of inductive constructions.

A powerful dependent type theory
Programming language or logical foundation?
The idealized basis of two famous proof assistants

Full Disclaimer
I am a core Coq developer.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 5 / 49

« Constructions dans un monde qui bouge »

CIC, the calculus of inductive constructions.

A powerful dependent type theory
Programming language or logical foundation?
The idealized basis of two famous proof assistants

Full Disclaimer
I am a core Coq developer.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 5 / 49

« Constructions dans un monde qui bouge »

CIC, the calculus of inductive constructions.

A powerful dependent type theory
Programming language or logical foundation?
The idealized basis of two famous proof assistants

Full Disclaimer
I am a core Coq developer.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 5 / 49

Un théoricien des types c’est un système†

Full Disclaimer
I am an opinionated core Coq developer.

Thankfully, most of what I am saying should apply to other proof
assistants based on dependent type theories.

Kernel-wise, Coq and Lean are very close.
I can still rant forever about some subtle differences in design
Hint: Coq does it right (most of the time)

Some of what I will say even applies to Agda

... even if Agda has no separate kernel.
† — Deux c’est une école. Trois, c’est un fork.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 6 / 49

Un théoricien des types c’est un système†

Full Disclaimer
I am an opinionated core Coq developer.

Thankfully, most of what I am saying should apply to other proof
assistants based on dependent type theories.

Kernel-wise, Coq and Lean are very close.
I can still rant forever about some subtle differences in design
Hint: Coq does it right (most of the time)

Some of what I will say even applies to Agda

... even if Agda has no separate kernel.
† — Deux c’est une école. Trois, c’est un fork.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 6 / 49

Un théoricien des types c’est un système†

Full Disclaimer
I am an opinionated core Coq developer.

Thankfully, most of what I am saying should apply to other proof
assistants based on dependent type theories.

Kernel-wise, Coq and Lean are very close.
I can still rant forever about some subtle differences in design
Hint: Coq does it right (most of the time)

Some of what I will say even applies to Agda

... even if Agda has no separate kernel.

† — Deux c’est une école. Trois, c’est un fork.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 6 / 49

Un théoricien des types c’est un système†

Full Disclaimer
I am an opinionated core Coq developer.

Thankfully, most of what I am saying should apply to other proof
assistants based on dependent type theories.

Kernel-wise, Coq and Lean are very close.
I can still rant forever about some subtle differences in design
Hint: Coq does it right (most of the time)

Some of what I will say even applies to Agda

... even if Agda has no separate kernel.
† — Deux c’est une école. Trois, c’est un fork.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 6 / 49

Un Monisme en Deux Minutes
CIC: Programming language or logical foundation?

Both!

Level 0: ⊢ (λ(x : A). x) : A → A
the identity function on A?
the canonical proof that A implies A?

Level 1: ⊢ M : Π(m : N).Σ(p : N).(m = 2p) + (m = 2p + 1)

an implementation of division by 2?
a proof that division by 2 exists?

Level 2: ⊢ M : Π(b : B). if b then N else (N → N)

Level 42: (spec of CompCert)

The pinacle of the Curry-Howard correspondence

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 7 / 49

Un Monisme en Deux Minutes
CIC: Programming language or logical foundation?

Both!

Level 0: ⊢ (λ(x : A). x) : A → A
the identity function on A?
the canonical proof that A implies A?

Level 1: ⊢ M : Π(m : N).Σ(p : N).(m = 2p) + (m = 2p + 1)

an implementation of division by 2?
a proof that division by 2 exists?

Level 2: ⊢ M : Π(b : B). if b then N else (N → N)

Level 42: (spec of CompCert)

The pinacle of the Curry-Howard correspondence

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 7 / 49

Un Monisme en Deux Minutes
CIC: Programming language or logical foundation?

Both!

Level 0: ⊢ (λ(x : A). x) : A → A
the identity function on A?
the canonical proof that A implies A?

Level 1: ⊢ M : Π(m : N).Σ(p : N).(m = 2p) + (m = 2p + 1)

an implementation of division by 2?
a proof that division by 2 exists?

Level 2: ⊢ M : Π(b : B). if b then N else (N → N)

Level 42: (spec of CompCert)

The pinacle of the Curry-Howard correspondence

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 7 / 49

Un Monisme en Deux Minutes
CIC: Programming language or logical foundation?

Both!

Level 0: ⊢ (λ(x : A). x) : A → A
the identity function on A?
the canonical proof that A implies A?

Level 1: ⊢ M : Π(m : N).Σ(p : N).(m = 2p) + (m = 2p + 1)

an implementation of division by 2?
a proof that division by 2 exists?

Level 2: ⊢ M : Π(b : B). if b then N else (N → N)

Level 42: (spec of CompCert)

The pinacle of the Curry-Howard correspondence

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 7 / 49

Un Monisme en Deux Minutes
CIC: Programming language or logical foundation?

Both!

Level 0: ⊢ (λ(x : A). x) : A → A
the identity function on A?
the canonical proof that A implies A?

Level 1: ⊢ M : Π(m : N).Σ(p : N).(m = 2p) + (m = 2p + 1)

an implementation of division by 2?
a proof that division by 2 exists?

Level 2: ⊢ M : Π(b : B). if b then N else (N → N)

Level 42: (spec of CompCert)

The pinacle of the Curry-Howard correspondence

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 7 / 49

Un Monisme en Deux Minutes
CIC: Programming language or logical foundation?

Both!

Level 0: ⊢ (λ(x : A). x) : A → A
the identity function on A?
the canonical proof that A implies A?

Level 1: ⊢ M : Π(m : N).Σ(p : N).(m = 2p) + (m = 2p + 1)

an implementation of division by 2?
a proof that division by 2 exists?

Level 2: ⊢ M : Π(b : B). if b then N else (N → N)

Level 42: (spec of CompCert)

The pinacle of the Curry-Howard correspondence

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 7 / 49

Un Monisme en Deux Minutes
CIC: Programming language or logical foundation?

Both!

Level 0: ⊢ (λ(x : A). x) : A → A
the identity function on A?
the canonical proof that A implies A?

Level 1: ⊢ M : Π(m : N).Σ(p : N).(m = 2p) + (m = 2p + 1)

an implementation of division by 2?
a proof that division by 2 exists?

Level 2: ⊢ M : Π(b : B). if b then N else (N → N)

Level 42: (spec of CompCert)

The pinacle of the Curry-Howard correspondence
Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 7 / 49

Réductionnisme de Basse-Cour

The Coq kernel is just a CIC type-checker

Famous Last Words
“Surely it should be enough to understand CIC to understand the kernel.”

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 8 / 49

Réductionnisme de Basse-Cour

The Coq kernel is just a CIC type-checker

Famous Last Words
“Surely it should be enough to understand CIC to understand the kernel.”

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 8 / 49

Réductionnisme de Basse-Cour

The Coq kernel is just a CIC type-checker

Famous Last Words
“Surely it should be enough to understand CIC to understand the kernel.”

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 8 / 49

Ceci n’est pas un Π

“Surely it should be enough to understand CIC to understand the kernel.”

I Lied
There is no such thing as CIC.

A bunch of rules spread across dozen of articles spanning decades
No single source of truth
A lot of implicit or contradictory stuff
Folklore / unwritten knowledge

Not better implementation-wise.
Takes some suspect liberties w.r.t. the spec
It keeps changing

Our best bet: the MetaCoq project. But that’s not today’s topic.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 9 / 49

Ceci n’est pas un Π

“Surely it should be enough to understand CIC to understand the kernel.”

I Lied
There is no such thing as CIC.

A bunch of rules spread across dozen of articles spanning decades
No single source of truth
A lot of implicit or contradictory stuff
Folklore / unwritten knowledge

Not better implementation-wise.
Takes some suspect liberties w.r.t. the spec
It keeps changing

Our best bet: the MetaCoq project. But that’s not today’s topic.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 9 / 49

Ceci n’est pas un Π

“Surely it should be enough to understand CIC to understand the kernel.”

I Lied
There is no such thing as CIC.

A bunch of rules spread across dozen of articles spanning decades
No single source of truth
A lot of implicit or contradictory stuff
Folklore / unwritten knowledge

Not better implementation-wise.
Takes some suspect liberties w.r.t. the spec
It keeps changing

Our best bet: the MetaCoq project. But that’s not today’s topic.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 9 / 49

Ceci n’est pas un Π

“Surely it should be enough to understand CIC to understand the kernel.”

I Lied
There is no such thing as CIC.

A bunch of rules spread across dozen of articles spanning decades
No single source of truth
A lot of implicit or contradictory stuff
Folklore / unwritten knowledge

Not better implementation-wise.
Takes some suspect liberties w.r.t. the spec
It keeps changing

Our best bet: the MetaCoq project. But that’s not today’s topic.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 9 / 49

Ceci n’est pas un Π

“Surely it should be enough to understand CIC to understand the kernel.”

I Lied
There is no such thing as CIC.

A bunch of rules spread across dozen of articles spanning decades
No single source of truth
A lot of implicit or contradictory stuff
Folklore / unwritten knowledge

Not better implementation-wise.
Takes some suspect liberties w.r.t. the spec
It keeps changing

Our best bet: the MetaCoq project. But that’s not today’s topic.
Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 9 / 49

Ora Pro Nobis

“TheNon-Existent Type Theory is based upon both logic and faith. Wehave
faith that it is implemented; we logically know that it is does not exist be-
cause it is not well-defined.”

We will pretend that CIC exists in the remainder of the talk.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 10 / 49

Ora Pro Nobis

“TheNon-Existent Type Theory is based upon both logic and faith. Wehave
faith that it is implemented; we logically know that it is does not exist be-
cause it is not well-defined.”

We will pretend that CIC exists in the remainder of the talk.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 10 / 49

Persevere Diabolicum

“Surely it should be enough to understand CIC to understand the kernel.”

... for some good notion of CIC.

Still Wrong
Reality has many asperities.

A specification is not an implementation.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 11 / 49

Persevere Diabolicum

“Surely it should be enough to understand CIC to understand the kernel.”

... for some good notion of CIC.

Still Wrong
Reality has many asperities.

A specification is not an implementation.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 11 / 49

Persevere Diabolicum

“Surely it should be enough to understand CIC to understand the kernel.”

... for some good notion of CIC.

Still Wrong
Reality has many asperities.

A specification is not an implementation.
Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 11 / 49

La Dialectique Pour Les Nuls

The Good Properties of CIC

Consistency: The Logician
There is no proof ⊢ M : ⊥.

... but the logic must be as expressive as possible.

Canonicity: The Programmer
If ⊢ M : N then M evaluates to a numeral.

... but I want pointer equality, exceptions and Turing-completeness.

Implementability: The Maintainer
Type-checking is decidable.

... but I am going to add orthogonal features X, Y and Z.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 12 / 49

La Dialectique Pour Les Nuls

The Good Properties of CIC

Consistency: The Logician
There is no proof ⊢ M : ⊥.

... but the logic must be as expressive as possible.

Canonicity: The Programmer
If ⊢ M : N then M evaluates to a numeral.

... but I want pointer equality, exceptions and Turing-completeness.

Implementability: The Maintainer
Type-checking is decidable.

... but I am going to add orthogonal features X, Y and Z.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 12 / 49

La Dialectique Pour Les Nuls

The Good Properties of CIC

Consistency: The Logician
There is no proof ⊢ M : ⊥.

... but the logic must be as expressive as possible.

Canonicity: The Programmer
If ⊢ M : N then M evaluates to a numeral.

... but I want pointer equality, exceptions and Turing-completeness.

Implementability: The Maintainer
Type-checking is decidable.

... but I am going to add orthogonal features X, Y and Z.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 12 / 49

La Dialectique Pour Les Nuls

The Good Properties of CIC

Consistency: The Logician
There is no proof ⊢ M : ⊥.

... but the logic must be as expressive as possible.

Canonicity: The Programmer
If ⊢ M : N then M evaluates to a numeral.

... but I want pointer equality, exceptions and Turing-completeness.

Implementability: The Maintainer
Type-checking is decidable.

... but I am going to add orthogonal features X, Y and Z.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 12 / 49

La Dialectique Pour Les Nuls

The Good Properties of CIC

Consistency: The Logician
There is no proof ⊢ M : ⊥.

... but the logic must be as expressive as possible.

Canonicity: The Programmer
If ⊢ M : N then M evaluates to a numeral.

... but I want pointer equality, exceptions and Turing-completeness.

Implementability: The Maintainer
Type-checking is decidable.

... but I am going to add orthogonal features X, Y and Z.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 12 / 49

La Dialectique Pour Les Nuls

The Good Properties of CIC

Consistency: The Logician
There is no proof ⊢ M : ⊥.

... but the logic must be as expressive as possible.

Canonicity: The Programmer
If ⊢ M : N then M evaluates to a numeral.

... but I want pointer equality, exceptions and Turing-completeness.

Implementability: The Maintainer
Type-checking is decidable.

... but I am going to add orthogonal features X, Y and Z.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 12 / 49

La Dialectique Pour Les Nuls

The Good Properties of CIC

Consistency: The Logician
There is no proof ⊢ M : ⊥.

... but the logic must be as expressive as possible.

Canonicity: The Programmer
If ⊢ M : N then M evaluates to a numeral.

... but I want pointer equality, exceptions and Turing-completeness.

Implementability: The Maintainer
Type-checking is decidable.

... but I am going to add orthogonal features X, Y and Z.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 12 / 49

Rapports de force et personnalités multiples
A Type Theory implementation is a delicate equilibrium.

⇝ Expanding the logic must preserve computation.
One cannot just add axioms here and there
Some constructions are not even axiomatizable (e.g. cubicalTT)

⇝ Expanding the programming language must preserve consistency.
Extremely strong constraints, e.g. functions are total
A lot of stuff from PLT just doesn’t apply

⇝ Expanding any of these must keep the implementation tractable.
Understandable spec / small implementation
Efficient algorithmics
Backwards compatibility

The logician, programmer and maintainer are often the same individual.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 13 / 49

Rapports de force et personnalités multiples
A Type Theory implementation is a delicate equilibrium.

⇝ Expanding the logic must preserve computation.
One cannot just add axioms here and there
Some constructions are not even axiomatizable (e.g. cubicalTT)

⇝ Expanding the programming language must preserve consistency.
Extremely strong constraints, e.g. functions are total
A lot of stuff from PLT just doesn’t apply

⇝ Expanding any of these must keep the implementation tractable.
Understandable spec / small implementation
Efficient algorithmics
Backwards compatibility

The logician, programmer and maintainer are often the same individual.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 13 / 49

Rapports de force et personnalités multiples
A Type Theory implementation is a delicate equilibrium.

⇝ Expanding the logic must preserve computation.
One cannot just add axioms here and there
Some constructions are not even axiomatizable (e.g. cubicalTT)

⇝ Expanding the programming language must preserve consistency.
Extremely strong constraints, e.g. functions are total
A lot of stuff from PLT just doesn’t apply

⇝ Expanding any of these must keep the implementation tractable.
Understandable spec / small implementation
Efficient algorithmics
Backwards compatibility

The logician, programmer and maintainer are often the same individual.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 13 / 49

Rapports de force et personnalités multiples
A Type Theory implementation is a delicate equilibrium.

⇝ Expanding the logic must preserve computation.
One cannot just add axioms here and there
Some constructions are not even axiomatizable (e.g. cubicalTT)

⇝ Expanding the programming language must preserve consistency.
Extremely strong constraints, e.g. functions are total
A lot of stuff from PLT just doesn’t apply

⇝ Expanding any of these must keep the implementation tractable.
Understandable spec / small implementation
Efficient algorithmics
Backwards compatibility

The logician, programmer and maintainer are often the same individual.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 13 / 49

Rapports de force et personnalités multiples
A Type Theory implementation is a delicate equilibrium.

⇝ Expanding the logic must preserve computation.
One cannot just add axioms here and there
Some constructions are not even axiomatizable (e.g. cubicalTT)

⇝ Expanding the programming language must preserve consistency.
Extremely strong constraints, e.g. functions are total
A lot of stuff from PLT just doesn’t apply

⇝ Expanding any of these must keep the implementation tractable.
Understandable spec / small implementation
Efficient algorithmics
Backwards compatibility

The logician, programmer and maintainer are often the same individual.
Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 13 / 49

Pardon My French

— Un noyau, c'est comme une andouillette:
ça doit sentir un peu la merde, mais pas trop.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 14 / 49

L’œuf vif du sujet

The setting is now pinned down

In this talk we will discuss three interesting components of the Coq kernel.

Conversion Universes Guard

All while keeping the andouillette principle in mind!

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 15 / 49

Conversion

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 16 / 49

Le changement, c’est maintenant

THE MOST IMPORTANT RULE OF CIC

(If you were snoozing away, now is the time to wake up.)

Meet Conversion:

Γ ⊢ M : B Γ ⊢ A ≡ B
Γ ⊢ M : A

reflA : Π(x : A). x = x ⇝ (reflN 2) : 1 + 1 = 2

Conversion internalizes computation in the logic

Not common in usual PL
Irremediably ties the runtime to the type system
A landmark of dependent types

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 17 / 49

Le changement, c’est maintenant

THE MOST IMPORTANT RULE OF CIC
(If you were snoozing away, now is the time to wake up.)

Meet Conversion:

Γ ⊢ M : B Γ ⊢ A ≡ B
Γ ⊢ M : A

reflA : Π(x : A). x = x ⇝ (reflN 2) : 1 + 1 = 2

Conversion internalizes computation in the logic

Not common in usual PL
Irremediably ties the runtime to the type system
A landmark of dependent types

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 17 / 49

Le changement, c’est maintenant

THE MOST IMPORTANT RULE OF CIC
(If you were snoozing away, now is the time to wake up.)

Meet Conversion:

Γ ⊢ M : B Γ ⊢ A ≡ B
Γ ⊢ M : A

reflA : Π(x : A). x = x ⇝ (reflN 2) : 1 + 1 = 2

Conversion internalizes computation in the logic

Not common in usual PL
Irremediably ties the runtime to the type system
A landmark of dependent types

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 17 / 49

Le changement, c’est maintenant

THE MOST IMPORTANT RULE OF CIC
(If you were snoozing away, now is the time to wake up.)

Meet Conversion:

Γ ⊢ M : B Γ ⊢ A ≡ B
Γ ⊢ M : A

reflA : Π(x : A). x = x ⇝ (reflN 2) : 1 + 1 = 2

Conversion internalizes computation in the logic

Not common in usual PL
Irremediably ties the runtime to the type system
A landmark of dependent types

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 17 / 49

Le changement, c’est maintenant

THE MOST IMPORTANT RULE OF CIC
(If you were snoozing away, now is the time to wake up.)

Meet Conversion:

Γ ⊢ M : B Γ ⊢ A ≡ B
Γ ⊢ M : A

reflA : Π(x : A). x = x ⇝ (reflN 2) : 1 + 1 = 2

Conversion internalizes computation in the logic

Not common in usual PL
Irremediably ties the runtime to the type system
A landmark of dependent types
Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 17 / 49

Séquent qu’on calcule

Γ ⊢ A ≡ B

What is conversion exactly?

Generated by hardwired basic equations on the language e.g.
β-reduction: (λ(x : A).M) N ≡ M{x := N}
pattern-matching reduction on constructors
constant unfolding

Remember, type-checking should be decidable, so conversion as well.

⇝ in particular the kernel must implement conversion.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 18 / 49

Séquent qu’on calcule

Γ ⊢ A ≡ B

What is conversion exactly?

Generated by hardwired basic equations on the language e.g.
β-reduction: (λ(x : A).M) N ≡ M{x := N}
pattern-matching reduction on constructors
constant unfolding

Remember, type-checking should be decidable, so conversion as well.

⇝ in particular the kernel must implement conversion.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 18 / 49

Séquent qu’on calcule

Γ ⊢ A ≡ B

What is conversion exactly?

Generated by hardwired basic equations on the language e.g.
β-reduction: (λ(x : A).M) N ≡ M{x := N}
pattern-matching reduction on constructors
constant unfolding

Remember, type-checking should be decidable, so conversion as well.

⇝ in particular the kernel must implement conversion.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 18 / 49

Liberté, égalité, prouvabilité

Why is conversion critical?

After all:
Simple type theories like HOL do not have conversion∗

There are even “weak” dependent type theories without conversion

Conversion is both a blessing and a curse

⇝ Why not take advantage of something that is automagic?
Delegating from the user to the machine is the point of an assistant
In HOL you must provide a proof (e.g. by rewriting tactics)
Inefficient: you have to store it somehow

⇝ Writing explicitly conversion derivations in CIC is not humanly possible.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 19 / 49

Liberté, égalité, prouvabilité

Why is conversion critical?

After all:
Simple type theories like HOL do not have conversion∗

There are even “weak” dependent type theories without conversion

Conversion is both a blessing and a curse

⇝ Why not take advantage of something that is automagic?
Delegating from the user to the machine is the point of an assistant
In HOL you must provide a proof (e.g. by rewriting tactics)
Inefficient: you have to store it somehow

⇝ Writing explicitly conversion derivations in CIC is not humanly possible.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 19 / 49

Liberté, égalité, prouvabilité

Why is conversion critical?

After all:
Simple type theories like HOL do not have conversion∗

There are even “weak” dependent type theories without conversion

Conversion is both a blessing and a curse

⇝ Why not take advantage of something that is automagic?
Delegating from the user to the machine is the point of an assistant
In HOL you must provide a proof (e.g. by rewriting tactics)
Inefficient: you have to store it somehow

⇝ Writing explicitly conversion derivations in CIC is not humanly possible.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 19 / 49

Liberté, égalité, prouvabilité

Why is conversion critical?

After all:
Simple type theories like HOL do not have conversion∗

There are even “weak” dependent type theories without conversion

Conversion is both a blessing and a curse

⇝ Why not take advantage of something that is automagic?
Delegating from the user to the machine is the point of an assistant
In HOL you must provide a proof (e.g. by rewriting tactics)
Inefficient: you have to store it somehow

⇝ Writing explicitly conversion derivations in CIC is not humanly possible.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 19 / 49

Liberté, égalité, prouvabilité

Why is conversion critical?

After all:
Simple type theories like HOL do not have conversion∗

There are even “weak” dependent type theories without conversion

Conversion is both a blessing and a curse

⇝ Why not take advantage of something that is automagic?
Delegating from the user to the machine is the point of an assistant
In HOL you must provide a proof (e.g. by rewriting tactics)
Inefficient: you have to store it somehow

⇝ Writing explicitly conversion derivations in CIC is not humanly possible.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 19 / 49

Calculo Ergo Sum

Much better: we can take advantage of conversion.

Remember that CIC is a programming language? Let’s put this to use.

Reflection
Replace logic by computation.

Idea: Assume some theory T that is decidable (or admits checkable proofs)
define a CIC AST formula representing T -formulas
write a CIC embedding eval : formula → Prop
write a CIC function check : formula → B
prove in CIC that Π(φ : formula). check φ = true → eval φ

To prove Φ ∈ T s.t. Φ := eval φ, it is thus enough to compute check φ.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 20 / 49

Calculo Ergo Sum

Much better: we can take advantage of conversion.

Remember that CIC is a programming language? Let’s put this to use.

Reflection
Replace logic by computation.

Idea: Assume some theory T that is decidable (or admits checkable proofs)

define a CIC AST formula representing T -formulas
write a CIC embedding eval : formula → Prop
write a CIC function check : formula → B
prove in CIC that Π(φ : formula). check φ = true → eval φ

To prove Φ ∈ T s.t. Φ := eval φ, it is thus enough to compute check φ.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 20 / 49

Calculo Ergo Sum

Much better: we can take advantage of conversion.

Remember that CIC is a programming language? Let’s put this to use.

Reflection
Replace logic by computation.

Idea: Assume some theory T that is decidable (or admits checkable proofs)
define a CIC AST formula representing T -formulas

write a CIC embedding eval : formula → Prop
write a CIC function check : formula → B
prove in CIC that Π(φ : formula). check φ = true → eval φ

To prove Φ ∈ T s.t. Φ := eval φ, it is thus enough to compute check φ.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 20 / 49

Calculo Ergo Sum

Much better: we can take advantage of conversion.

Remember that CIC is a programming language? Let’s put this to use.

Reflection
Replace logic by computation.

Idea: Assume some theory T that is decidable (or admits checkable proofs)
define a CIC AST formula representing T -formulas
write a CIC embedding eval : formula → Prop

write a CIC function check : formula → B
prove in CIC that Π(φ : formula). check φ = true → eval φ

To prove Φ ∈ T s.t. Φ := eval φ, it is thus enough to compute check φ.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 20 / 49

Calculo Ergo Sum

Much better: we can take advantage of conversion.

Remember that CIC is a programming language? Let’s put this to use.

Reflection
Replace logic by computation.

Idea: Assume some theory T that is decidable (or admits checkable proofs)
define a CIC AST formula representing T -formulas
write a CIC embedding eval : formula → Prop
write a CIC function check : formula → B

prove in CIC that Π(φ : formula). check φ = true → eval φ

To prove Φ ∈ T s.t. Φ := eval φ, it is thus enough to compute check φ.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 20 / 49

Calculo Ergo Sum

Much better: we can take advantage of conversion.

Remember that CIC is a programming language? Let’s put this to use.

Reflection
Replace logic by computation.

Idea: Assume some theory T that is decidable (or admits checkable proofs)
define a CIC AST formula representing T -formulas
write a CIC embedding eval : formula → Prop
write a CIC function check : formula → B
prove in CIC that Π(φ : formula). check φ = true → eval φ

To prove Φ ∈ T s.t. Φ := eval φ, it is thus enough to compute check φ.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 20 / 49

Calculo Ergo Sum

Much better: we can take advantage of conversion.

Remember that CIC is a programming language? Let’s put this to use.

Reflection
Replace logic by computation.

Idea: Assume some theory T that is decidable (or admits checkable proofs)
define a CIC AST formula representing T -formulas
write a CIC embedding eval : formula → Prop
write a CIC function check : formula → B
prove in CIC that Π(φ : formula). check φ = true → eval φ

To prove Φ ∈ T s.t. Φ := eval φ, it is thus enough to compute check φ.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 20 / 49

Sum Ergo Calculo

Reflection is a very powerful technique.

Historically used for performance reasons
Abstractly, a way to teach the kernel any theory (a logical JIT)

Many use cases: equational reasoning, arithmetic, SAT solving...

A related (but distinct) technique: small scale reflection.

Similar idea of computing away trivial reasoning steps
At the core of the SSReflect framework
Famously used by Mathcomp and friends (e.g. Feit-Thompson proof)

Morale
Computation matters!

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 21 / 49

Sum Ergo Calculo

Reflection is a very powerful technique.

Historically used for performance reasons
Abstractly, a way to teach the kernel any theory (a logical JIT)

Many use cases: equational reasoning, arithmetic, SAT solving...

A related (but distinct) technique: small scale reflection.

Similar idea of computing away trivial reasoning steps
At the core of the SSReflect framework
Famously used by Mathcomp and friends (e.g. Feit-Thompson proof)

Morale
Computation matters!

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 21 / 49

Sum Ergo Calculo

Reflection is a very powerful technique.

Historically used for performance reasons
Abstractly, a way to teach the kernel any theory (a logical JIT)

Many use cases: equational reasoning, arithmetic, SAT solving...

A related (but distinct) technique: small scale reflection.

Similar idea of computing away trivial reasoning steps
At the core of the SSReflect framework
Famously used by Mathcomp and friends (e.g. Feit-Thompson proof)

Morale
Computation matters!

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 21 / 49

Sum Ergo Calculo

Reflection is a very powerful technique.

Historically used for performance reasons
Abstractly, a way to teach the kernel any theory (a logical JIT)

Many use cases: equational reasoning, arithmetic, SAT solving...

A related (but distinct) technique: small scale reflection.

Similar idea of computing away trivial reasoning steps
At the core of the SSReflect framework
Famously used by Mathcomp and friends (e.g. Feit-Thompson proof)

Morale
Computation matters!

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 21 / 49

Apostasie Trinitaire

The Coq kernel has not one but three† conversion algorithms.

⇝ The “reference” one
Untyped, call-by-need reduction machine in OCaml
Tailored for symbolic conversion, extremely sensitive

⇝ The “heavy-duty” ones: VM and native
Compilation to ZINC-like bytecode / machine code
The VM is implemented in C, native reuses the OCaml runtime
Tailored for brutal computation (typically, compute a boolean)

Different kind of trade-offs. What is the design space?

(For instance, Lean has an ad-hoc native-like process that only works on closed terms.)

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 22 / 49

Apostasie Trinitaire

The Coq kernel has not one but three† conversion algorithms.

⇝ The “reference” one
Untyped, call-by-need reduction machine in OCaml
Tailored for symbolic conversion, extremely sensitive

⇝ The “heavy-duty” ones: VM and native
Compilation to ZINC-like bytecode / machine code
The VM is implemented in C, native reuses the OCaml runtime
Tailored for brutal computation (typically, compute a boolean)

Different kind of trade-offs. What is the design space?

(For instance, Lean has an ad-hoc native-like process that only works on closed terms.)

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 22 / 49

Apostasie Trinitaire

The Coq kernel has not one but three† conversion algorithms.

⇝ The “reference” one
Untyped, call-by-need reduction machine in OCaml
Tailored for symbolic conversion, extremely sensitive

⇝ The “heavy-duty” ones: VM and native
Compilation to ZINC-like bytecode / machine code
The VM is implemented in C, native reuses the OCaml runtime
Tailored for brutal computation (typically, compute a boolean)

Different kind of trade-offs. What is the design space?

(For instance, Lean has an ad-hoc native-like process that only works on closed terms.)

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 22 / 49

Apostasie Trinitaire

The Coq kernel has not one but three† conversion algorithms.

⇝ The “reference” one
Untyped, call-by-need reduction machine in OCaml
Tailored for symbolic conversion, extremely sensitive

⇝ The “heavy-duty” ones: VM and native
Compilation to ZINC-like bytecode / machine code
The VM is implemented in C, native reuses the OCaml runtime
Tailored for brutal computation (typically, compute a boolean)

Different kind of trade-offs. What is the design space?

(For instance, Lean has an ad-hoc native-like process that only works on closed terms.)
Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 22 / 49

Qui vit par le glaive...

We are not done with conversion yet!

Let p, q : {n : N | isEven n}.

If p.1 ≡ q.1 then we do not have in general p ≡ q.

In pen-and-paper proofs one never ever cares about that.

The Dependent Hell
Proofs are programs, and thus relevant.

We would like more conversion!

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 23 / 49

Qui vit par le glaive...

We are not done with conversion yet!

Let p, q : {n : N | isEven n}.

If p.1 ≡ q.1 then we do not have in general p ≡ q.

In pen-and-paper proofs one never ever cares about that.

The Dependent Hell
Proofs are programs, and thus relevant.

We would like more conversion!

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 23 / 49

Qui vit par le glaive...

We are not done with conversion yet!

Let p, q : {n : N | isEven n}.

If p.1 ≡ q.1 then we do not have in general p ≡ q.

In pen-and-paper proofs one never ever cares about that.

The Dependent Hell
Proofs are programs, and thus relevant.

We would like more conversion!

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 23 / 49

Infère et Damnation

Not just a theoretical issue, this is a real PITA in practice.

Sibylline errors in innocuous scripts that require a PhD in type theory to understand.
Abst ract ing over the term ”n” l eads to a term
fun n0 : nat ⇒ e x i s t (fun n1 : nat ⇒ i sEven n1) n0 p = e x i s t (fun n1 : nat ⇒ i sEven n1) m q
which i s i l l −typed .
Reason i s : I l l e g a l a p p l i c a t i o n :
The term ” e x i s t ” of type ” f o r a l l (A : Type) (P : A → Prop) (x : A) , P x → {x : A | P x}”
cannot be app l i ed to the terms
”nat” : ”Set” ” fun n : nat ⇒ i sEven n” : ”nat → Prop” ”n0” : ”nat” ”p” : ” isEven n”
The 4th term has type ” isEven n” which should be a subtype of ”(fun n : nat ⇒ i sEven n) n0 ” .
(cannot un i f y ” isEven n” and ” isEven n0”)

(This is just after rewrite e where m,n : N and e : m = n.)

A well-known problem that has plagued CIC for years

Famous hazing for PhD students
SSReflect even has a design pattern to work around the issue
Outside of the kernel, not completely satisfactory

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 24 / 49

Infère et Damnation

Not just a theoretical issue, this is a real PITA in practice.

Sibylline errors in innocuous scripts that require a PhD in type theory to understand.
Abst ract ing over the term ”n” l eads to a term
fun n0 : nat ⇒ e x i s t (fun n1 : nat ⇒ i sEven n1) n0 p = e x i s t (fun n1 : nat ⇒ i sEven n1) m q
which i s i l l −typed .
Reason i s : I l l e g a l a p p l i c a t i o n :
The term ” e x i s t ” of type ” f o r a l l (A : Type) (P : A → Prop) (x : A) , P x → {x : A | P x}”
cannot be app l i ed to the terms
”nat” : ”Set” ” fun n : nat ⇒ i sEven n” : ”nat → Prop” ”n0” : ”nat” ”p” : ” isEven n”
The 4th term has type ” isEven n” which should be a subtype of ”(fun n : nat ⇒ i sEven n) n0 ” .
(cannot un i f y ” isEven n” and ” isEven n0”)

(This is just after rewrite e where m,n : N and e : m = n.)

A well-known problem that has plagued CIC for years

Famous hazing for PhD students
SSReflect even has a design pattern to work around the issue
Outside of the kernel, not completely satisfactory

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 24 / 49

Infère et Damnation

Not just a theoretical issue, this is a real PITA in practice.

Sibylline errors in innocuous scripts that require a PhD in type theory to understand.
Abst ract ing over the term ”n” l eads to a term
fun n0 : nat ⇒ e x i s t (fun n1 : nat ⇒ i sEven n1) n0 p = e x i s t (fun n1 : nat ⇒ i sEven n1) m q
which i s i l l −typed .
Reason i s : I l l e g a l a p p l i c a t i o n :
The term ” e x i s t ” of type ” f o r a l l (A : Type) (P : A → Prop) (x : A) , P x → {x : A | P x}”
cannot be app l i ed to the terms
”nat” : ”Set” ” fun n : nat ⇒ i sEven n” : ”nat → Prop” ”n0” : ”nat” ”p” : ” isEven n”
The 4th term has type ” isEven n” which should be a subtype of ”(fun n : nat ⇒ i sEven n) n0 ” .
(cannot un i f y ” isEven n” and ” isEven n0”)

(This is just after rewrite e where m,n : N and e : m = n.)

A well-known problem that has plagued CIC for years

Famous hazing for PhD students
SSReflect even has a design pattern to work around the issue
Outside of the kernel, not completely satisfactory
Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 24 / 49

La Strictitude, c’est la Stricte Attitude

Recently solved by the introduction of a universe of strict propositions

After all, proofs are not quite programs
We don’t care about proof contents: “all proofs are born equal.”

Γ ⊢ M : A Γ ⊢ N : A Γ ⊢ A : SProp
Γ ⊢ M ≡ N : A

The rules for SProp are tricky

The feature was inspired by foundational work in HoTT
Required non-trivial changes in the kernel
Lean notoriously doesn’t give a shit is practically-minded

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 25 / 49

La Strictitude, c’est la Stricte Attitude

Recently solved by the introduction of a universe of strict propositions

After all, proofs are not quite programs
We don’t care about proof contents: “all proofs are born equal.”

Γ ⊢ M : A Γ ⊢ N : A Γ ⊢ A : SProp
Γ ⊢ M ≡ N : A

The rules for SProp are tricky

The feature was inspired by foundational work in HoTT
Required non-trivial changes in the kernel
Lean notoriously doesn’t give a shit is practically-minded

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 25 / 49

Bien, mais pas top

SProp is a game changer

An elegant solution to perennial issues
Critical, but not enough

There are many more limitations to conversion!

hd : Π(n : N). vec A (1 + n) → A v : vec A (n + 1)

hd n v does not type-check because 1 + n ̸≡ n + 1

This is much harder to solve.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 26 / 49

Bien, mais pas top

SProp is a game changer

An elegant solution to perennial issues
Critical, but not enough

There are many more limitations to conversion!

hd : Π(n : N). vec A (1 + n) → A v : vec A (n + 1)

hd n v does not type-check because 1 + n ̸≡ n + 1

This is much harder to solve.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 26 / 49

Bien, mais pas top

SProp is a game changer

An elegant solution to perennial issues
Critical, but not enough

There are many more limitations to conversion!

hd : Π(n : N). vec A (1 + n) → A v : vec A (n + 1)

hd n v does not type-check because 1 + n ̸≡ n + 1

This is much harder to solve.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 26 / 49

Retour à l’ATER

Interestingly, these questions were fashionable in the ’90s and 00’s

Extensionality in type theory (Hofmann)
Observational type theory (Altenkirch-McBride)
Coq Modulo Theory (Strub)

... then nobody cared

Systems were either not implemented or not used / not maintained

... but now it is making a comeback

strict propositions
rewrite rules
extension types

Will the cycle continue?

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 27 / 49

Retour à l’ATER

Interestingly, these questions were fashionable in the ’90s and 00’s

Extensionality in type theory (Hofmann)
Observational type theory (Altenkirch-McBride)
Coq Modulo Theory (Strub)

... then nobody cared

Systems were either not implemented or not used / not maintained

... but now it is making a comeback

strict propositions
rewrite rules
extension types

Will the cycle continue?

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 27 / 49

Retour à l’ATER

Interestingly, these questions were fashionable in the ’90s and 00’s

Extensionality in type theory (Hofmann)
Observational type theory (Altenkirch-McBride)
Coq Modulo Theory (Strub)

... then nobody cared

Systems were either not implemented or not used / not maintained

... but now it is making a comeback

strict propositions
rewrite rules
extension types

Will the cycle continue?

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 27 / 49

Retour à l’ATER

Interestingly, these questions were fashionable in the ’90s and 00’s

Extensionality in type theory (Hofmann)
Observational type theory (Altenkirch-McBride)
Coq Modulo Theory (Strub)

... then nobody cared

Systems were either not implemented or not used / not maintained

... but now it is making a comeback

strict propositions
rewrite rules
extension types

Will the cycle continue?
Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 27 / 49

Universes

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 28 / 49

Ton Univers Impitoyable

In CIC, types are first-class citizens.

⇝ in particular, types have a universe type, traditionally called Type.

What is the type of Type?

Martin-Löf ’71: Type : Type.

Girard ’71 + ε: Type : Type is inconsistent.

Standard solution: one has to stratify.

Type0 : Type1 : Type2 : . . . : Typen : Typen+1 : . . .

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 29 / 49

Ton Univers Impitoyable

In CIC, types are first-class citizens.

⇝ in particular, types have a universe type, traditionally called Type.

What is the type of Type?

Martin-Löf ’71: Type : Type.

Girard ’71 + ε: Type : Type is inconsistent.

Standard solution: one has to stratify.

Type0 : Type1 : Type2 : . . . : Typen : Typen+1 : . . .

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 29 / 49

Ton Univers Impitoyable

In CIC, types are first-class citizens.

⇝ in particular, types have a universe type, traditionally called Type.

What is the type of Type?

Martin-Löf ’71: Type : Type.

Girard ’71 + ε: Type : Type is inconsistent.

Standard solution: one has to stratify.

Type0 : Type1 : Type2 : . . . : Typen : Typen+1 : . . .

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 29 / 49

Ton Univers Impitoyable

In CIC, types are first-class citizens.

⇝ in particular, types have a universe type, traditionally called Type.

What is the type of Type?

Martin-Löf ’71: Type : Type.

Girard ’71 + ε: Type : Type is inconsistent.

Standard solution: one has to stratify.

Type0 : Type1 : Type2 : . . . : Typen : Typen+1 : . . .

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 29 / 49

Ton Univers Impitoyable

In CIC, types are first-class citizens.

⇝ in particular, types have a universe type, traditionally called Type.

What is the type of Type?

Martin-Löf ’71: Type : Type.

Girard ’71 + ε: Type : Type is inconsistent.

Standard solution: one has to stratify.

Type0 : Type1 : Type2 : . . . : Typen : Typen+1 : . . .

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 29 / 49

Les Heures Sombres du BASIC

We theoretical computer scientists love natural numbers!

(Typei)i∈N

Simple
Elegant
Universal

... and completely anti-modular!

You have to pick all your levels upfront.
If you have two universes Typen : Typen+1, you better not realize that you
need some m s.t. n < m < n + 1.

This is why you should number your levels
by increments of 100.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 30 / 49

Les Heures Sombres du BASIC

We theoretical computer scientists love natural numbers!

(Typei)i∈N

Simple
Elegant
Universal
... and completely anti-modular!

You have to pick all your levels upfront.
If you have two universes Typen : Typen+1, you better not realize that you
need some m s.t. n < m < n + 1.

This is why you should number your levels
by increments of 100.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 30 / 49

Les Heures Sombres du BASIC

We theoretical computer scientists love natural numbers!

(Typei)i∈N

Simple
Elegant
Universal
... and completely anti-modular!

You have to pick all your levels upfront.

If you have two universes Typen : Typen+1, you better not realize that you
need some m s.t. n < m < n + 1.

This is why you should number your levels
by increments of 100.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 30 / 49

Les Heures Sombres du BASIC

We theoretical computer scientists love natural numbers!

(Typei)i∈N

Simple
Elegant
Universal
... and completely anti-modular!

You have to pick all your levels upfront.
If you have two universes Typen : Typen+1, you better not realize that you
need some m s.t. n < m < n + 1.

This is why you should number your levels
by increments of 100.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 30 / 49

Les Heures Sombres du BASIC

We theoretical computer scientists love natural numbers!

(Typei)i∈N

Simple
Elegant
Universal
... and completely anti-modular!

You have to pick all your levels upfront.
If you have two universes Typen : Typen+1, you better not realize that you
need some m s.t. n < m < n + 1.

This is why you should number your levels
by increments of 100.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 30 / 49

Les Heures Sombres du BASIC

We theoretical computer scientists love natural numbers!

(Typei)i∈N

Simple
Elegant
Universal
... and completely anti-modular!

You have to pick all your levels upfront.
If you have two universes Typen : Typen+1, you better not realize that you
need some m s.t. n < m < n + 1.

This is why you should number your levels
by increments of 100.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 30 / 49

Ça varie
Floating universes (antediluvian trick)

Just introduce variables

The language is simple:
Variable universe levels i, j...
Constraints i < j and i ≤ j which must form a DAG

Minor tweaks to the kernel

Generate fresh levels (outside of the kernel)
Accumulate constraints (outside of the kernel)
Send the graph to the kernel for acyclicity checking

Voilá, you never have to care about universes again

(By the way Agda and Lean have a different approach.)

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 31 / 49

Ça varie
Floating universes (antediluvian trick)

Just introduce variables

The language is simple:
Variable universe levels i, j...
Constraints i < j and i ≤ j which must form a DAG

Minor tweaks to the kernel

Generate fresh levels (outside of the kernel)
Accumulate constraints (outside of the kernel)
Send the graph to the kernel for acyclicity checking

Voilá, you never have to care about universes again

(By the way Agda and Lean have a different approach.)

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 31 / 49

Ça varie
Floating universes (antediluvian trick)

Just introduce variables

The language is simple:
Variable universe levels i, j...
Constraints i < j and i ≤ j which must form a DAG

Minor tweaks to the kernel

Generate fresh levels (outside of the kernel)
Accumulate constraints (outside of the kernel)
Send the graph to the kernel for acyclicity checking

Voilá, you never have to care about universes again

(By the way Agda and Lean have a different approach.)

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 31 / 49

Ça varie
Floating universes (antediluvian trick)

Just introduce variables

The language is simple:
Variable universe levels i, j...
Constraints i < j and i ≤ j which must form a DAG

Minor tweaks to the kernel

Generate fresh levels (outside of the kernel)
Accumulate constraints (outside of the kernel)
Send the graph to the kernel for acyclicity checking

Voilá, you never have to care about universes again

(By the way Agda and Lean have a different approach.)

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 31 / 49

Ça varie
Floating universes (antediluvian trick)

Just introduce variables

The language is simple:
Variable universe levels i, j...
Constraints i < j and i ≤ j which must form a DAG

Minor tweaks to the kernel

Generate fresh levels (outside of the kernel)
Accumulate constraints (outside of the kernel)
Send the graph to the kernel for acyclicity checking

Voilá, you never have to care about universes again

(By the way Agda and Lean have a different approach.)
Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 31 / 49

L’uni vert de rage

This is a very wasteful technique

⇝ In 99% of the actual developments:

You have to generate a bazillion universe levels
Most of them are transient
They are generated by tactics and unified away immediately
You only have to send a gazillion levels to the kernel

The gazillion-sized graph is a fiction. Collapsing ≤ constraints gives:

i < j < k

Three levels ought to be enough for anybody!

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 32 / 49

L’uni vert de rage

This is a very wasteful technique

⇝ In 99% of the actual developments:
You have to generate a bazillion universe levels

Most of them are transient
They are generated by tactics and unified away immediately
You only have to send a gazillion levels to the kernel

The gazillion-sized graph is a fiction. Collapsing ≤ constraints gives:

i < j < k

Three levels ought to be enough for anybody!

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 32 / 49

L’uni vert de rage

This is a very wasteful technique

⇝ In 99% of the actual developments:
You have to generate a bazillion universe levels

Most of them are transient
They are generated by tactics and unified away immediately
You only have to send a gazillion levels to the kernel

The gazillion-sized graph is a fiction. Collapsing ≤ constraints gives:

i < j < k

Three levels ought to be enough for anybody!

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 32 / 49

L’uni vert de rage

This is a very wasteful technique

⇝ In 99% of the actual developments:
You have to generate a bazillion universe levels

Most of them are transient
They are generated by tactics and unified away immediately
You only have to send a gazillion levels to the kernel

The gazillion-sized graph is a fiction. Collapsing ≤ constraints gives:

i < j < k

Three levels ought to be enough for anybody!

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 32 / 49

Trop c’est trop

This is an actually very annoying problem

Users have been complaining about related performance issues for ages.

Even when you are not aware, you pay for this.

Universe generation is also very much inscrutable.

It is effectful and incompatible with desirable features.

Good luck debugging a stray constraint.

Horror Story
The MetaCoq and QuickChick are (were?) not loadable together.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 33 / 49

Trop c’est trop

This is an actually very annoying problem

Users have been complaining about related performance issues for ages.

Even when you are not aware, you pay for this.

Universe generation is also very much inscrutable.

It is effectful and incompatible with desirable features.

Good luck debugging a stray constraint.

Horror Story
The MetaCoq and QuickChick are (were?) not loadable together.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 33 / 49

Trop c’est trop

This is an actually very annoying problem

Users have been complaining about related performance issues for ages.

Even when you are not aware, you pay for this.

Universe generation is also very much inscrutable.

It is effectful and incompatible with desirable features.

Good luck debugging a stray constraint.

Horror Story
The MetaCoq and QuickChick are (were?) not loadable together.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 33 / 49

Une auberge dont on n’est pas sorti

Worse!

Serious Question: What is the type of Typei ?
Timid Answer: Typej for some j > i ?

No! You shouldn’t be able to generate fresh levels from within the kernel.

I lied (again)
We still need algebraic universe expressions in types.

In Coq, types are actually not terms!
Some kind of adjunction between types and terms

∃j > i. Typej ∼ Typei+1

The Andouillette Principle
I am not sure I have seen this really publicized anywhere.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 34 / 49

Une auberge dont on n’est pas sorti

Worse!

Serious Question: What is the type of Typei ?

Timid Answer: Typej for some j > i ?
No! You shouldn’t be able to generate fresh levels from within the kernel.

I lied (again)
We still need algebraic universe expressions in types.

In Coq, types are actually not terms!
Some kind of adjunction between types and terms

∃j > i. Typej ∼ Typei+1

The Andouillette Principle
I am not sure I have seen this really publicized anywhere.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 34 / 49

Une auberge dont on n’est pas sorti

Worse!

Serious Question: What is the type of Typei ?
Timid Answer: Typej for some j > i ?

No! You shouldn’t be able to generate fresh levels from within the kernel.

I lied (again)
We still need algebraic universe expressions in types.

In Coq, types are actually not terms!
Some kind of adjunction between types and terms

∃j > i. Typej ∼ Typei+1

The Andouillette Principle
I am not sure I have seen this really publicized anywhere.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 34 / 49

Une auberge dont on n’est pas sorti

Worse!

Serious Question: What is the type of Typei ?
Timid Answer: Typej for some j > i ?

No! You shouldn’t be able to generate fresh levels from within the kernel.

I lied (again)
We still need algebraic universe expressions in types.

In Coq, types are actually not terms!
Some kind of adjunction between types and terms

∃j > i. Typej ∼ Typei+1

The Andouillette Principle
I am not sure I have seen this really publicized anywhere.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 34 / 49

Une auberge dont on n’est pas sorti

Worse!

Serious Question: What is the type of Typei ?
Timid Answer: Typej for some j > i ?

No! You shouldn’t be able to generate fresh levels from within the kernel.

I lied (again)
We still need algebraic universe expressions in types.

In Coq, types are actually not terms!
Some kind of adjunction between types and terms

∃j > i. Typej ∼ Typei+1

The Andouillette Principle
I am not sure I have seen this really publicized anywhere.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 34 / 49

Une auberge dont on n’est pas sorti

Worse!

Serious Question: What is the type of Typei ?
Timid Answer: Typej for some j > i ?

No! You shouldn’t be able to generate fresh levels from within the kernel.

I lied (again)
We still need algebraic universe expressions in types.

In Coq, types are actually not terms!
Some kind of adjunction between types and terms

∃j > i. Typej ∼ Typei+1

The Andouillette Principle
I am not sure I have seen this really publicized anywhere.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 34 / 49

Un nouvel espoir

This universe business is currently a hot topic

Yet another universe checking algorithm
That handles algebraic universes natively

Resonates with the multiverse project

More complex sorts, expanding the logic
All of this is tied together inextricably

Yet another revival of dormant questions

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 35 / 49

Un nouvel espoir

This universe business is currently a hot topic

Yet another universe checking algorithm
That handles algebraic universes natively

Resonates with the multiverse project

More complex sorts, expanding the logic
All of this is tied together inextricably

Yet another revival of dormant questions

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 35 / 49

Un nouvel espoir

This universe business is currently a hot topic

Yet another universe checking algorithm
That handles algebraic universes natively

Resonates with the multiverse project

More complex sorts, expanding the logic
All of this is tied together inextricably

Yet another revival of dormant questions

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 35 / 49

Guard

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 36 / 49

Totalitarisme logique

In CIC, all functions must terminate.

Otherwise the theory becomes inconsistent.
Arbitrary fixpoints allow n : N s.t. n := S n

In paper presentations, for simplicity one uses recursors.

recN : P O → (Π(n : N).P n → P (S n)) → Π(n : N).P n
recN pO pS O ≡ pO
recN pO pS (S n) ≡ pS n (recN n pO pS)

The Category Terrorist
“recN is universal, because this is the universal property of N.”

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 37 / 49

Totalitarisme logique

In CIC, all functions must terminate.

Otherwise the theory becomes inconsistent.
Arbitrary fixpoints allow n : N s.t. n := S n

In paper presentations, for simplicity one uses recursors.

recN : P O → (Π(n : N).P n → P (S n)) → Π(n : N).P n
recN pO pS O ≡ pO
recN pO pS (S n) ≡ pS n (recN n pO pS)

The Category Terrorist
“recN is universal, because this is the universal property of N.”

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 37 / 49

Totalitarisme logique

In CIC, all functions must terminate.

Otherwise the theory becomes inconsistent.
Arbitrary fixpoints allow n : N s.t. n := S n

In paper presentations, for simplicity one uses recursors.

recN : P O → (Π(n : N).P n → P (S n)) → Π(n : N).P n
recN pO pS O ≡ pO
recN pO pS (S n) ≡ pS n (recN n pO pS)

The Category Terrorist
“recN is universal, because this is the universal property of N.”

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 37 / 49

Mon diagramme, il commute
The Category Terrorist

“recN is universal, because this is the universal property of N.”

This is only true extensionally!

This only holds for propositional equality
Further assuming various extensionality principles

Computation matters
Would you conflate a O(2n) algorithm with O(1) one?

Intensional behaviour is critical for programming
Recursors are very bad in call-by-value
It is not even clear what universality means for conversion
Whatever this means, recursors are not universal for it

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 38 / 49

Mon diagramme, il commute
The Category Terrorist

“recN is universal, because this is the universal property of N.”

This is only true extensionally!

This only holds for propositional equality
Further assuming various extensionality principles

Computation matters
Would you conflate a O(2n) algorithm with O(1) one?

Intensional behaviour is critical for programming
Recursors are very bad in call-by-value
It is not even clear what universality means for conversion
Whatever this means, recursors are not universal for it

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 38 / 49

Mon diagramme, il commute
The Category Terrorist

“recN is universal, because this is the universal property of N.”

This is only true extensionally!

This only holds for propositional equality
Further assuming various extensionality principles

Computation matters
Would you conflate a O(2n) algorithm with O(1) one?

Intensional behaviour is critical for programming
Recursors are very bad in call-by-value
It is not even clear what universality means for conversion
Whatever this means, recursors are not universal for it
Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 38 / 49

Une idée fixe

Good news: recursors are not fundamental in Coq.

Instead, Coq relies on fixpoints + pattern-matching.
recN pO pS := fix F (n : N) := match n with

| O ⇒ pO
| S m ⇒ pS m (F m)

This is a historical design choice motivated by extraction
Similar to OCaml
The extracted terms look like what the user wrote
Critical for efficiency in call-by-value

One can write fixpoints that are not intensionally recursor-encodable.
even : N → B

even O := true
even (S O) := false
even (S (S n)) := even n

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 39 / 49

Une idée fixe

Good news: recursors are not fundamental in Coq.

Instead, Coq relies on fixpoints + pattern-matching.
recN pO pS := fix F (n : N) := match n with

| O ⇒ pO
| S m ⇒ pS m (F m)

This is a historical design choice motivated by extraction
Similar to OCaml
The extracted terms look like what the user wrote
Critical for efficiency in call-by-value

One can write fixpoints that are not intensionally recursor-encodable.
even : N → B

even O := true
even (S O) := false
even (S (S n)) := even n

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 39 / 49

Une idée fixe

Good news: recursors are not fundamental in Coq.

Instead, Coq relies on fixpoints + pattern-matching.
recN pO pS := fix F (n : N) := match n with

| O ⇒ pO
| S m ⇒ pS m (F m)

This is a historical design choice motivated by extraction
Similar to OCaml
The extracted terms look like what the user wrote
Critical for efficiency in call-by-value

One can write fixpoints that are not intensionally recursor-encodable.
even : N → B

even O := true
even (S O) := false
even (S (S n)) := even n

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 39 / 49

Une idée fixe

Good news: recursors are not fundamental in Coq.

Instead, Coq relies on fixpoints + pattern-matching.
recN pO pS := fix F (n : N) := match n with

| O ⇒ pO
| S m ⇒ pS m (F m)

This is a historical design choice motivated by extraction
Similar to OCaml
The extracted terms look like what the user wrote
Critical for efficiency in call-by-value

One can write fixpoints that are not intensionally recursor-encodable.
even : N → B

even O := true
even (S O) := false
even (S (S n)) := even n

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 39 / 49

Si tu ne viens pas à Lagardère

Bad news: recursors are not fundamental in Coq.

Consider the following:
Coq relies on fixpoints + pattern-matching.
Arbitrary fixpoints are inconsistent.

Hence there must be some mechanism to restrict to good fixpoints

La garde!

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 40 / 49

Si tu ne viens pas à Lagardère

Bad news: recursors are not fundamental in Coq.

Consider the following:
Coq relies on fixpoints + pattern-matching.
Arbitrary fixpoints are inconsistent.

Hence there must be some mechanism to restrict to good fixpoints

La garde!

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 40 / 49

Si tu ne viens pas à Lagardère

Bad news: recursors are not fundamental in Coq.

Consider the following:
Coq relies on fixpoints + pattern-matching.
Arbitrary fixpoints are inconsistent.

Hence there must be some mechanism to restrict to good fixpoints

La garde!

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 40 / 49

Si tu ne viens pas à Lagardère

Bad news: recursors are not fundamental in Coq.

Consider the following:
Coq relies on fixpoints + pattern-matching.
Arbitrary fixpoints are inconsistent.

Hence there must be some mechanism to restrict to good fixpoints

La garde!
Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 40 / 49

La programmation totale, c’est totalement con

What does the guard enforce?

Minimal service:
The theory must be consistent
Hence functions ought to be total.

Once again, the MetaCoq people worked this out a bit.

Various closure conditions
Some surprisingly non-necessary properties

The more expressive the guard, the better.

(Right?)

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 41 / 49

La programmation totale, c’est totalement con

What does the guard enforce?

Minimal service:
The theory must be consistent
Hence functions ought to be total.

Once again, the MetaCoq people worked this out a bit.

Various closure conditions
Some surprisingly non-necessary properties

The more expressive the guard, the better.

(Right?)

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 41 / 49

La programmation totale, c’est totalement con

What does the guard enforce?

Minimal service:
The theory must be consistent
Hence functions ought to be total.

Once again, the MetaCoq people worked this out a bit.

Various closure conditions
Some surprisingly non-necessary properties

The more expressive the guard, the better.

(Right?)

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 41 / 49

Terminons-en

The guard condition is probably the least understood kernel component.

Specification not quite clear, stay tuned
Organic implementation — it would be nice if this worked...
Decades of tweaks and RFC from users
... and obviously critical for consistency

I want to give you a foretaste of kern-hell.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 42 / 49

Terminons-en

The guard condition is probably the least understood kernel component.

Specification not quite clear, stay tuned
Organic implementation — it would be nice if this worked...
Decades of tweaks and RFC from users
... and obviously critical for consistency

I want to give you a foretaste of kern-hell.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 42 / 49

La garde meurt et ne retourne jamais
Ingenuous question

What does total mean?

In CIC, the equational theory is call-by-name.
⇝ In particular, we only care about weak-head reduction.

This used to be accepted

fix loop (i : unit) := let _ := loop () in ()

Perfectly fine in call-by-name
Not inconsistent, this is just a constant function
Not quite so in call-by-value, e.g. through extraction

As of Coq 8.19, not accepted, but still morally OK in the abstract.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 43 / 49

La garde meurt et ne retourne jamais
Ingenuous question

What does total mean?

In CIC, the equational theory is call-by-name.
⇝ In particular, we only care about weak-head reduction.

This used to be accepted

fix loop (i : unit) := let _ := loop () in ()

Perfectly fine in call-by-name
Not inconsistent, this is just a constant function
Not quite so in call-by-value, e.g. through extraction

As of Coq 8.19, not accepted, but still morally OK in the abstract.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 43 / 49

La garde meurt et ne retourne jamais
Ingenuous question

What does total mean?

In CIC, the equational theory is call-by-name.
⇝ In particular, we only care about weak-head reduction.

This used to be accepted

fix loop (i : unit) := let _ := loop () in ()

Perfectly fine in call-by-name
Not inconsistent, this is just a constant function
Not quite so in call-by-value, e.g. through extraction

As of Coq 8.19, not accepted, but still morally OK in the abstract.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 43 / 49

La garde meurt et ne retourne jamais
Ingenuous question

What does total mean?

In CIC, the equational theory is call-by-name.
⇝ In particular, we only care about weak-head reduction.

This used to be accepted

fix loop (i : unit) := let _ := loop () in ()

Perfectly fine in call-by-name
Not inconsistent, this is just a constant function
Not quite so in call-by-value, e.g. through extraction

As of Coq 8.19, not accepted, but still morally OK in the abstract.
Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 43 / 49

Ouate le Foulque

Logically, what is the worse you could get from a defective guard?

“Morally, you could be inconsistent. There should not be anything in
between. Apart from more functions, that is.” — Sweet Summer Child.

The guard condition used to negate propositional extensionality.

PropExt := Π(P Q : Prop). (P ↔ Q) → P = Q

⇝ this is inconsistent with both HoTT and the Set model

In the name of Gödel, what does this have to do with termination?

(Mumble something about size issues.)

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 44 / 49

Ouate le Foulque

Logically, what is the worse you could get from a defective guard?

“Morally, you could be inconsistent. There should not be anything in
between. Apart from more functions, that is.” — Sweet Summer Child.

The guard condition used to negate propositional extensionality.

PropExt := Π(P Q : Prop). (P ↔ Q) → P = Q

⇝ this is inconsistent with both HoTT and the Set model

In the name of Gödel, what does this have to do with termination?

(Mumble something about size issues.)

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 44 / 49

Ouate le Foulque

Logically, what is the worse you could get from a defective guard?

“Morally, you could be inconsistent. There should not be anything in
between. Apart from more functions, that is.” — Sweet Summer Child.

The guard condition used to negate propositional extensionality.

PropExt := Π(P Q : Prop). (P ↔ Q) → P = Q

⇝ this is inconsistent with both HoTT and the Set model

In the name of Gödel, what does this have to do with termination?

(Mumble something about size issues.)

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 44 / 49

Ouate le Foulque

Logically, what is the worse you could get from a defective guard?

“Morally, you could be inconsistent. There should not be anything in
between. Apart from more functions, that is.” — Sweet Summer Child.

The guard condition used to negate propositional extensionality.

PropExt := Π(P Q : Prop). (P ↔ Q) → P = Q

⇝ this is inconsistent with both HoTT and the Set model

In the name of Gödel, what does this have to do with termination?

(Mumble something about size issues.)

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 44 / 49

Ouate le Foulque

Logically, what is the worse you could get from a defective guard?

“Morally, you could be inconsistent. There should not be anything in
between. Apart from more functions, that is.” — Sweet Summer Child.

The guard condition used to negate propositional extensionality.

PropExt := Π(P Q : Prop). (P ↔ Q) → P = Q

⇝ this is inconsistent with both HoTT and the Set model

In the name of Gödel, what does this have to do with termination?

(Mumble something about size issues.)

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 44 / 49

Le feu ça brûle et l’eau ça mouille

Consistency is not enough!

We want the guard to be as neutral as possible w.r.t. model validity...
HoTT
Set
Something else?

... but we also want it to be as expressive as possible.
Some people out there make a living of this

This is not a formal specification!

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 45 / 49

Le feu ça brûle et l’eau ça mouille

Consistency is not enough!

We want the guard to be as neutral as possible w.r.t. model validity...
HoTT
Set
Something else?

... but we also want it to be as expressive as possible.
Some people out there make a living of this

This is not a formal specification!

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 45 / 49

Le feu ça brûle et l’eau ça mouille

Consistency is not enough!

We want the guard to be as neutral as possible w.r.t. model validity...
HoTT
Set
Something else?

... but we also want it to be as expressive as possible.
Some people out there make a living of this

This is not a formal specification!

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 45 / 49

Le feu ça brûle et l’eau ça mouille

Consistency is not enough!

We want the guard to be as neutral as possible w.r.t. model validity...
HoTT
Set
Something else?

... but we also want it to be as expressive as possible.
Some people out there make a living of this

This is not a formal specification!

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 45 / 49

Courage, fuyons

The only idealized model we understand is recursor-based†.

(†This is not even completely true. If you hear the word nested, run.)

⇝ We should be able to justify the guard by compilation to recursors.
This could even be done outside of the kernel
This is actually used by e.g. Equations

But this is doomed to fail: there are fixpoints not recursor-encodable.

⇝ At least not with an intensional notion of encodable.
Some Coq-definable fixpoints conflict with recursor models
Effects are pretty much incompatible with some guard assumptions
What is a good notion of encodable?

Who shall guard the guard?

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 46 / 49

Courage, fuyons

The only idealized model we understand is recursor-based†.

(†This is not even completely true. If you hear the word nested, run.)

⇝ We should be able to justify the guard by compilation to recursors.
This could even be done outside of the kernel
This is actually used by e.g. Equations

But this is doomed to fail: there are fixpoints not recursor-encodable.

⇝ At least not with an intensional notion of encodable.
Some Coq-definable fixpoints conflict with recursor models
Effects are pretty much incompatible with some guard assumptions
What is a good notion of encodable?

Who shall guard the guard?

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 46 / 49

Courage, fuyons

The only idealized model we understand is recursor-based†.

(†This is not even completely true. If you hear the word nested, run.)

⇝ We should be able to justify the guard by compilation to recursors.
This could even be done outside of the kernel
This is actually used by e.g. Equations

But this is doomed to fail: there are fixpoints not recursor-encodable.

⇝ At least not with an intensional notion of encodable.
Some Coq-definable fixpoints conflict with recursor models
Effects are pretty much incompatible with some guard assumptions
What is a good notion of encodable?

Who shall guard the guard?

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 46 / 49

Courage, fuyons

The only idealized model we understand is recursor-based†.

(†This is not even completely true. If you hear the word nested, run.)

⇝ We should be able to justify the guard by compilation to recursors.
This could even be done outside of the kernel
This is actually used by e.g. Equations

But this is doomed to fail: there are fixpoints not recursor-encodable.

⇝ At least not with an intensional notion of encodable.
Some Coq-definable fixpoints conflict with recursor models
Effects are pretty much incompatible with some guard assumptions
What is a good notion of encodable?

Who shall guard the guard?

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 46 / 49

Courage, fuyons

The only idealized model we understand is recursor-based†.

(†This is not even completely true. If you hear the word nested, run.)

⇝ We should be able to justify the guard by compilation to recursors.
This could even be done outside of the kernel
This is actually used by e.g. Equations

But this is doomed to fail: there are fixpoints not recursor-encodable.

⇝ At least not with an intensional notion of encodable.
Some Coq-definable fixpoints conflict with recursor models
Effects are pretty much incompatible with some guard assumptions
What is a good notion of encodable?

Who shall guard the guard?
Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 46 / 49

Conclusion

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 47 / 49

Bad Tripes?

The confidence of the theoretician crashes against the wall of reality

The real has much more asperities
Even in an idealized kernel lurk unknown monsters
Diachronical and interindividual dialectics are pervasive

So is the essence of andouillette.

Proof assistants are still an invaluable tool
The andouillette principle should not be feared
Rather, this is a never ending material for a thriving research

Do not be afraid and join us

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 48 / 49

Bad Tripes?

The confidence of the theoretician crashes against the wall of reality

The real has much more asperities
Even in an idealized kernel lurk unknown monsters
Diachronical and interindividual dialectics are pervasive

So is the essence of andouillette.

Proof assistants are still an invaluable tool
The andouillette principle should not be feared
Rather, this is a never ending material for a thriving research

Do not be afraid and join us

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 48 / 49

Bad Tripes?

The confidence of the theoretician crashes against the wall of reality

The real has much more asperities
Even in an idealized kernel lurk unknown monsters
Diachronical and interindividual dialectics are pervasive

So is the essence of andouillette.

Proof assistants are still an invaluable tool
The andouillette principle should not be feared
Rather, this is a never ending material for a thriving research

Do not be afraid and join us

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 48 / 49

Scribitur ad narrandum, non ad probandum.

L’absurde ne délivre pas, il lie. Il n’autorise pas tous les actes.
Tout est permis ne signifie pas que rien n’est défendu.

Albert Camus.

Thank you for your attention.

Pédrot (Gallinette) Dans les Boyaux de mon Noyau JNIM24 49 / 49

