Double-glueing and Orthogonality: Refining Models of Linear Logic through Realizability

Pierre-Marie Pédrot

PiR2

23rd November, 2011

Pierre-Marie Pédrot (PiR2)

Double-glueing and orthogonality

23/11/2011 1 / 35

< ∃ >

- Double-glueing 2
- Tight categories 3

990

1

イロト イロト イヨト イ

- $\,$ $\,$ Linear logic (\sim 1986): a fruitful decomposition of logic
- Double-glueing: Hyland and Schalk (2002)
- A unified framework inspired from realizability
- Better understanding of constructions underlying LL models

<ロト < 回 > < 回 > < 回 > < 回 >

Orthogonality

A central technique used throughout this developpement: orthogonality.

Definition

Let $R \subseteq A \times B$ be a relation. We note $a \perp b := aRb$. For any $\mathfrak{a} \subseteq A$, we define $\mathfrak{a}^{\perp} \subseteq B$:

 $\mathfrak{a}^{\perp} := \{ b \mid \forall a \in \mathfrak{a}, a \perp b \}$

Usual properties

•
$$\mathfrak{a} \subseteq \mathfrak{a}^{\perp \perp}$$

• $\mathfrak{a} \subseteq \mathfrak{a}' \Rightarrow \mathfrak{a}'^{\perp} \subseteq \mathfrak{a}^{\perp}$
• $\mathfrak{a}^{\perp \perp \perp} = \mathfrak{a}^{\perp}$

Models from the book: Coherent spaces (Historical)

Coherent spaces are a historical model of LL designed by Girard.

Historical definition

A coherent space is a pair $R = (|R|, \bigcirc_R)$ where \bigcirc_R is a reflexive relation on |R|.

More structure

$$R \otimes S := (|R| \times |S|, \ldots)$$

$$R \& S := (|R| \uplus |S|, \ldots)$$

$$!R := (\mathfrak{M}_f(|R|), \ldots)$$

. . .

(4 回) トイヨト イヨト

Models from the book: Coherent spaces (Modern)

Folklore definition

For $u, v \subseteq |R|$, we pose $u \perp v$ whenever $|u \cap v| \leq 1$. A coherent space is a pair $R = (|R|, C_R)$ where $C_R \subseteq \mathfrak{P}(|R|)$, called the set of **cliques** of R is s.t. $C_R = C_R^{\perp \perp}$.

Structure

•
$$R^{\perp} := (|R|, \mathcal{C}_R^{\perp})$$

•
$$R \otimes S := (|R| \times |S|, (\mathcal{C}_R \cdot \mathcal{C}_S)^{\perp \perp})$$

•
$$R \& S := (|R| \uplus |S|, \mathcal{C}_R \times \mathcal{C}_S)$$

•
$$!R := (\mathfrak{M}_f(|R|), \mathfrak{M}_f(\mathcal{C}_R)^{\perp \perp})$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Models from the book: Finiteness spaces

Finiteness spaces are a more recent LL model, and in particular of differential LL.

Finiteness spaces

We pose $u \perp v$ whenever $u \cap v$ is finite. A finiteness space is a pair $R = (|R|, \mathcal{F}_R)$ where $\mathcal{F}_R \subseteq \mathfrak{P}(|R|)$, called the set of **finitary sets** of R, is s.t. $\mathcal{F}_R = \mathcal{F}_R^{\perp \perp}$

Structure

•
$$R^{\perp} := (|R|, \mathcal{F}_R^{\perp})$$

• $R \otimes S := (|R| \times |S|, (\mathcal{F}_R \cdot \mathcal{F}_S)^{\perp \perp})$
• $R \& S := (|R| \uplus |S|, \mathcal{F}_R \times \mathcal{F}_S)$
• $!R := (\mathfrak{M}_f(|R|), \mathfrak{M}_f(\mathcal{F}_R)^{\perp \perp})$

Models from the book: Phase semantics

Phase semantics is another historical (but this time complete) model of LL.

Phase semantics Let \mathcal{M} be a commutative monoid and $\bot\!\!\!\!\bot \subseteq \mathcal{M}$ a pole. We pose $x \perp y$ whenever $xy \in \bot\!\!\!\!\bot$. A **fact** is a subset $F \subseteq \mathcal{M}$ s.t. $F = F^{\perp \perp}$.

Structure

•
$$E^{\perp} := E^{\perp}$$

•
$$E \otimes F := (E \cdot F)^{\perp \perp}$$

•
$$E \& F := E \cap F$$

• $!E := (E \cap \{1\}^{\perp \perp} \cap \mathbb{K})^{\perp \perp}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Reverse-engineering

	Coherence	Finiteness	Phase
Base structure	Relations	Relations	Monoid
Topping	Cliques	Finitary sets	Facts
Orthogonality	$ x \cap y \le 1$	$ x\cap y <\infty$	$x\cdot y\in {\rm I\!L}$
R^{\perp}	\mathcal{C}_R^\perp	\mathcal{F}_R^\perp	R^{\perp}
1	$\{*\}^{\perp\perp}$	$\{*\}^{\perp\perp}$	$\{1\}^{\perp\perp}$
$R\otimes S$	$(\mathcal{C}_R \cdot \mathcal{C}_S)^{\perp \perp}$	$(\mathcal{F}_R \cdot \mathcal{F}_S)^{\perp \perp}$	$(R\cdot S)^{\perp\perp}$
$R \And S$	$\mathcal{C}_R imes \mathcal{C}_S$	$\mathcal{F}_R imes \mathcal{F}_S$	$R\cap S$

Pierre-Marie Pédrot (PiR2)

Double-glueing and orthogonality

23/11/2011 9 / 35

990

We can detect a common pattern in the previous examples.

- The objects are two-parts:
 - an underlying structure (a set, a monoid, ...)
 - additional information (clique, facts, finitary sets)
- A notion of orthogonality over this information
 - restriction to closed sets $A=A^{\perp\perp}$
- Morphisms are underlying morphisms (a relation, an element) preserving orthogonality properties

Axiomatizing this properties permits to define the double-glueing construction.

Let us consider any model. With much handwaving:

- Our new formulas will be triples (R, U, X) where:
 - ${\ \bullet \ } R$ is an formula of the base model
 - $\bullet~U$ is an abstract set of ${\bf proofs}$
 - X is an abstract set of **counter-proofs**

Sac

- 一回 ト - 4 三 ト - 4 三

Let us consider any model. With much handwaving:

- Our new formulas will be triples (R, U, X) where:
 - ${\ \bullet \ } R$ is an formula of the base model
 - $\bullet~U$ is an abstract set of ${\bf proofs}$
 - X is an abstract set of **counter-proofs**
- Interpretations of $(U, X) \vdash (V, Y)$ will be
 - elements from the underlying model
 - preserving proofs (by application)
 - anti-preserving counter-proofs (by co-application)

- 4 同 1 - 4 回 1 - 4 回 1

Let us consider any model. With much handwaving:

- Our new formulas will be triples (R, U, X) where:
 - ${\ \bullet \ } R$ is an formula of the base model
 - $\bullet~U$ is an abstract set of ${\bf proofs}$
 - X is an abstract set of **counter-proofs**
- Interpretations of $(U, X) \vdash (V, Y)$ will be
 - elements from the underlying model
 - preserving proofs (by application)
 - anti-preserving counter-proofs (by co-application)
- With enough provisos, we can lift any structure from the base model
 - Nothing added, jush refining things up

- 4 同 1 4 日 1 4 日 1

In the following, we consider:

- ${\ensuremath{\,\circ\,}}$ C a (categorical) model of (a subsystem of) LL
- $\bot \in \mathbf{C}$ a return type
- $\bot_R \subseteq \mathbf{C}(1,R) \times \mathbf{C}(R,\bot)$ a family of orthogonalities

E SQC

We define the slack category $\ensuremath{\mathbb{S}}$ as follows:

• Objects are triples
$$A = (R, U, X)$$
 where
• $R \in \mathbf{C}$
• $U \subseteq \mathbf{C}(1, R) \longrightarrow$ proofs of $A: u \Vdash^{p} A$
• $X \subseteq \mathbf{C}(R, \bot) \longrightarrow$ counter-proofs of $A: x \Vdash^{o} A$
• $U \perp X$

► 4 Ξ

We define the slack category $\ensuremath{\mathbb{S}}$ as follows:

• Morphisms $f : \mathbb{S}(A, B)$ are $f : \mathbb{C}(R, S)$ s.t. • $\forall u \Vdash^{p} A, u; f \Vdash^{p} B$ (i.e. $f(U) \subseteq V$) • $\forall y \Vdash^{o} B, f; y \Vdash^{o} A$ (i.e. $f^{-1}(Y) \subseteq X$)

200

- In any category, let $\bot\!\!\!\bot \subseteq {f C}(1,\bot)$ and pose $u\perp x$ whenever $u;x\in \bot\!\!\!\bot$
 - These are the **focussed** orthogonalities
 - The best case for compatibility properties
- In the category Rel of sets and relations:
 - $\mathbf{Rel}(1, R) \cong \mathbf{Rel}(R, \bot) \cong \mathfrak{P}(R)$
 - $u \perp x$ whenever $u \cap x$ at most a singleton
 - $u \perp x$ whenever $u \cap x$ is finite

< 回 ト < 三 ト < 三

 $\bullet~$ If ${\bf C}$ has some structure one can transport it onto ${\mathbb S}:$

 $(R,U,X)*(S,V,Y)\equiv (R*S,W,Z)$

• We need to define W and Z accordingly!

• in particular $W \perp Z$

< /□ ト < 三 ト

 $\bullet~$ If ${\bf C}$ has some structure one can transport it onto ${\mathbb S}:$

 $(R,U,X)*(S,V,Y)\equiv (R*S,W,Z)$

• We need to define W and Z accordingly!

 ${\, \bullet \, }$ in particular $W \perp Z$

 ${\, \bullet \,}$ the morphisms associated to * may be lifted to ${\mathbb S}$ too

- $\, \bullet \,$ provided some well-behavedness conditions on $\perp \,$
- $\bullet \ ... \ and \ \mathbb{S}$ shall inherit the structure from ${\bf C}$ for free!

Lifting the additives is the easy part: as in the intuitionnistic case!

Sac

Lifting the structure: Multiplicatives

Multiplicatives are hybrid disjunction/conjunction: lifting is asymmetric...

23/11/2011 17 / 35

. < P ≥ .</p>

In intuitionnistic realizability:

$$f \Vdash A \Rightarrow B := \forall u \Vdash A, u :: f \Vdash B$$

Here, a totally symmetric system

$$f \Vdash A \multimap B := \begin{cases} \forall u \Vdash A, u :: f \Vdash B \\ \forall y \Vdash B^*, f :: y \Vdash A^* \end{cases}$$

This comes from the absence of double-orthogonal closure.

Image: A match a ma

Actually we need some requirements on the orthogonality to preserve structure. (But this is ugly.)

- Whenever it is focussed, everything works
- Coherent and finiteness orthogonalities do work too

We need a compatible transformation κ_R : C(1, R) → C(1, !R)
There is no unicity of such a transformation...

• yet a canonical one: $\kappa(u) = 1 \xrightarrow{m} !1 \xrightarrow{!u} !R$

Sar

We need a compatible transformation κ_R : C(1, R) → C(1, !R)
There is no unicity of such a transformation...

• yet a canonical one: $\kappa(u) = 1 \xrightarrow{m} !1 \xrightarrow{!u} !R$

$$\frac{u \Vdash^{p} A}{\kappa(u) \Vdash^{p} ! A}$$

$$\frac{x \Vdash^{o} A}{\varepsilon; x \Vdash^{o} ! A} \quad \frac{\chi \Vdash^{o} 1}{e; \chi \Vdash^{o} ! A} \quad \frac{z \Vdash^{o} ! A \otimes ! A}{d; z \Vdash^{o} ! A}$$

where $\varepsilon : \mathbf{C}(!R, R)$, $e : \mathbf{C}(!R, 1)$ and $d : \mathbf{C}(!R, !R \otimes !R)$.

An Enlighting Example

- In **Rel**, take $!A = \mathcal{M}_{fin}(A)$
 - free commutative comonoid
- Canonical transformation is:

$$\kappa(u) = \{\mu \in \mathcal{M}_{fin}(A) \mid |\mu| \subseteq u\}$$

- sounds familiar:
 - similar to multiset-Coh
 - similar to Fin

• The previous construction is defined pointwise:

$$\kappa(U) = \{\kappa(u) \mid u \in U\}$$

- ${\ensuremath{\, \bullet }}$ but κ can also be defined on whole sets
 - non-uniform exponentials, inspired by game semantics
 - close to explain phase semantics exponential
 - requirements less strict than the pointwise case (inclusion vs. equality)

- The slack construction is not satisfactory enough:
 - Very few examples from the litterature
 - Still a lot of junk lying around
- But we did not reach our classical examples yet.
- We forgot a requirement: the **closedness** of (counter-)proofs sets by bi-orthogonality
- Worse is better !

Tight category

The tight category \mathbb{T} is the **restriction** of \mathbb{S} to objects of the form $(R, U^{\perp\perp}, U^{\perp}).$

200

```
Tight category
The tight category \mathbb{T} is the restriction of \mathbb{S} to objects of the form
(R, U^{\perp \perp}, U^{\perp}).
```

In a tight category, the set of counter-proofs is entirely defined by the set of proofs, and conversely.

Sar

A bit of polarization

Polarized objects

We define the class ${\mathbb P}$ of positive objects which are of the form

 (R, U, U^{\perp})

and dually, the class ${\mathbb N}$ of negative objects:

 (R, X^{\perp}, X)

Shifts

We pose:

Pierre-Marie Pédrot (PiR2)

23/11/2011 25 / 35

The Meaning of Life, part XLII

Theorem

Positive connectives are positive (and dually), that is:

 $\downarrow 1 = 1$

$$\bullet \downarrow (A \otimes B) = \downarrow A \otimes \downarrow B$$

•
$$\downarrow 0 = 0$$

$$\bullet \downarrow (A \oplus B) = \downarrow A \oplus \downarrow B$$

(In particular, exponentials are **not** polarized.)

Remark

This implies that \mathbb{P} is stable by positive connectives.

Pierre-Marie Pédrot (PiR2)

< 回 ト < 三 ト < 三

A nice drawing (or: why is linear logic depolarized)

Pierre-Marie Pédrot (PiR2)

Э 23/11/2011 27 / 35

990

To stay in the tight category, we need to dual-close everyone out:

•
$$1_{\mathbb{T}} := \uparrow 1_{\mathbb{S}} \text{ and } \perp_{\mathbb{T}} := \downarrow \perp_{\mathbb{S}}$$

• $A \otimes_{\mathbb{T}} B := \uparrow (A \otimes_{\mathbb{S}} B) \text{ and } A \mathscr{D}_{\mathbb{T}} B := \downarrow (A \mathscr{D}_{\mathbb{S}} B)$
• $0_{\mathbb{T}} := \uparrow 0_{\mathbb{S}} \text{ and } \top_{\mathbb{T}} := \downarrow \top_{\mathbb{S}}$
• $A \oplus_{\mathbb{T}} B := \uparrow (A \oplus_{\mathbb{S}} B) \text{ and } A \&_{\mathbb{T}} B := \downarrow (A \&_{\mathbb{S}} B)$
• $!_{\mathbb{T}} A := \uparrow \downarrow !_{\mathbb{S}} A \text{ and } ?_{\mathbb{T}} A := \downarrow \uparrow ?_{\mathbb{S}} A$

Theorem

 $\mathbb T$ is a model of linear logic (and this class of models is complete).

- 一回 ト - 4 三 ト - 4 三

Now we can describe our three leading examples through tight categories.

- Coherent spaces is the tight category over Rel with $u\perp_{{\bf Coh}}x\equiv |u\cap x|\leq 1$
- Phase semantics on (\mathcal{M}, \bot) is the tight category over the one-object category $C_{\mathcal{M}}$ with the \bot -focussed orthogonality
- Finiteness spaces is the tight category over Rel with $u\perp_{\mathbf{Fin}} x\equiv |u\cap x|<\infty$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Shifts are embedded with nice categorical properties

- \downarrow is a comonad (and \uparrow a monad)
- $\, \bullet \,$ Positive objects are exactly co-algebras of $\downarrow \,$
- Well known adjunctions from game semantics

$$\mathbb{P}(P, \downarrow A) \cong \mathbf{C}^+(P, A)$$
$$\mathbb{N}(\uparrow A, N) \cong \mathbf{C}^-(A, N)$$

- \bullet Unclear relationship between \mathbb{T}_1 and \mathbb{T}_2 when $\bot^1 \neq \bot^2$
 - In Rel with $\perp_{\mathbf{Coh}} \subseteq \perp_{\mathbf{Fin}}$: Hyvernat's functor $\Phi : \mathbf{Coh} \to \mathbf{Fin}$

Subtypes

For any base type R, there is a natural order on the glued types:

$$(R, U_1, X_1) \le (R, U_2, X_2) := U_1 \subseteq U_2 \land X_2 \subseteq X_1$$

With this order, R-types are a complete lattice and connectives have the expected variance.

I = E = 4

Currently trying to integrate dependent types in Linear Logic.

- Intuition suggests that
 - $\Sigma x: A.B$ is a dependent version of \otimes
 - $\Pi x : A.B$ is a dependent version of \multimap
 - in particular $\Pi x : A.B := (\Sigma x.A.B^*)^*$
 - In a polarized setting:

$$u \otimes v \Vdash^{p} \Sigma x : A.B := u \Vdash^{p} A \wedge v \Vdash^{p} B[u]$$
$$z \Vdash^{o} \Sigma x : A.B := \forall u \Vdash^{p} A, z[u] \Vdash^{o} B[u]$$

- More natural to have a symmetrical dependence $x : A \ \Im \ y : B$
- A linear equality type: $(R, \{u\}, \{u\}^{\perp})$

- A handy syntax for linear logic does not exist yet
 - I do not want to work with ludics...
 - onor with proofnets!
 - $\bar{\lambda}\mu\tilde{\mu}$ -like systems are hard to manipulate
- I lied: phase semantics is only a degeneracy of double-glueing
 - $\rightarrow\,$ it is proof-irrelevant, every morphism is collapsed onto $1\,$
- What is the exact relationship between reduction/conversion and shifts?
 - \uparrow is a sort of lazy constructor
 - o conversion only at elimination?

- A powerful construction
 - Instanciates many interesting models
- A bit too abstract (usine à gaz ?)
- Not very useful in the intuitionnistic case
- A tool to design new models from scratch
 - that capture interesting behaviours

Scribitur ad narrandum, non ad probandum

Thank you for listening, folks.

Pierre-Marie Pédrot (PiR2)

Double-glueing and orthogonality

23/11/2011 35 / 35