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Introduction

Linear logic (∼ 1986): a fruitful decomposition of logic

Double-glueing: Hyland and Schalk (2002)

A unified framework inspired from realizability

Better understanding of constructions underlying LL models
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Orthogonality

A central technique used throughout this developpement: orthogonality.

Definition

Let R ⊆ A×B be a relation. We note a ⊥ b := aRb. For any a ⊆ A, we
define a⊥ ⊆ B:

a⊥ := {b | ∀a ∈ a, a ⊥ b}

Usual properties

a ⊆ a⊥⊥

a ⊆ a′ ⇒ a′⊥ ⊆ a⊥

a⊥⊥⊥ = a⊥
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Models from the book: Coherent spaces (Historical)

Coherent spaces are a historical model of LL designed by Girard.

Historical definition

A coherent space is a pair R = (|R|,¨R) where ¨R is a reflexive relation
on |R|.

More structure

R⊗ S := (|R| × |S|, . . .)
R& S := (|R| ] |S|, . . .)

!R := (Mf (|R|), . . .)
. . .
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Models from the book: Coherent spaces (Modern)

Folklore definition

For u, v ⊆ |R|, we pose u ⊥ v whenever |u ∩ v| ≤ 1.
A coherent space is a pair R = (|R|, CR) where CR ⊆ P(|R|), called the
set of cliques of R is s.t. CR = CR⊥⊥.

Structure

R⊥ := (|R|, C⊥R )

R⊗ S := (|R| × |S|, (CR · CS)⊥⊥)

R& S := (|R| ] |S|, CR × CS)

!R := (Mf (|R|),Mf (CR)⊥⊥)
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Models from the book: Finiteness spaces

Finiteness spaces are a more recent LL model, and in particular of
differential LL.

Finiteness spaces

We pose u ⊥ v whenever u ∩ v is finite. A finiteness space is a pair
R = (|R|,FR) where FR ⊆ P(|R|), called the set of finitary sets of R, is
s.t. FR = FR

⊥⊥

Structure

R⊥ := (|R|,F⊥R )

R⊗ S := (|R| × |S|, (FR · FS)⊥⊥)

R& S := (|R| ] |S|,FR ×FS)

!R := (Mf (|R|),Mf (FR)⊥⊥)
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Models from the book: Phase semantics

Phase semantics is another historical (but this time complete) model of LL.

Phase semantics

Let M be a commutative monoid and ‚ ⊆M a pole. We pose x ⊥ y
whenever xy ∈‚. A fact is a subset F ⊆M s.t. F = F⊥⊥.

Structure

E⊥ := E⊥

E ⊗ F := (E · F )⊥⊥

E & F := E ∩ F
!E := (E ∩ {1}⊥⊥ ∩K)⊥⊥
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Reverse-engineering

Coherence Finiteness Phase

Base structure Relations Relations Monoid

Topping Cliques Finitary sets Facts

Orthogonality |x ∩ y| ≤ 1 |x ∩ y| <∞ x · y ∈‚

R⊥ C⊥R F⊥R R⊥

1 {∗}⊥⊥ {∗}⊥⊥ {1}⊥⊥

R⊗ S (CR · CS)⊥⊥ (FR · FS)⊥⊥ (R · S)⊥⊥

R& S CR × CS FR ×FS R ∩ S
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Reverse-engineering

We can detect a common pattern in the previous examples.

The objects are two-parts:

an underlying structure (a set, a monoid, ...)
additional information (clique, facts, finitary sets)

A notion of orthogonality over this information

restriction to closed sets A = A⊥⊥

Morphisms are underlying morphisms (a relation, an element)
preserving orthogonality properties

Axiomatizing this properties permits to define the double-glueing
construction.
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Double-glueing: general idea

Let us consider any model. With much handwaving:

Our new formulas will be triples (R,U,X) where:

R is an formula of the base model
U is an abstract set of proofs
X is an abstract set of counter-proofs

Interpretations of (U,X) ` (V, Y ) will be

elements from the underlying model
preserving proofs (by application)
anti-preserving counter-proofs (by co-application)

With enough provisos, we can lift any structure from the base model

Nothing added, jush refining things up
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Pierre-Marie Pédrot (PiR2) Double-glueing and orthogonality 23/11/2011 11 / 35



Prerequisites

In the following, we consider:

C a (categorical) model of (a subsystem of) LL

⊥ ∈ C a return type

⊥R ⊆ C(1, R)×C(R,⊥) a family of orthogonalities

Pierre-Marie Pédrot (PiR2) Double-glueing and orthogonality 23/11/2011 12 / 35



The practical case: slack category

We define the slack category S as follows:

Objects are triples A = (R,U,X) where

R ∈ C
U ⊆ C(1, R)  proofs of A: u 
p A
X ⊆ C(R,⊥)  counter-proofs of A: x 
o A
U ⊥ X

Morphisms f : S(A,B) are f : C(R,S) s.t.

∀u 
p A, u; f 
p B (i.e. f(U) ⊆ V )
∀y 
o B, f ; y 
o A (i.e. f−1(Y ) ⊆ X)
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Examples of orthogonalities

In any category, let ‚ ⊆ C(1,⊥) and pose u ⊥ x whenever u;x ∈‚
These are the focussed orthogonalities
The best case for compatibility properties

In the category Rel of sets and relations:

Rel(1, R) ∼= Rel(R,⊥) ∼= P(R)
u ⊥ x whenever u ∩ x at most a singleton
u ⊥ x whenever u ∩ x is finite
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Lifting the structure: general case

If C has some structure one can transport it onto S:

(R,U,X) ∗ (S, V, Y ) ≡ (R ∗ S,W,Z)

We need to define W and Z accordingly!

in particular W ⊥ Z

the morphisms associated to ∗ may be lifted to S too

provided some well-behavedness conditions on ⊥
... and S shall inherit the structure from C for free!
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Lifting the structure: Additives

Lifting the additives is the easy part: as in the intuitionnistic case!

>1 
p > 0⊥ 
o 0

u1 
p A1 u2 
p A2

〈u1 | u2〉 
p A1 &A2

xi 
o Ai

πi;xi 
o A1 &A2

ui 
p Ai

ui; ιi 
p A1 ⊕A2

x1 
o A1 x2 
o A2

[x1 | x2] 
o A1 ⊕A2
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Lifting the structure: Multiplicatives

Multiplicatives are hybrid disjunction/conjunction: lifting is asymmetric...

id1 
p 1
id1 ⊥ χ
χ 
o 1

u1 
p A1 u2 
p A2

u1 ⊗ u2 
p A1 ⊗A2

∀ui 
p Ai, z[ui] 
o Aj

z 
o A1 ⊗A2

∀u 
p A, u;w 
p B ∀y 
o B, w; y 
o A

ŵ 
p A( B

u 
p A y 
o B

u · y 
o A( B

u∗ 
o A∗

u 
p A
x∗ 
p A∗

x 
o A
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Remark: To realizability fanboys

In intuitionnistic realizability:

f 
 A⇒ B := ∀u 
 A, u :: f 
 B

Here, a totally symmetric system

f 
 A( B :=

{
∀u 
 A, u :: f 
 B
∀y 
 B∗, f :: y 
 A∗

This comes from the absence of double-orthogonal closure.
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Remark: Compatibility requirements

Actually we need some requirements on the orthogonality to preserve
structure. (But this is ugly.)

Whenever it is focussed, everything works

Coherent and finiteness orthogonalities do work too
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Lifting the structure: Exponentials

We need a compatible transformation κR : C(1, R)→ C(1, !R)

There is no unicity of such a transformation...

yet a canonical one: κ(u) = 1
m−→ !1

!u−→ !R

u 
p A
κ(u) 
p !A

x 
o A
ε;x 
o !A

χ 
o 1

e;χ 
o !A

z 
o !A⊗ !A
d; z 
o !A

where ε : C(!R,R), e : C(!R, 1) and d : C(!R, !R⊗ !R).
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An Enlighting Example

In Rel, take !A =Mfin(A)

free commutative comonoid

Canonical transformation is:

κ(u) = {µ ∈Mfin(A) | |µ| ⊆ u}

sounds familiar:

similar to multiset-Coh
similar to Fin
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Non-uniform exponentials

The previous construction is defined pointwise:

κ(U) = {κ(u) | u ∈ U}

but κ can also be defined on whole sets

non-uniform exponentials, inspired by game semantics
close to explain phase semantics exponential
requirements less strict than the pointwise case (inclusion vs. equality)
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Towards tight categories

The slack construction is not satisfactory enough:

Very few examples from the litterature
Still a lot of junk lying around

But we did not reach our classical examples yet.

We forgot a requirement: the closedness of (counter-)proofs sets by
bi-orthogonality

Worse is better !
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Tight categories

Tight category

The tight category T is the restriction of S to objects of the form
(R,U⊥⊥, U⊥).

In a tight category, the set of counter-proofs is entirely defined by the set
of proofs, and conversely.
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A bit of polarization

Polarized objects

We define the class P of positive objects which are of the form

(R,U,U⊥)

and dually, the class N of negative objects:

(R,X⊥, X)

Shifts

We pose:

´(R,U,X) := (R,U,U⊥) ∈ P
ˆ(R,U,X) := (´(R,U,X)∗)∗ = (R,X⊥, X) ∈ N
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The Meaning of Life, part XLII

Theorem

Positive connectives are positive (and dually), that is:

´1 = 1

´(A⊗B) = ´A⊗ ´B
´0 = 0

´(A⊕B) = ´A⊕ ´B
(In particular, exponentials are not polarized.)

Remark

This implies that P is stable by positive connectives.

Pierre-Marie Pédrot (PiR2) Double-glueing and orthogonality 23/11/2011 26 / 35



A nice drawing (or: why is linear logic depolarized)
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Tight category and lifting

To stay in the tight category, we need to dual-close everyone out:

1T := ˆ1S and ⊥T := ´⊥S

A⊗T B := ˆ(A⊗S B) and A`T B := ´(A`S B)

0T := ˆ0S and >T := ´>S

A⊕T B := ˆ(A⊕S B) and A&T B := ´(A&S B)

!TA := ˆ´!SA and ?TA := ´ˆ?SA

Theorem

T is a model of linear logic (and this class of models is complete).
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Revisiting our models

Now we can describe our three leading examples through tight categories.

Coherent spaces is the tight category over Rel with
u ⊥Coh x ≡ |u ∩ x| ≤ 1

Phase semantics on (M,‚) is the tight category over the one-object
category CM with the ‚-focussed orthogonality

Finiteness spaces is the tight category over Rel with
u ⊥Fin x ≡ |u ∩ x| <∞
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Structure for free

Shifts are embedded with nice categorical properties

´ is a comonad (and ˆ a monad)
Positive objects are exactly co-algebras of ´
Well known adjunctions from game semantics

P(P, ´A) ∼= C+(P,A)
N(ˆA,N) ∼= C−(A,N)

Unclear relationship between T1 and T2 when ⊥1 6= ⊥2

In Rel with ⊥Coh ⊆ ⊥Fin: Hyvernat’s functor Φ : Coh→ Fin
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Subtyping

Subtypes

For any base type R, there is a natural order on the glued types:

(R,U1, X1) ≤ (R,U2, X2) := U1 ⊆ U2 ∧X2 ⊆ X1

With this order, R-types are a complete lattice and connectives have the
expected variance.
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Dependent types (WIP)

Currently trying to integrate dependent types in Linear Logic.

Intuition suggests that

Σx : A.B is a dependent version of ⊗
Πx : A.B is a dependent version of (
in particular Πx : A.B := (Σx.A.B∗)∗

In a polarized setting:

u⊗ v 
p Σx : A.B := u 
p A ∧ v 
p B[u]

z 
o Σx : A.B := ∀u 
p A, z[u] 
o B[u]

More natural to have a symmetrical dependence x : A` y : B

A linear equality type: (R, {u}, {u}⊥)
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Open problems

A handy syntax for linear logic does not exist yet

I do not want to work with ludics...
nor with proofnets!
λ̄µµ̃-like systems are hard to manipulate

I lied: phase semantics is only a degeneracy of double-glueing

→ it is proof-irrelevant, every morphism is collapsed onto 1

What is the exact relationship between reduction/conversion and
shifts?

ˆ is a sort of lazy constructor
conversion only at elimination?
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Conclusion

A powerful construction

Instanciates many interesting models

A bit too abstract (usine à gaz ?)

Not very useful in the intuitionnistic case

A tool to design new models from scratch

that capture interesting behaviours
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Scribitur ad narrandum, non ad probandum

Thank you for listening, folks.
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