
Pierre-Marie Pédrot

INRIA

2023/10/17

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 1 / 20

Today’s Focus

Church’s thesis!

All reasonable computational models are equivalent.

The internal Church thesis in a theory T !

From within T , “all functions N → N are computable”.

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 2 / 20

Today’s Focus

Church’s thesis!

All reasonable computational models are equivalent.

The internal Church thesis in a theory T !

From within T , “all functions N → N are computable”.

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 2 / 20

Today’s Focus

Church’s thesis!

All reasonable computational models are equivalent.

The internal Church thesis in a theory T !

From within T , “all functions N → N are computable”.

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 2 / 20

Horrible Encodings Ahead

Let’s fix a simple type theory T containing arithmetic.

⇝ One can define the (decidable) Turing predicate:

p : N n : N k : N
T(p,n, k) : Prop

“T(p,n, k) holds iff the Turing machine p returns n in ≤ k steps.”

[NB: for readability, I’ll henceforth write P := N to indicate numbers coding programs]

⇝ We say that f : N → N is computed by p : P, written calc f p when

⊢T ∀n : N. ∃k : N.T(p • n, f n, k)

Internal CT
T validates CT if ⊢T ∀f : N → N. ∃p : P. calc f p

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 3 / 20

Horrible Encodings Ahead

Let’s fix a simple type theory T containing arithmetic.

⇝ One can define the (decidable) Turing predicate:

p : N n : N k : N
T(p,n, k) : Prop

“T(p,n, k) holds iff the Turing machine p returns n in ≤ k steps.”

[NB: for readability, I’ll henceforth write P := N to indicate numbers coding programs]

⇝ We say that f : N → N is computed by p : P, written calc f p when

⊢T ∀n : N. ∃k : N.T(p • n, f n, k)

Internal CT
T validates CT if ⊢T ∀f : N → N. ∃p : P. calc f p

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 3 / 20

Horrible Encodings Ahead

Let’s fix a simple type theory T containing arithmetic.

⇝ One can define the (decidable) Turing predicate:

p : N n : N k : N
T(p,n, k) : Prop

“T(p,n, k) holds iff the Turing machine p returns n in ≤ k steps.”

[NB: for readability, I’ll henceforth write P := N to indicate numbers coding programs]

⇝ We say that f : N → N is computed by p : P, written calc f p when

⊢T ∀n : N. ∃k : N.T(p • n, f n, k)

Internal CT
T validates CT if ⊢T ∀f : N → N. ∃p : P. calc f p

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 3 / 20

Horrible Encodings Ahead

Let’s fix a simple type theory T containing arithmetic.

⇝ One can define the (decidable) Turing predicate:

p : N n : N k : N
T(p,n, k) : Prop

“T(p,n, k) holds iff the Turing machine p returns n in ≤ k steps.”

[NB: for readability, I’ll henceforth write P := N to indicate numbers coding programs]

⇝ We say that f : N → N is computed by p : P, written calc f p when

⊢T ∀n : N. ∃k : N.T(p • n, f n, k)

Internal CT
T validates CT if ⊢T ∀f : N → N. ∃p : P. calc f p

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 3 / 20

Alonzo in Maŝinmondo

CT is a weird principle!

Implies a mechanical world
A staple of Russian constructivism
In presence of choice, incompatible with funext
In presence of choice, incompatible with classical logic

A fleeting panic
Is it actually consistent?

Ja.

(Mumble something about The Effective Topos™ being a model of HOL + CT.)

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 4 / 20

Alonzo in Maŝinmondo

CT is a weird principle!

Implies a mechanical world
A staple of Russian constructivism
In presence of choice, incompatible with funext
In presence of choice, incompatible with classical logic

A fleeting panic
Is it actually consistent?

Ja.

(Mumble something about The Effective Topos™ being a model of HOL + CT.)

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 4 / 20

Alonzo in Maŝinmondo

CT is a weird principle!

Implies a mechanical world
A staple of Russian constructivism
In presence of choice, incompatible with funext
In presence of choice, incompatible with classical logic

A fleeting panic
Is it actually consistent?

Ja.

(Mumble something about The Effective Topos™ being a model of HOL + CT.)

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 4 / 20

We Need to Go Deeper

A Legitimate Question

“Can we extend Martin-Löf’s Type Theory with CT?”

An Even More Legitimate Question

“Why would I do that?”

This watch does not smell of mustard.
Simple type theory is cool, but a bit old-fashioned and limited
In MLTT, functions are already programs
MLTT + CT is the foundation for synthetic computability

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 5 / 20

We Need to Go Deeper

A Legitimate Question

“Can we extend Martin-Löf’s Type Theory with CT?”

An Even More Legitimate Question

“Why would I do that?”

This watch does not smell of mustard.
Simple type theory is cool, but a bit old-fashioned and limited
In MLTT, functions are already programs
MLTT + CT is the foundation for synthetic computability

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 5 / 20

We Need to Go Deeper

A Legitimate Question

“Can we extend Martin-Löf’s Type Theory with CT?”

An Even More Legitimate Question

“Why would I do that?”

This watch does not smell of mustard.
Simple type theory is cool, but a bit old-fashioned and limited
In MLTT, functions are already programs
MLTT + CT is the foundation for synthetic computability

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 5 / 20

I think, Therefore I merely am

In dependent type theories, existing is a complex matter

Σx : A.B v.s. ∃x : A.B
actual existence mere existence
proof relevant proof-irrelevant
choice built-in no choice a priori

We have not one, but two theses.

CT∃ := Π(f : N → N). ∃p : P. calc f p
CTΣ := Π(f : N → N).Σp : P. calc f p

Due to the lack of choice, CT∃ is known to be consistent in MLTT.

(The Effective Topos™)

Dually, CTΣ is the hallmark of weird crap going on

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 6 / 20

I think, Therefore I merely am

In dependent type theories, existing is a complex matter

Σx : A.B v.s. ∃x : A.B
actual existence mere existence
proof relevant proof-irrelevant
choice built-in no choice a priori

We have not one, but two theses.

CT∃ := Π(f : N → N). ∃p : P. calc f p
CTΣ := Π(f : N → N).Σp : P. calc f p

Due to the lack of choice, CT∃ is known to be consistent in MLTT.

(The Effective Topos™)

Dually, CTΣ is the hallmark of weird crap going on

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 6 / 20

I think, Therefore I merely am

In dependent type theories, existing is a complex matter

Σx : A.B v.s. ∃x : A.B
actual existence mere existence
proof relevant proof-irrelevant
choice built-in no choice a priori

We have not one, but two theses.

CT∃ := Π(f : N → N). ∃p : P. calc f p
CTΣ := Π(f : N → N).Σp : P. calc f p

Due to the lack of choice, CT∃ is known to be consistent in MLTT.

(The Effective Topos™)

Dually, CTΣ is the hallmark of weird crap going on
P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 6 / 20

Second-hand “Quotes” from Anonymous Experts∗∗

∗∗ All these quotes are a pure work of fiction. Serving suggestion. May contain phthalates.

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 7 / 20

Somebody is Wrong on the Internet
Are you seriously kidding me?

In MLTT, functions are already frigging programs!
CTΣ holds externally, it’s called extraction (duh)

for all ⊢ f : N → N there is ⊢ p : P s.t. ⊢ calc f p

It is hence obvious that CTΣ is compatible with MLTT
We just have to handle those pesky open terms!

Only one way out: prove that I am right!

Define an extension of MLTT proving CTΣ

Prove it’s consistent / canonical / strongly normalizing / ...
Formalize this in Coq otherwise nobody believes you

Spoiler alter: we will sketch that in the rest of the talk.

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 8 / 20

Somebody is Wrong on the Internet
Are you seriously kidding me?

In MLTT, functions are already frigging programs!
CTΣ holds externally, it’s called extraction (duh)

for all ⊢ f : N → N there is ⊢ p : P s.t. ⊢ calc f p

It is hence obvious that CTΣ is compatible with MLTT
We just have to handle those pesky open terms!

Only one way out: prove that I am right!

Define an extension of MLTT proving CTΣ

Prove it’s consistent / canonical / strongly normalizing / ...
Formalize this in Coq otherwise nobody believes you

Spoiler alter: we will sketch that in the rest of the talk.

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 8 / 20

Somebody is Wrong on the Internet
Are you seriously kidding me?

In MLTT, functions are already frigging programs!
CTΣ holds externally, it’s called extraction (duh)

for all ⊢ f : N → N there is ⊢ p : P s.t. ⊢ calc f p

It is hence obvious that CTΣ is compatible with MLTT
We just have to handle those pesky open terms!

Only one way out: prove that I am right!

Define an extension of MLTT proving CTΣ

Prove it’s consistent / canonical / strongly normalizing / ...
Formalize this in Coq otherwise nobody believes you

Spoiler alter: we will sketch that in the rest of the talk.

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 8 / 20

Somebody is Wrong on the Internet
Are you seriously kidding me?

In MLTT, functions are already frigging programs!
CTΣ holds externally, it’s called extraction (duh)

for all ⊢ f : N → N there is ⊢ p : P s.t. ⊢ calc f p

It is hence obvious that CTΣ is compatible with MLTT
We just have to handle those pesky open terms!

Only one way out: prove that I am right!

Define an extension of MLTT proving CTΣ

Prove it’s consistent / canonical / strongly normalizing / ...
Formalize this in Coq otherwise nobody believes you

Spoiler alter: we will sketch that in the rest of the talk.
P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 8 / 20

“MLTT”
We define “MLTT” as the extension of MLTT with two new primitives.

M,N := . . . | ϙ M | Ϙ M N

Γ ⊢ M : N → N
Γ ⊢ ϙ M : P

Γ ⊢ M : N → N Γ ⊢ N : N
Γ ⊢ Ϙ M N : eval (ϙ M) N (M N)

where
eval : P → N → N → □
eval P N V ∼ program P applied to N normalizes to V

The system is parameterized by a computation model, given by:
A meta-function ⌈·⌉ : term ⇒ N (your favourite Gödel numbering)

An MLTT function ⊢ run : P → N → P(N)

where P(A) := N → option A is the partiality monad
and eval is derived from run through standard combinators

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 9 / 20

“MLTT”
We define “MLTT” as the extension of MLTT with two new primitives.

M,N := . . . | ϙ M | Ϙ M N

Γ ⊢ M : N → N
Γ ⊢ ϙ M : P

Γ ⊢ M : N → N Γ ⊢ N : N
Γ ⊢ Ϙ M N : eval (ϙ M) N (M N)

where
eval : P → N → N → □
eval P N V ∼ program P applied to N normalizes to V

The system is parameterized by a computation model, given by:
A meta-function ⌈·⌉ : term ⇒ N (your favourite Gödel numbering)

An MLTT function ⊢ run : P → N → P(N)

where P(A) := N → option A is the partiality monad
and eval is derived from run through standard combinators

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 9 / 20

“MLTT”
We define “MLTT” as the extension of MLTT with two new primitives.

M,N := . . . | ϙ M | Ϙ M N

Γ ⊢ M : N → N
Γ ⊢ ϙ M : P

Γ ⊢ M : N → N Γ ⊢ N : N
Γ ⊢ Ϙ M N : eval (ϙ M) N (M N)

where
eval : P → N → N → □
eval P N V ∼ program P applied to N normalizes to V

The system is parameterized by a computation model, given by:
A meta-function ⌈·⌉ : term ⇒ N (your favourite Gödel numbering)

An MLTT function ⊢ run : P → N → P(N)

where P(A) := N → option A is the partiality monad
and eval is derived from run through standard combinators

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 9 / 20

The Hard Part

What is the hard part?

Conversion!

Γ ⊢ M : B Γ ⊢ A ≡ B
Γ ⊢ M : A

In MLTT the type system embeds the runtime.

We need to ensure that convertible terms are quoted to the same number.

Remember that CTΣ is inconsistent with funext.
Thankfully conversion is intensional in MLTT...

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 10 / 20

The Hard Part

What is the hard part?

Conversion!

Γ ⊢ M : B Γ ⊢ A ≡ B
Γ ⊢ M : A

In MLTT the type system embeds the runtime.

We need to ensure that convertible terms are quoted to the same number.

Remember that CTΣ is inconsistent with funext.
Thankfully conversion is intensional in MLTT...

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 10 / 20

The Hard Part

What is the hard part?

Conversion!

Γ ⊢ M : B Γ ⊢ A ≡ B
Γ ⊢ M : A

In MLTT the type system embeds the runtime.

We need to ensure that convertible terms are quoted to the same number.

Remember that CTΣ is inconsistent with funext.
Thankfully conversion is intensional in MLTT...

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 10 / 20

The Hard Part

What is the hard part?

Conversion!

Γ ⊢ M : B Γ ⊢ A ≡ B
Γ ⊢ M : A

In MLTT the type system embeds the runtime.

We need to ensure that convertible terms are quoted to the same number.

Remember that CTΣ is inconsistent with funext.
Thankfully conversion is intensional in MLTT...

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 10 / 20

Naive Solution

We need to ensure that convertible terms are quoted to the same number.

Assume we can magically choose one representative per convertibility class.

Γ ⊢ M ≡ N : N → N iff ⌈ε(M)⌉ = ⌈ε(N)⌉

Unfortunately, this is not going to be stable by substitution.

ε(M{x := N}) ̸= ε(M){x := ε(N)}

Immediate breakage of conversion!

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 11 / 20

Naive Solution

We need to ensure that convertible terms are quoted to the same number.

Assume we can magically choose one representative per convertibility class.

Γ ⊢ M ≡ N : N → N iff ⌈ε(M)⌉ = ⌈ε(N)⌉

Unfortunately, this is not going to be stable by substitution.

ε(M{x := N}) ̸= ε(M){x := ε(N)}

Immediate breakage of conversion!

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 11 / 20

The major insight for “MLTT”

Open terms are a lie! It's a conspiracy from Big Variable!

(Source: X.)

ϙ and Ϙ will only compute on (deep normal) closed terms

Γ ⊢ M ≡ N : N → N

Γ ⊢ ϙ M ≡ ϙ N : P

Γ ⊢ M ≡ M′ : N → N Γ ⊢ N ≡ N′ : N

Γ ⊢ Ϙ M N ≡ Ϙ M′ N′ : eval (ϙ M) N (M N)

Γ ⊢ M : N → N M closed dnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

Γ ⊢ M : N → N M closed dnf n ∈ N Γ ⊢ P : eval ⌈M⌉ n (M n)
Γ ⊢ Ϙ M n ≡ P : eval ⌈M⌉ n (M n)

This One Weird Trick
Closed terms are stable by substitution!

(Some additional technicalities to validate η-laws.)

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 12 / 20

The major insight for “MLTT”

Open terms are a lie! It's a conspiracy from Big Variable!

(Source: X.)

ϙ and Ϙ will only compute on (deep normal) closed terms

Γ ⊢ M ≡ N : N → N

Γ ⊢ ϙ M ≡ ϙ N : P

Γ ⊢ M ≡ M′ : N → N Γ ⊢ N ≡ N′ : N

Γ ⊢ Ϙ M N ≡ Ϙ M′ N′ : eval (ϙ M) N (M N)

Γ ⊢ M : N → N M closed dnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

Γ ⊢ M : N → N M closed dnf n ∈ N Γ ⊢ P : eval ⌈M⌉ n (M n)
Γ ⊢ Ϙ M n ≡ P : eval ⌈M⌉ n (M n)

This One Weird Trick
Closed terms are stable by substitution!

(Some additional technicalities to validate η-laws.)

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 12 / 20

The major insight for “MLTT”

Open terms are a lie! It's a conspiracy from Big Variable!

(Source: X.)

ϙ and Ϙ will only compute on (deep normal) closed terms

Γ ⊢ M ≡ N : N → N

Γ ⊢ ϙ M ≡ ϙ N : P

Γ ⊢ M ≡ M′ : N → N Γ ⊢ N ≡ N′ : N

Γ ⊢ Ϙ M N ≡ Ϙ M′ N′ : eval (ϙ M) N (M N)

Γ ⊢ M : N → N M closed dnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

Γ ⊢ M : N → N M closed dnf n ∈ N Γ ⊢ P : eval ⌈M⌉ n (M n)
Γ ⊢ Ϙ M n ≡ P : eval ⌈M⌉ n (M n)

This One Weird Trick
Closed terms are stable by substitution!

(Some additional technicalities to validate η-laws.)

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 12 / 20

The major insight for “MLTT”

Open terms are a lie! It's a conspiracy from Big Variable!

(Source: X.)

ϙ and Ϙ will only compute on (deep normal) closed terms

Γ ⊢ M ≡ N : N → N

Γ ⊢ ϙ M ≡ ϙ N : P

Γ ⊢ M ≡ M′ : N → N Γ ⊢ N ≡ N′ : N

Γ ⊢ Ϙ M N ≡ Ϙ M′ N′ : eval (ϙ M) N (M N)

Γ ⊢ M : N → N M closed dnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

Γ ⊢ M : N → N M closed dnf n ∈ N Γ ⊢ P : eval ⌈M⌉ n (M n)
Γ ⊢ Ϙ M n ≡ P : eval ⌈M⌉ n (M n)

This One Weird Trick
Closed terms are stable by substitution!

(Some additional technicalities to validate η-laws.)

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 12 / 20

The major insight for “MLTT”

Open terms are a lie! It's a conspiracy from Big Variable!

(Source: X.)

ϙ and Ϙ will only compute on (deep normal) closed terms

Γ ⊢ M ≡ N : N → N

Γ ⊢ ϙ M ≡ ϙ N : P

Γ ⊢ M ≡ M′ : N → N Γ ⊢ N ≡ N′ : N

Γ ⊢ Ϙ M N ≡ Ϙ M′ N′ : eval (ϙ M) N (M N)

Γ ⊢ M : N → N M closed dnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

Γ ⊢ M : N → N M closed dnf n ∈ N Γ ⊢ P : eval ⌈M⌉ n (M n)
Γ ⊢ Ϙ M n ≡ P : eval ⌈M⌉ n (M n)

This One Weird Trick
Closed terms are stable by substitution!

(Some additional technicalities to validate η-laws.)

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 12 / 20

The major insight for “MLTT”

Open terms are a lie! It's a conspiracy from Big Variable!

(Source: X.)

ϙ and Ϙ will only compute on (deep normal) closed terms

Γ ⊢ M ≡ N : N → N

Γ ⊢ ϙ M ≡ ϙ N : P

Γ ⊢ M ≡ M′ : N → N Γ ⊢ N ≡ N′ : N

Γ ⊢ Ϙ M N ≡ Ϙ M′ N′ : eval (ϙ M) N (M N)

Γ ⊢ M : N → N M closed dnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

Γ ⊢ M : N → N M closed dnf n ∈ N Γ ⊢ P : eval ⌈M⌉ n (M n)
Γ ⊢ Ϙ M n ≡ P : eval ⌈M⌉ n (M n)

This One Weird Trick
Closed terms are stable by substitution!

(Some additional technicalities to validate η-laws.)

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 12 / 20

The major insight for “MLTT”

Open terms are a lie! It's a conspiracy from Big Variable!

(Source: X.)

ϙ and Ϙ will only compute on (deep normal) closed terms

Γ ⊢ M ≡ N : N → N

Γ ⊢ ϙ M ≡ ϙ N : P

Γ ⊢ M ≡ M′ : N → N Γ ⊢ N ≡ N′ : N

Γ ⊢ Ϙ M N ≡ Ϙ M′ N′ : eval (ϙ M) N (M N)

Γ ⊢ M : N → N M closed dnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

Γ ⊢ M : N → N M closed dnf n ∈ N Γ ⊢ P : eval ⌈M⌉ n (M n)
Γ ⊢ Ϙ M n ≡ P : eval ⌈M⌉ n (M n)

This One Weird Trick
Closed terms are stable by substitution!

(Some additional technicalities to validate η-laws.)

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 12 / 20

The major insight for “MLTT”

Open terms are a lie! It's a conspiracy from Big Variable!

(Source: X.)

ϙ and Ϙ will only compute on (deep normal) closed terms

Γ ⊢ M ≡ N : N → N

Γ ⊢ ϙ M ≡ ϙ N : P

Γ ⊢ M ≡ M′ : N → N Γ ⊢ N ≡ N′ : N

Γ ⊢ Ϙ M N ≡ Ϙ M′ N′ : eval (ϙ M) N (M N)

Γ ⊢ M : N → N M closed dnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

Γ ⊢ M : N → N M closed dnf n ∈ N Γ ⊢ P : eval ⌈M⌉ n (M n)
Γ ⊢ Ϙ M n ≡ P : eval ⌈M⌉ n (M n)

This One Weird Trick
Closed terms are stable by substitution!

(Some additional technicalities to validate η-laws.)

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 12 / 20

The Secret Sauce

These functions return hereditarily positive types (aka Σ0
1 formulae)

Γ ⊢ M : N → N M closed dnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

Γ ⊢ M : N → N M closed dnf n ∈ N Γ ⊢ P : eval ⌈M⌉ n (M n)
Γ ⊢ Ϙ M n ≡ P : eval ⌈M⌉ n (M n)

eval : P → N → N → □
eval f n v := Σk : N. step k (run f n) v

step : N → (N → option N) → N → □
step O p v := p O = Some v
step (S k) p v := (p (S k) = None)× (eval k (p ◦ S) v)

These types have canonical “absolute” values!

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 13 / 20

The Secret Sauce

These functions return hereditarily positive types (aka Σ0
1 formulae)

Γ ⊢ M : N → N M closed dnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

Γ ⊢ M : N → N M closed dnf n ∈ N Γ ⊢ P : eval ⌈M⌉ n (M n)
Γ ⊢ Ϙ M n ≡ P : eval ⌈M⌉ n (M n)

eval : P → N → N → □
eval f n v := Σk : N. step k (run f n) v

step : N → (N → option N) → N → □
step O p v := p O = Some v
step (S k) p v := (p (S k) = None)× (eval k (p ◦ S) v)

These types have canonical “absolute” values!

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 13 / 20

The Secret Sauce

These functions return hereditarily positive types (aka Σ0
1 formulae)

Γ ⊢ M : N → N M closed dnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

Γ ⊢ M : N → N M closed dnf n ∈ N Γ ⊢ P : eval ⌈M⌉ n (M n)
Γ ⊢ Ϙ M n ≡ P : eval ⌈M⌉ n (M n)

eval : P → N → N → □
eval f n v := Σk : N. step k (run f n) v

step : N → (N → option N) → N → □
step O p v := p O = Some v
step (S k) p v := (p (S k) = None)× (eval k (p ◦ S) v)

These types have canonical “absolute” values!

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 13 / 20

The Secret Sauce

These functions return hereditarily positive types (aka Σ0
1 formulae)

Γ ⊢ M : N → N M closed dnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

Γ ⊢ M : N → N M closed dnf n ∈ N Γ ⊢ P : eval ⌈M⌉ n (M n)
Γ ⊢ Ϙ M n ≡ P : eval ⌈M⌉ n (M n)

eval : P → N → N → □
eval f n v := Σk : N. step k (run f n) v

step : N → (N → option N) → N → □
step O p v := p O = Some v
step (S k) p v := (p (S k) = None)× (eval k (p ◦ S) v)

These types have canonical “absolute” values!

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 13 / 20

The Basic Model

A variant of Abel’s style NbE model in (small) IR

Type formation is defined inductively: Γ ⊩ A
A ⇒∗

wh N

rN : Γ ⊩ A
A ⇒∗

wh Π(x : X).Y p : Γ ⊩ X q : Γ, x : X ⊩ Y
rΠ p q : Γ ⊩ A

…

Term typedness Γ ⊩ M : A | p is defined by recursion on p : Γ ⊩ A

Γ ⊩ M : N | rN := Γ ⊩ M ∈ N
Γ ⊩ M : Π(x : A).B | rΠ p q :=

Π(ρ : ∆ ≤ Γ). (∆ ⊩ a : A⟨ρ⟩ | p) → ∆ ⊩ M⟨ρ⟩ a : B{ρ, a} | q

M ⇒∗
wh O

Γ ⊩ M ∈ N

M ⇒∗
wh S N Γ ⊩ N ∈ N

Γ ⊩ M ∈ N

Γ ⊢ n : N wne (n)
Γ ⊩ n ∈ N

(ditto for conversion) (+ second layer of validity aka closure by substitution)

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 14 / 20

The Basic Model

A variant of Abel’s style NbE model in (small) IR

Type formation is defined inductively: Γ ⊩ A
A ⇒∗

wh N

rN : Γ ⊩ A
A ⇒∗

wh Π(x : X).Y p : Γ ⊩ X q : Γ, x : X ⊩ Y
rΠ p q : Γ ⊩ A

…

Term typedness Γ ⊩ M : A | p is defined by recursion on p : Γ ⊩ A

Γ ⊩ M : N | rN := Γ ⊩ M ∈ N
Γ ⊩ M : Π(x : A).B | rΠ p q :=

Π(ρ : ∆ ≤ Γ). (∆ ⊩ a : A⟨ρ⟩ | p) → ∆ ⊩ M⟨ρ⟩ a : B{ρ, a} | q

M ⇒∗
wh O

Γ ⊩ M ∈ N

M ⇒∗
wh S N Γ ⊩ N ∈ N

Γ ⊩ M ∈ N

Γ ⊢ n : N wne (n)
Γ ⊩ n ∈ N

(ditto for conversion) (+ second layer of validity aka closure by substitution)

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 14 / 20

The Basic Model

A variant of Abel’s style NbE model in (small) IR

Type formation is defined inductively: Γ ⊩ A
A ⇒∗

wh N

rN : Γ ⊩ A
A ⇒∗

wh Π(x : X).Y p : Γ ⊩ X q : Γ, x : X ⊩ Y
rΠ p q : Γ ⊩ A

…

Term typedness Γ ⊩ M : A | p is defined by recursion on p : Γ ⊩ A

Γ ⊩ M : N | rN := Γ ⊩ M ∈ N
Γ ⊩ M : Π(x : A).B | rΠ p q :=

Π(ρ : ∆ ≤ Γ). (∆ ⊩ a : A⟨ρ⟩ | p) → ∆ ⊩ M⟨ρ⟩ a : B{ρ, a} | q

M ⇒∗
wh O

Γ ⊩ M ∈ N

M ⇒∗
wh S N Γ ⊩ N ∈ N

Γ ⊩ M ∈ N

Γ ⊢ n : N wne (n)
Γ ⊩ n ∈ N

(ditto for conversion) (+ second layer of validity aka closure by substitution)

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 14 / 20

The Basic Model

A variant of Abel’s style NbE model in (small) IR

Type formation is defined inductively: Γ ⊩ A
A ⇒∗

wh N

rN : Γ ⊩ A
A ⇒∗

wh Π(x : X).Y p : Γ ⊩ X q : Γ, x : X ⊩ Y
rΠ p q : Γ ⊩ A

…

Term typedness Γ ⊩ M : A | p is defined by recursion on p : Γ ⊩ A

Γ ⊩ M : N | rN := Γ ⊩ M ∈ N
Γ ⊩ M : Π(x : A).B | rΠ p q :=

Π(ρ : ∆ ≤ Γ). (∆ ⊩ a : A⟨ρ⟩ | p) → ∆ ⊩ M⟨ρ⟩ a : B{ρ, a} | q

M ⇒∗
wh O

Γ ⊩ M ∈ N

M ⇒∗
wh S N Γ ⊩ N ∈ N

Γ ⊩ M ∈ N

Γ ⊢ n : N wne (n)
Γ ⊩ n ∈ N

(ditto for conversion) (+ second layer of validity aka closure by substitution)

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 14 / 20

Some Dust under the Rug

“MLTT” is reduction-free. I didn’t define properly reduction!

For the MLTT fragment, weak-head reduction is standard.
Deep reduction is just iterated weak-head reduction.
In particular, it is deterministic (critical!)

Reduction for ϙ is obvious
Only tricky case is the rule for Ϙ: basically compute the unique fuel

M closed, dnf k smallest integer s.t. run ⌈M⌉ n k ⇓ Some v
Ϙ M n ⇒wh (k, refl, . . . , refl)

Reminder: eval p n v := Σk : N. (run p n O = None)× . . .× (run p n k − 1 = None)×
(run p n k = Some v)

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 15 / 20

Some Dust under the Rug

“MLTT” is reduction-free. I didn’t define properly reduction!

For the MLTT fragment, weak-head reduction is standard.
Deep reduction is just iterated weak-head reduction.
In particular, it is deterministic (critical!)
Reduction for ϙ is obvious

Only tricky case is the rule for Ϙ: basically compute the unique fuel

M closed, dnf k smallest integer s.t. run ⌈M⌉ n k ⇓ Some v
Ϙ M n ⇒wh (k, refl, . . . , refl)

Reminder: eval p n v := Σk : N. (run p n O = None)× . . .× (run p n k − 1 = None)×
(run p n k = Some v)

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 15 / 20

Some Dust under the Rug

“MLTT” is reduction-free. I didn’t define properly reduction!

For the MLTT fragment, weak-head reduction is standard.
Deep reduction is just iterated weak-head reduction.
In particular, it is deterministic (critical!)
Reduction for ϙ is obvious
Only tricky case is the rule for Ϙ: basically compute the unique fuel

M closed, dnf k smallest integer s.t. run ⌈M⌉ n k ⇓ Some v
Ϙ M n ⇒wh (k, refl, . . . , refl)

Reminder: eval p n v := Σk : N. (run p n O = None)× . . .× (run p n k − 1 = None)×
(run p n k = Some v)

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 15 / 20

Comparison with standard NbE
Type interpretation unchanged

No funny business with effects or whatnot
In particular we have the same canonicity properties

Differences with Abel’s model

⇝ annotate reducibility proofs with deep normalization

Γ ⊩ M : A | pA implies M ⇓deep M0 with Γ ⊢ M ≡ M0 : A

⇝ normal / neutral terms generalized into deep and weak-head variants
⇝ extend neutrals to contain quotes blocked on open terms

dnf (M) M not closed
wne (ϙ M)

dnf (M) dnf (N) M or N not closed
wne (Ϙ M N)

... and that’s about it.

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 16 / 20

Comparison with standard NbE
Type interpretation unchanged

No funny business with effects or whatnot
In particular we have the same canonicity properties

Differences with Abel’s model

⇝ annotate reducibility proofs with deep normalization

Γ ⊩ M : A | pA implies M ⇓deep M0 with Γ ⊢ M ≡ M0 : A

⇝ normal / neutral terms generalized into deep and weak-head variants
⇝ extend neutrals to contain quotes blocked on open terms

dnf (M) M not closed
wne (ϙ M)

dnf (M) dnf (N) M or N not closed
wne (Ϙ M N)

... and that’s about it.

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 16 / 20

Comparison with standard NbE
Type interpretation unchanged

No funny business with effects or whatnot
In particular we have the same canonicity properties

Differences with Abel’s model

⇝ annotate reducibility proofs with deep normalization

Γ ⊩ M : A | pA implies M ⇓deep M0 with Γ ⊢ M ≡ M0 : A

⇝ normal / neutral terms generalized into deep and weak-head variants
⇝ extend neutrals to contain quotes blocked on open terms

dnf (M) M not closed
wne (ϙ M)

dnf (M) dnf (N) M or N not closed
wne (Ϙ M N)

... and that’s about it.
P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 16 / 20

The Theorems

We say that the computation model (⌈·⌉, run) is adequate when:
for all M ∈ term and n, r ∈ N, M n ⇓deep r implies there is k ∈ N s.t.

run ⌈M⌉ n k ⇓deep Some r
run ⌈M⌉ n k′ ⇓deep None for all k′ < k

Theorem
If the model is adequate, the logical relation is sound and complete.

In particular, “MLTT” is consistent, enjoys canonicity and normalization.

Theorem (It’s written on the can)
“MLTT” validates CTΣ.

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 17 / 20

The Theorems

We say that the computation model (⌈·⌉, run) is adequate when:
for all M ∈ term and n, r ∈ N, M n ⇓deep r implies there is k ∈ N s.t.

run ⌈M⌉ n k ⇓deep Some r
run ⌈M⌉ n k′ ⇓deep None for all k′ < k

Theorem
If the model is adequate, the logical relation is sound and complete.

In particular, “MLTT” is consistent, enjoys canonicity and normalization.

Theorem (It’s written on the can)
“MLTT” validates CTΣ.

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 17 / 20

The Theorems

We say that the computation model (⌈·⌉, run) is adequate when:
for all M ∈ term and n, r ∈ N, M n ⇓deep r implies there is k ∈ N s.t.

run ⌈M⌉ n k ⇓deep Some r
run ⌈M⌉ n k′ ⇓deep None for all k′ < k

Theorem
If the model is adequate, the logical relation is sound and complete.

In particular, “MLTT” is consistent, enjoys canonicity and normalization.

Theorem (It’s written on the can)
“MLTT” validates CTΣ.

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 17 / 20

Formalization

Based on Adjedj et al. Coq implementation (using small IR)
MLTT + ϙ fully formalized in Coq
The exact theory contains one universe, Π / Σ types with η-laws, ⊥, N, Id

The infrastructure / non-trivial parts are behind me (deep reduction!)

Adding Ϙ relies on the same ingredients
No expected surprise, just tedious proofs on untyped syntax
Nightmare stuff I’m not gonna prove: the existence of adequate models

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 18 / 20

Formalization

Based on Adjedj et al. Coq implementation (using small IR)
MLTT + ϙ fully formalized in Coq
The exact theory contains one universe, Π / Σ types with η-laws, ⊥, N, Id

The infrastructure / non-trivial parts are behind me (deep reduction!)
Adding Ϙ relies on the same ingredients
No expected surprise, just tedious proofs on untyped syntax
Nightmare stuff I’m not gonna prove: the existence of adequate models

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 18 / 20

Conclusion

MLTT + CTΣ is obviously consistent
The model is a trivial adaptation of standard NbE models
Open terms do not exist. I have met them.
Partially proved in Coq
I must be missing something from our anonymous experts

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 19 / 20

Scribitur ad narrandum, non ad probandum

Thanks for your attention.

P.-M. Pédrot (INRIA) A quote? In my type theory? 12/06/2023 20 / 20

