Pierre-Marie Pédrot

Max Planck Institute for Software Systems

EUTypes 2018
24th January 2018

«O>» < Fr «=)r «=)» DA™

S

CIC: « Constructions dans un monde qui bouge »

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy logical system.

o Not just higher-order logic, not just first-order logic
o First class notion of computation and crazy inductive types

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018

2/ 26

CIC: « Constructions dans un monde qui bouge »

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy logical system.

o Not just higher-order logic, not just first-order logic

o First class notion of computation and crazy inductive types

CIC, a very powerful programming language.
o Finest types to describe your programs

o No clear phase separation between runtime and compile time

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018

2/ 26

CIC: « Constructions dans un monde qui bouge »

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy logical system.

o Not just higher-order logic, not just first-order logic

o First class notion of computation and crazy inductive types

CIC, a very powerful programming language.
o Finest types to describe your programs

o No clear phase separation between runtime and compile time

The Pinnacle of the Curry-Howard correspondence

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018

2/ 26

«O> <Fr o« o

«O> <Fr o« -

An Effective Object

One implementation to rule them all...

]
Many big developments using it for computer-checked proofs.

o Mathematics: Four colour theorem, Feit-Thompson, Unimath...
o Computer Science: CompCert, VST, RustBelt...

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018 3 /26

Several flags tweaking the kernel:

o Impredicative Set
o Type-in-type
o Indices Matter

o Cumulative inductive types

«O> «Fr «=»

The CIC Tribe

Actually not quite one single theory.

Several flags tweaking the kernel:

Impredicative Set
Type-in-type

o
Qo
o Indices Matter
Qo

Cumulative inductive types

o ...

The Many Calculi of Inductive Constructions.

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018

4 /26

«O> <Fr o« o

The claffical fet-theory pole:
o Excluded middle, UIP, choice

Opersorion 4 Operator epso

detntedescription. T

'

i p-mmn.. context

Axiomof mu.am

Not excuded-midde

1 propostionl context

mnmmm

) Vonctionslextensionaity
hwmnm-ﬂkwtmy

mmmm sonaliy

u.,.mmyx

mmm
Dy Imiw/
vk

Qs s ot oty on 5
Ot ety s on

AT —

Karance by subsitaion o eflesivityproofs o cqualty o A

«O>r «Fr o«

it

.

a
it
v

DA

In the Axiom Jungle

A crazy amount of axioms used in the wild!

The claffical fet-theory pole:
o Excluded middle, UIP, choice
The EXTENSIONAL pole:

o Funext, Propext, Bisim-is-eq

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018 5/ 26

In the Axiom Jungle

A crazy amount of axioms used in the wild!

The claffical fet-theory pole:

o Excluded middle, UIP, choice
The EXTENSIONAL pole:

o Funext, Propext, Bisim-is-eq
The uni alent pole:

o Unlvalence, what else? « A mathematician is a device for turning
toruses into equalities (up to homotopy). »

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018 5/ 26

In the Axiom Jungle

A crazy amount of axioms used in the wild!

The claffical fet-theory pole:

o Excluded middle, UIP, choice
The EXTENSIONAL pole:

o Funext, Propext, Bisim-is-eq
The uni alent pole:

o Univalence, what else?
The exoric pole:

o Anti-classical axioms (?77)

aQ >

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018 5/ 26

In the Axiom Jungle

A crazy amount of axioms used in the wild!

The claffical fet-theory pole:

o Excluded middle, UIP, choice
The EXTENSIONAL pole:

o Funext, Propext, Bisim-is-eq
The uni alent pole:

o Univalence, what else?
The exoric pole:

o Anti-classical axioms (?77)

Varying degrees of compatibility.

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018

5/ 26

Reality Check

Theorem 0
Axioms Suck.

P-M. Pédrot (MPI-SWS)

Proof Assistants for Free

DA
24/01/2018 6 /26

Reality Check

Theorem 0
Axioms Suck.

Proof.
o They break computation (and thus canonicity).
o They are hard to justify.

o They might be incompatible with one another.

o 5 = = £ A
P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018 6 /26

Look ma, no Axioms

Alternative route to axioms: implement a new type theory.

Examples: Cubical, F*...

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018 7/ 26

Look ma, no Axioms

Pro

Alternative route to axioms: implement a new type theory.
Examples: Cubical, F*...

24/01/2018

DA

7/26

Look ma, no Axioms

Pro

Alternative route to axioms: implement a new type theory
Examples: Cubical, F*

Proof Assistants for Free

DA
24/01/2018

7/26

Summary of the Problem

Different users have different needs.

« From each according to his ability, to each according to his needs. »

(Excessive) Fragmentation of proof assistants is harmful.

« Divide et impera. »

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018 8 /26

Summary of the Problem

Different users have different needs.

« From each according to his ability, to each according to his needs. »
(Excessive) Fragmentation of proof assistants is harmful.

« Divide et impera. »

Are we thus doomed?

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018 8 /26

In this talk, I'd like to advocate for a third way.

One implementation to rule them all...

«O>» < Fr «=)r «=)» DA™

Teasing

In this talk, I'd like to advocate for a third way.

P-M. Pédrot (MPI-SWS)

Proof Assistants for Free

24/01/2018 9 /26

Teasing

In this talk, I'd like to advocate for a third way.

One backend implementation to rule them all!

P-M. Pédrot (MPI-SWS)

Proof Assistants for Free

24/01/2018

9/26

Teasing

In this talk, I'd like to advocate for a third way.

One backend implementation to rule them all!

via

Syntactic Models

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018 9 /26

QOutrageously Gratuitous Ranting

Semantics of type theory have a fame of being horribly complex.

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018 10 / 26

QOutrageously Gratuitous Ranting
Semantics of type theory have a fame of being horribly complex.

| won't lie: it is. But part of this fame is due to its usual models.

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018 10 / 26

QOutrageously Gratuitous Ranting

Semantics of type theory have a fame of being horribly complex.

| won't lie: it is. But part of this fame is due to its usual models.

Set-theoretical models: because Sets are a (crappy) type theory.

Qo Sets!

@ Con: Sets!

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018

10 / 26

QOutrageously Gratuitous Ranting
Semantics of type theory have a fame of being horribly complex.

| won't lie: it is. But part of this fame is due to its usual models.

Set-theoretical models: because Sets are a (crappy) type theory.

Qo Sets!

@ Con: Sets!

Realizability models: construct programs that respect properties.

() Computational, computer-science friendly.

o Con: Not foundational (requires an alien meta-theory), not decidable.

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018

10 / 26

QOutrageously Gratuitous Ranting
Semantics of type theory have a fame of being horribly complex.

| won't lie: it is. But part of this fame is due to its usual models.

Set-theoretical models: because Sets are a (crappy) type theory.

Qo Sets!
@ Con: Sets!

Realizability models: construct programs that respect properties.

Qo Computational, computer-science friendly.

o Con: Not foundational (requires an alien meta-theory), not decidable.

Categorical models: abstract description of type theory.

Q Abstract, subsumes the two former ones.

O Con: Realizability 4 very low level, gazillion variants, intrisically typed, static.

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018 10 / 26

Instead, let's look at what Curry-Howard provides in simpler settings.
«O>» <Fr «=Z»r «E>» = Q>
~ P-M.Pérot (MPI-SWS) Proof Assistants for Free ~ 24/01/2018 11 /26

Curry-Howard Orthodoxy

Instead, let's look at what Curry-Howard provides in simpler settings.
Program Translations < Logical Interpretations

On the programming side, enrich the language by program translation.
o Monadic style a la Haskell

o Compilation of higher-level constructs down to assembly

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018 11 /26

Curry-Howard Orthodoxy

Instead, let's look at what Curry-Howard provides in simpler settings.

Program Translations < Logical Interpretations

On the programming side, enrich the language by program translation.

o Monadic style a la Haskell

o Compilation of higher-level constructs down to assembly

On the logic side, extend expressivity through proof interpretation.
o Double-negation = classical logic (callcc)
o Friedman's trick = Markov's rule (exceptions)

o Forcing = —~CH (global monotonous cell)

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018

11/ 26

Let us do the same thing with CIC: build syntactic models.

«O>» < Fr «=)r «=)» DA™

Syntactic Models

Let us do the same thing with CIC: build syntactic models.

We take the following act of faith for granted.

CIC is.

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018 12 /26

Syntactic Models

Let us do the same thing with CIC: build syntactic models.

We take the following act of faith for granted. ,..i ‘

CIC is.
Not caring for its soundness, implementation, whatever. It just is.

Do everything by interpreting the new theories relatively to this foundation!

Suppress technical and cognitive burden by lowering impedance mismatch.

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018 12 /26

Step 0: Fix a theory T as close as possible* to CIC, ideally CIC C T.

«O>» < Fr «=)r «=)» DA™

Syntactic Models Il

Step 0: Fix a theory T as close as possible* to CIC, ideally CIC C T.
Step 1: Define [-] on the syntax of 7 and derive [-] from it s.t.

Fr M: A implies Feic [M] : [A]

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018 13 /26

Syntactic Models Il

Step 0: Fix a theory T as close as possible* to CIC, ideally CIC C T.

Step 1: Define [-] on the syntax of 7 and derive [-] from it s.t.

Fr M: A implies Feic [M] : [A]

Step 2: Flip views and actually pose

FrM:A 2 ke [M]:[4]

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018

13/ 26

Syntactic Models Il

Step 0: Fix a theory T as close as possible* to CIC, ideally CIC C T.
Step 1: Define [-] on the syntax of 7 and derive [-] from it s.t.

Fr M: A implies Feic [M] : [A]

Step 2: Flip views and actually pose

FrM:A 2 ke [M]:[4]

Step 3: Expand 7 by going down to the CIC assembly language,
implementing new terms given by the [-] translation.

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018 13 /26

« CIC, the LLVM of Type Theory »

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018 14 / 26

Syntactic Models Il

Obviously, that's subtle.
o The translation [-] must preserve typing (not easy)

o In particular, it must preserve conversion (even worse)

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018 15 / 26

Syntactic Models Il

Obviously, that's subtle.

o The translation [-] must preserve typing (not easy)

o In particular, it must preserve conversion (even worse)

Yet, a lot of nice consequences.

o Does not require non-type-theoretical foundations (monism)

o Can be implemented in Coq (software monism)

o Easy to show (relative) consistency, look at [False]
o Inherit properties from CIC: computationality, decidability...
P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018

15 / 26

In Practice: Aknowledge the Existing

In Coq, first require the plugin implementing the desired model.

Require Import ExtendCoq.

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018 16 / 26

In Practice: Aknowledge the Existing

In Coq, first require the plugin implementing the desired model.

Require Import ExtendCoq.

Soundness means that any Coq proof can be translated automatically.

ExtendCoq Translate cool_theorem.

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018 16 / 26

In Practice: Aknowledge the Existing

In Coq, first require the plugin implementing the desired model.

Require Import ExtendCoq.

Soundness means that any Coq proof can be translated automatically.

ExtendCoq Translate cool_theorem.

Assuming cool_theorem : T, this command:
o defines cool_theoren® : [T]

o register the fact that [cool_theorem] := cool_theorem®

Thus any later use of cool_theorem in a translated term will be
automatically turned into cool_theorem®.

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018 16 / 26

In Practice: Enlarge Your Theory

The interest of this approach lies in the following command.

ExtendCoq Definition new : N.

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018 17 / 26

In Practice: Enlarge Your Theory

The interest of this approach lies in the following command.

ExtendCoq Definition new : N.

This opens a goal [N] you have to prove.

When the proof is finished:
@ an axiom new : N is added;
@ a term new® : [N] is defined with the proof;
@ the translation [new] := new® is registered.

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018

17 / 26

In Practice: Dirty Tricks

In general, [N] is some kind of mildly unreadable type that is crazy enough
so that it has more inhabitants than N.

forall forall
(A : Type) (A : E1 Type®)
(B : nat -+ Type), (B : nat° - E1 Type®),
(A~ (E1 A =~
{n:nat &Bn}) -~ sigT°® (TypeVal nat® nat#) (fun n : nat®° => B n)) =+
{n: nat & sigT® (TypeVal nat® nat#)
A-+Bnl} (fun n : nat°® => Prod® (E1l A) (fun _ : E1 A => B n))

With a bit of practice, you can usually make sense of it though.

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018 18 / 26

Back to Marketing

On-the-fly compilation of the extended theory to Coq!
No more axioms!

Your type-theoretic desires made true!

BEFORE

« Holy Celestial Teapot! »

P-M. Pédrot (MPI-SWS)

« Stock photos do not experience existential dread. »
*Text and pictures not contractually binding.

]
Proof Assistants for Free

=

DA
24/01/2018 19 /26

Example: The reader translation, a.k.a. Baby Forcing

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018 20 / 26

The Reader Translation

The reader translation extends type theory with

R O
read : R
into : O—=R—0
entery : A—Ilr:R.into A r

satisfying a few expected definitional equations.

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018

21/ 26

The Reader Translation

The reader translation extends type theory with

R O
read : R
into : O—=R—0
entery : A—Ilr:R.into A r

satisfying a few expected definitional equations.

The into function has unfoldings on type formers:
into (Ilz: A.B) r = 1lz: A.into B r
into O r = O

and it is somewhat redundant:

enterq Ar = intoAr

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018

21/ 26

The Reader Implementation

Assuming 7 : R, intuitively:
o Translate A : O into [A],: O
o Translate M : A into [M],: [A],

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free

24/01/2018

22 / 26

The Reader Implementation

Assuming 7 : R, intuitively:
o Translate A : O into [A],: O
o Translate M : A into [M],: [A],

d], = 0O

Iz: A.B], = Iz:(IIs:R.[A]s).[B],
[x], = zr

MN), = [M], (hs:R[N],)
Az: A. M), = Az:(s:R.[4]y).[M],

All variables are thunked w.r.t. R!

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018

22 / 26

The Reader Implementation

Assuming 7 : R, intuitively:
o Translate A : O into [A],: O
o Translate M : A into [M],: [A],

d], = 0O

Iz: A.B], = Iz:(IIs:R.[A]s).[B],
[x], = zr

[M N, = [M], (As:R.[N],)

Az: A. M), = Az:(s:R.[4]y).[M],

All variables are thunked w.r.t. R!

Soundness
IfZ:TF M: Athen r:R Z: (IIs: R.[T']s) F [M],: [4],

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018

22 / 26

Extending the Reader

One can easily define the new operations through the translation.

[entery],
[enter],
[enter 4],

P-M. Pédrot (MPI-SWS)

O—R—0O]
R—=0->R->R)—>0O
AMA:R—=0O)(¢:R—=>R).A (¢ 1)

[A — IIs: R.into A s],

(IIs:R.As) = 1I(p:R—=>R). A (¢ 1)
AMz:Ts:R.As)(¢:R=R).z(pr)
Proof Assistants for Free 24/01/2018

23 / 26

More generally

Syntactic models were introduced by Hoffmann...

There have been quite a few around since.

Model Source* Implements
Parametricity no Prop Parametricity
Type-intensionality no Prop Dynamic typing
Reader BTT Proof-relevant Axiom
Forcing BTT step indexing, nominal reasoning, ...
Weaning BTT many effects
Exceptional no sing. elim. exceptions (inconsistent)
Exceptional (interm.) no sing. elim. Markov's rule
Param. Exceptional no Prop P, ...

Extraction CIC 77
Iso-Parametricity 777 Automatic transfer of properties
Intuitionistic CPS only Prop 777

Dialectica no Prop Weak MP, ...

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018

24 / 26

The Ugly

To be fair, syntactic models have a few limitations.

©

Pretty hard to come up with such models
o Vanilla CIC doesn’t seem ideal as a target
o Implementation issues (cf. Andrej's talk)

o For now still rather simple extensions

o Certain complex models seem out of reach (notably uni alence)

Still, I argue that they are damn cool.

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018 25/ 26

Scribitur ad narrandum, non ad probandum

Thanks for your attention.

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018 26 / 26

