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CIC: « Constructions dans un monde qui bouge »

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy logical system.

o Not just higher-order logic, not just first-order logic
o First class notion of computation and crazy inductive types
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o First class notion of computation and crazy inductive types

CIC, a very powerful programming language.
o Finest types to describe your programs

o No clear phase separation between runtime and compile time
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CIC: « Constructions dans un monde qui bouge »

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy logical system.

o Not just higher-order logic, not just first-order logic

o First class notion of computation and crazy inductive types

CIC, a very powerful programming language.
o Finest types to describe your programs

o No clear phase separation between runtime and compile time

The Pinnacle of the Curry-Howard correspondence

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018

2/ 26



«O> <Fr o« o



«O> <Fr o« -



An Effective Object

One implementation to rule them all...

]
Many big developments using it for computer-checked proofs.

o Mathematics: Four colour theorem, Feit-Thompson, Unimath...
o Computer Science: CompCert, VST, RustBelt...
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Several flags tweaking the kernel:

o Impredicative Set
o Type-in-type
o Indices Matter

o Cumulative inductive types
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The CIC Tribe

Actually not quite one single theory.

Several flags tweaking the kernel:

Impredicative Set
Type-in-type

o
Qo
o Indices Matter
Qo

Cumulative inductive types

o ...

The Many Calculi of Inductive Constructions.
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The claffical fet-theory pole:
o Excluded middle, UIP, choice
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In the Axiom Jungle

A crazy amount of axioms used in the wild!

The claffical fet-theory pole:
o Excluded middle, UIP, choice
The EXTENSIONAL pole:

o Funext, Propext, Bisim-is-eq
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In the Axiom Jungle

A crazy amount of axioms used in the wild!

The claffical fet-theory pole:

o Excluded middle, UIP, choice
The EXTENSIONAL pole:

o Funext, Propext, Bisim-is-eq
The uni alent pole:

o Unlvalence, what else? « A mathematician is a device for turning
toruses into equalities (up to homotopy). »
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In the Axiom Jungle

A crazy amount of axioms used in the wild!

The claffical fet-theory pole:

o Excluded middle, UIP, choice
The EXTENSIONAL pole:

o Funext, Propext, Bisim-is-eq
The uni alent pole:

o Univalence, what else?
The exoric pole:

o Anti-classical axioms (?77)
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In the Axiom Jungle

A crazy amount of axioms used in the wild!

The claffical fet-theory pole:

o Excluded middle, UIP, choice
The EXTENSIONAL pole:

o Funext, Propext, Bisim-is-eq
The uni alent pole:

o Univalence, what else?
The exoric pole:

o Anti-classical axioms (?77)

Varying degrees of compatibility.
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Reality Check

Theorem 0
Axioms Suck.
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Reality Check

Theorem 0
Axioms Suck.

Proof.
o They break computation (and thus canonicity).
o They are hard to justify.

o They might be incompatible with one another.

o 5 = = £ A
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Look ma, no Axioms

Alternative route to axioms: implement a new type theory.

Examples: Cubical, F*...
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Alternative route to axioms: implement a new type theory
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Summary of the Problem

Different users have different needs.

« From each according to his ability, to each according to his needs. »

(Excessive) Fragmentation of proof assistants is harmful.

« Divide et impera. »
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Summary of the Problem

Different users have different needs.

« From each according to his ability, to each according to his needs. »
(Excessive) Fragmentation of proof assistants is harmful.

« Divide et impera. »

Are we thus doomed?
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In this talk, I'd like to advocate for a third way.

One implementation to rule them all...
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Teasing

In this talk, I'd like to advocate for a third way.
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One backend implementation to rule them all!

P-M. Pédrot (MPI-SWS)

Proof Assistants for Free

24/01/2018

9/26



Teasing

In this talk, I'd like to advocate for a third way.

One backend implementation to rule them all!

via

Syntactic Models
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QOutrageously Gratuitous Ranting

Semantics of type theory have a fame of being horribly complex.
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Semantics of type theory have a fame of being horribly complex.

| won't lie: it is. But part of this fame is due to its usual models.

Set-theoretical models: because Sets are a (crappy) type theory.

Qo Sets!

@ Con: Sets!

Realizability models: construct programs that respect properties.

() Computational, computer-science friendly.

o Con: Not foundational (requires an alien meta-theory), not decidable.
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QOutrageously Gratuitous Ranting
Semantics of type theory have a fame of being horribly complex.

| won't lie: it is. But part of this fame is due to its usual models.

Set-theoretical models: because Sets are a (crappy) type theory.

Qo Sets!
@ Con: Sets!

Realizability models: construct programs that respect properties.

Qo Computational, computer-science friendly.

o Con: Not foundational (requires an alien meta-theory), not decidable.

Categorical models: abstract description of type theory.

Q Abstract, subsumes the two former ones.

O Con: Realizability 4 very low level, gazillion variants, intrisically typed, static.
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Instead, let's look at what Curry-Howard provides in simpler settings.
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Curry-Howard Orthodoxy

Instead, let's look at what Curry-Howard provides in simpler settings.
Program Translations < Logical Interpretations

On the programming side, enrich the language by program translation.
o Monadic style a la Haskell

o Compilation of higher-level constructs down to assembly
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Curry-Howard Orthodoxy

Instead, let's look at what Curry-Howard provides in simpler settings.

Program Translations < Logical Interpretations

On the programming side, enrich the language by program translation.

o Monadic style a la Haskell

o Compilation of higher-level constructs down to assembly

On the logic side, extend expressivity through proof interpretation.
o Double-negation = classical logic (callcc)
o Friedman's trick = Markov's rule (exceptions)

o Forcing = —~CH (global monotonous cell)
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Let us do the same thing with CIC: build syntactic models.
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Syntactic Models

Let us do the same thing with CIC: build syntactic models.

We take the following act of faith for granted.

CIC is.
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Syntactic Models

Let us do the same thing with CIC: build syntactic models.

We take the following act of faith for granted. ,..i ‘

CIC is.
Not caring for its soundness, implementation, whatever. It just is.

Do everything by interpreting the new theories relatively to this foundation!

Suppress technical and cognitive burden by lowering impedance mismatch.
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Step 0: Fix a theory T as close as possible* to CIC, ideally CIC C T.
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Syntactic Models Il

Step 0: Fix a theory T as close as possible* to CIC, ideally CIC C T.
Step 1: Define [-] on the syntax of 7 and derive [-] from it s.t.

Fr M: A implies Feic [M] : [A]
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Step 0: Fix a theory T as close as possible* to CIC, ideally CIC C T.

Step 1: Define [-] on the syntax of 7 and derive [-] from it s.t.

Fr M: A implies Feic [M] : [A]

Step 2: Flip views and actually pose

FrM:A 2 ke [M]:[4]

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 24/01/2018

13/ 26



Syntactic Models Il

Step 0: Fix a theory T as close as possible* to CIC, ideally CIC C T.
Step 1: Define [-] on the syntax of 7 and derive [-] from it s.t.

Fr M: A implies Feic [M] : [A]

Step 2: Flip views and actually pose

FrM:A 2 ke [M]:[4]

Step 3: Expand 7 by going down to the CIC assembly language,
implementing new terms given by the [-] translation.
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« CIC, the LLVM of Type Theory »
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Syntactic Models Il

Obviously, that's subtle.
o The translation [-] must preserve typing (not easy)

o In particular, it must preserve conversion (even worse)
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Syntactic Models Il

Obviously, that's subtle.

o The translation [-] must preserve typing (not easy)

o In particular, it must preserve conversion (even worse)

Yet, a lot of nice consequences.

o Does not require non-type-theoretical foundations (monism)

o Can be implemented in Coq (software monism)

o Easy to show (relative) consistency, look at [False]
o Inherit properties from CIC: computationality, decidability...
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In Practice: Aknowledge the Existing

In Coq, first require the plugin implementing the desired model.

Require Import ExtendCoq.
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Soundness means that any Coq proof can be translated automatically.

ExtendCoq Translate cool_theorem.
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In Practice: Aknowledge the Existing

In Coq, first require the plugin implementing the desired model.

Require Import ExtendCoq.

Soundness means that any Coq proof can be translated automatically.

ExtendCoq Translate cool_theorem.

Assuming cool_theorem : T, this command:
o defines cool_theoren® : [T]

o register the fact that [cool_theorem] := cool_theorem®

Thus any later use of cool_theorem in a translated term will be
automatically turned into cool_theorem®.
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In Practice: Enlarge Your Theory

The interest of this approach lies in the following command.

ExtendCoq Definition new : N.
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In Practice: Enlarge Your Theory

The interest of this approach lies in the following command.

ExtendCoq Definition new : N.

This opens a goal [N] you have to prove.

When the proof is finished:
@ an axiom new : N is added;
@ a term new® : [N] is defined with the proof;
@ the translation [new] := new® is registered.
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In Practice: Dirty Tricks

In general, [N] is some kind of mildly unreadable type that is crazy enough
so that it has more inhabitants than N.

forall forall
(A : Type) (A : E1 Type®)
(B : nat -+ Type), (B : nat° - E1 Type®),
(A~ (E1 A =~
{n:nat &Bn}) -~ sigT°® (TypeVal nat® nat#) (fun n : nat®° => B n)) =+
{n: nat & sigT® (TypeVal nat® nat#)
A-+Bnl} (fun n : nat°® => Prod® (E1l A) (fun _ : E1 A => B n))

With a bit of practice, you can usually make sense of it though.
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Back to Marketing

On-the-fly compilation of the extended theory to Coq!
No more axioms!

Your type-theoretic desires made true!

BEFORE

« Holy Celestial Teapot! »

P-M. Pédrot (MPI-SWS)

« Stock photos do not experience existential dread. »
*Text and pictures not contractually binding.

]
Proof Assistants for Free

=

DA
24/01/2018 19 /26



Example: The reader translation, a.k.a. Baby Forcing
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The Reader Translation

The reader translation extends type theory with

R O
read : R
into : O—=R—0
entery : A—Ilr:R.into A r

satisfying a few expected definitional equations.
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The Reader Translation

The reader translation extends type theory with

R O
read : R
into : O—=R—0
entery : A—Ilr:R.into A r

satisfying a few expected definitional equations.

The into function has unfoldings on type formers:
into (Ilz: A.B) r = 1lz: A.into B r
into O r = O

and it is somewhat redundant:

enterq Ar = intoAr
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The Reader Implementation

Assuming 7 : R, intuitively:
o Translate A : O into [A],: O
o Translate M : A into [M],: [A],
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The Reader Implementation

Assuming 7 : R, intuitively:
o Translate A : O into [A],: O
o Translate M : A into [M],: [A],

d], = 0O

Iz: A.B], = Iz:(IIs:R.[A]s).[B],
[x], = zr

MN), = [M], (hs:R[N],)
Az: A. M), = Az:(s:R.[4]y).[M],

All variables are thunked w.r.t. R!
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The Reader Implementation

Assuming 7 : R, intuitively:
o Translate A : O into [A],: O
o Translate M : A into [M],: [A],

d], = 0O

Iz: A.B], = Iz:(IIs:R.[A]s).[B],
[x], = zr

[M N, = [M], (As:R.[N],)

Az: A. M), = Az:(s:R.[4]y).[M],

All variables are thunked w.r.t. R!

Soundness
IfZ:TF M: Athen r:R Z: (IIs: R.[T']s) F [M],: [4],
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Extending the Reader

One can easily define the new operations through the translation.

[entery ],
[enter ],
[enter 4],

P-M. Pédrot (MPI-SWS)

O—R—0O]
R—=0->R->R)—>0O
AMA:R—=0O)(¢:R—=>R).A (¢ 1)

[A — IIs: R.into A s],

(IIs:R.As) = 1I(p:R—=>R). A (¢ 1)
AMz:Ts:R.As)(¢:R=R).z(pr)
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More generally

Syntactic models were introduced by Hoffmann...

There have been quite a few around since.

Model Source* Implements
Parametricity no Prop Parametricity
Type-intensionality no Prop Dynamic typing
Reader BTT Proof-relevant Axiom
Forcing BTT step indexing, nominal reasoning, ...
Weaning BTT many effects
Exceptional no sing. elim. exceptions (inconsistent)
Exceptional (interm.)  no sing. elim. Markov's rule
Param. Exceptional no Prop P, ...

Extraction CIC 77
Iso-Parametricity 777 Automatic transfer of properties
Intuitionistic CPS only Prop 777

Dialectica no Prop Weak MP, ...
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The Ugly

To be fair, syntactic models have a few limitations.

©

Pretty hard to come up with such models
o Vanilla CIC doesn’t seem ideal as a target
o Implementation issues (cf. Andrej's talk)

o For now still rather simple extensions

o Certain complex models seem out of reach (notably uni alence)

Still, I argue that they are damn cool.
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Scribitur ad narrandum, non ad probandum

Thanks for your attention.
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