
Classical-by-Need
(A Classy Call-by-Need)

Pierre-Marie Pédrot & Alexis Saurin

7th April 2016

ESOP 2016

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 1 / 30

The Two Faces of Computation on Demand
∆ = λx.(x)x, Ω = (∆)∆, I = λy.y

Unnecessary computations in call-by-value:
M = (λx.I)Ω→CBN I

M = (λx.I)Ω→CBV M→CBV M→CBV . . .

Duplication of computations in call-by-name:
N = (∆)(I)I→CBN (I)I(I)I→CBN (I)(I)I→CBN (I)I→CBN I

N = (∆)(I)I→CBV (∆)I→CBN (I)I→CBN I

Ideally, one would like to have one’s cake and eat it too: to
postpone evaluating an expression (...) until it is clear that its
value is really needed, but also to avoid repeated evaluation.

(John Reynolds)

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 2 / 30

The Two Faces of Computation on Demand
∆ = λx.(x)x, Ω = (∆)∆, I = λy.y

Unnecessary computations in call-by-value:
M = (λx.I)Ω→CBN I

M = (λx.I)Ω→CBV M→CBV M→CBV . . .

Duplication of computations in call-by-name:
N = (∆)(I)I→CBN (I)I(I)I→CBN (I)(I)I→CBN (I)I→CBN I

N = (∆)(I)I→CBV (∆)I→CBN (I)I→CBN I

Ideally, one would like to have one’s cake and eat it too: to
postpone evaluating an expression (...) until it is clear that its
value is really needed, but also to avoid repeated evaluation.

(John Reynolds)

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 2 / 30

Call-by-need λ -calculus
Ariola-Felleisen, JFP 97

Syntax
terms t ::= x || λx.t || (t)t
values V ::= λx.t
answers A ::= V || (λx.A) t
evaluation contexts E ::= � || Et || (λx.E) t

|| (λx.E[x]) E

Reductions
(deref) (λx.E[x]) V → (λx.E[V]) V
(lift) ((λx.A) t)u → (λx.Au) t
(assoc) (λx.E[x]) (λy.A) t → (λy.(λx.E[x]) A) t

Other calculi: Maraist et al, JFP 98: same standard reduction
Ariola, Herbelin & S., TLCA 11: in λ µµ̃

Chang & Felleisen, ESOP 12: single axiom call-by-need
Accattoli et al., ICFP 14: explicit substitution call-by-need

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 3 / 30

Classical By-need

• Call-by-need is somehow an effect
• Not distinguishable from by-name in a pure setting...

• But difference observable in presence of other effects!
• Several possible interactions
• In particular with first-class continuations

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 4 / 30

Classical By-need

• Call-by-need is somehow an effect
• Not distinguishable from by-name in a pure setting...

• But difference observable in presence of other effects!
• Several possible interactions
• In particular with first-class continuations

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 4 / 30

Classical By-need Calculi?

• Previous work: Ariola, Herbelin and S. formulated call-by-need
strategies in λ µµ̃.

• In such a setting: control built-in and by-need wrought out

• We provide a more canonical presentation of call-by-need
• Inspired by this one weird trick from Linear Logic
• Naturally provides a classical by-need calculus (actually several)

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 5 / 30

Classical By-need Calculi?

• Previous work: Ariola, Herbelin and S. formulated call-by-need
strategies in λ µµ̃.

• In such a setting: control built-in and by-need wrought out

• We provide a more canonical presentation of call-by-need
• Inspired by this one weird trick from Linear Logic
• Naturally provides a classical by-need calculus (actually several)

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 5 / 30

Organization of the Talk

• Linear Head Reduction
• Classical Linear Head Reduction
• From LHR to Call-by-need
• Classical By-need

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 6 / 30

Linear Head Reduction

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 7 / 30

Linear head reduction, informally
(Danos & Regnier, ≈ 1990)

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 8 / 30

Comparison between LHR and call-by-need

Striking similarities

• Both can be viewed as optimization of standard evaluation strategies;
• Both rely on a linear, rather than destructive, substitution;
• A variable is substituted only if it is necessary for pursuing the
computation;

• Both share with call-by-name the same notion of convergence and the
induced observational equivalences;

• Not easily presented as reduction relation.

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 9 / 30

Krivine Abstract Machine

Closures c ::= (t,σ)
Environments σ ::= /0 | σ +(x := c)
Stacks π ::= ε | c ·π
Processes p ::= 〈c | π〉

Push 〈((t)u,σ) | π〉 → 〈(t,σ) | (u,σ) ·π〉
Pop 〈(λx. t,σ) | c ·π〉 → 〈(t,σ +(x := c)) | π〉
Grab 〈(x,σ +(x := c)) | π〉 → 〈c | π〉
Garbage 〈(x,σ +(y := c)) | π〉 → 〈(x,σ) | π〉

Is this really (weak) head reduction?

Simulating is not the same as implementing.

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 10 / 30

Krivine Abstract Machine

Closures c ::= (t,σ)
Environments σ ::= /0 | σ +(x := c)
Stacks π ::= ε | c ·π
Processes p ::= 〈c | π〉

Push 〈((t)u,σ) | π〉 → 〈(t,σ) | (u,σ) ·π〉
Pop 〈(λx. t,σ) | c ·π〉 → 〈(t,σ +(x := c)) | π〉
Grab 〈(x,σ +(x := c)) | π〉 → 〈c | π〉
Garbage 〈(x,σ +(y := c)) | π〉 → 〈(x,σ) | π〉

Is this really (weak) head reduction?

Simulating is not the same as implementing.

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 10 / 30

Krivine Abstract Machine

Closures c ::= (t,σ)
Environments σ ::= /0 | σ +(x := c)
Stacks π ::= ε | c ·π
Processes p ::= 〈c | π〉

Push 〈((t)u,σ) | π〉 → 〈(t,σ) | (u,σ) ·π〉
Pop 〈(λx. t,σ) | c ·π〉 → 〈(t,σ +(x := c)) | π〉
Grab 〈(x,σ +(x := c)) | π〉 → 〈c | π〉
Garbage 〈(x,σ +(y := c)) | π〉 → 〈(x,σ) | π〉

Is this really (weak) head reduction?

Simulating is not the same as implementing.

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 10 / 30

σ -equivalence
(Danos & Regnier, ≈ 1990)

(λx1.t)u1u2 =σ (λx1.(t)u2)u1
(λx1.λx2.t)u =σ λx2.(λx1.t)u

 Originated in the theory of linear logic proof nets: Inspired by the
translation of λ -terms in proof-nets and the induced identification.

 A relation capturing the KAM behaviour.
 Skips redexes ignored by the KAM.
 Up to σ -equivalence, LHR is the usual head reduction, made linear.

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 11 / 30

LHR as a calculus

Insensitivity to σ -equivalence can be achieved by a context grammar:

Definition (λlh)
closure contexts C ::= [·] || (C [λx.C]) t
left evaluation contexts E ::= [·] || (E) t || λx.E

(βlh) (C [λx.E[x]]) t → (C [λx.E[t]]) t

+ congruence w.r.t E

Theorem
• βlh is stable by σ -equivalence.
• λlh coincides with Danos-Regnier LHR.

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 12 / 30

Closure Contexts and the KAM
Push and Pop transitions implement the computation of closure contexts

Proposition

Let C be a closure context. There exists [C]
σ
such that:

〈(C [t],σ) | π〉 −→∗Push,Pop 〈(t,σ +[C]
σ
) | π〉

Conversely, for all t0 and σ0 such that

〈(t,σ) | π〉 −→∗Push,Pop 〈(t0,σ0) | π〉

there exists C0 such that t = C0[t0].

[C]
σ
defined by induction over C as follows:

[[·]]
σ
≡ /0 [C1[λx.C2] t]

σ
≡ [C1]σ +(x := (t,σ))+ [C2]σ+[C1]σ+(x:=(t,σ))

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 13 / 30

Classical LHR

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 14 / 30

λ µ-calculus variant of the LHR

Left stack contexts K:

K ::= [·] | [α]L[µβ .K]

Classical extension of left contexts and closure contexts:

C ::= [·] | C 1[λx.C 2] t | C 1[µα.K[[α]C 2]]
L ::= [·] | λx.L | L t | µβ . [α]L

Classical LHR:
The classical LHR is defined by the following reduction:

C [λx.L[x]] t →clh C [λx.L[t]] t

+ congruence w.r.t. L.

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 15 / 30

λclh is classical LHR

Definition (µ-KAM)
σ ::= · · · | σ +(α := π) π ::= · · · | (α,σ)

〈(µα.c,σ) | π〉 →Save 〈(c,σ +(α := π)) | ε〉
〈([α]t,σ) | ε〉 →Restore 〈(t,σ) | σ(α)〉

As expected, λclh simulates intensionally the µKAM:

Theorem
Let c1→clh c2 where c1 := [α]L1[C [λx.L2[x]] t], then the substitution
sequence of process c1 is either empty or of the form t :: ` where ` is the
substitution sequence of process c2.

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 16 / 30

Towards Call-by-need

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 17 / 30

From LHR to Call-by-need

In three easy steps!
1 Weak LHR
2 Value passing
3 Closure sharing

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 18 / 30

(Step 1) Weak LHR

We need to track λ -abstractions that pertain to a closure context.

Definition (Marked λ -calculus)

t,u ::= x | (t)u | λx. t | `x. t

We only consider well-balanced terms.

Definition (Marked closure contexts)

C ::=[·] | (C1[`x.C2]) t

 Such contexts are a more structured version of explicit substitutions

(C1[`x.C2]) t ∼= let x := t in C1[C2]

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 19 / 30

(Step 1) Weak LHR

Definition (Weak LHR)

Weak left contexts Ew ::= [·] | (Ew) t | `x.Ew

(βwlh) C [λx. t]u → C [`x. t]u
C [`x.Ew[x]] t → C [`x.Ew[t]] t

+ congruence w.r.t. Ew

This reduction is still stable by σ .

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 20 / 30

(Step 2) Call-by-“value” LHR
We restrict substitution to values-up-to closures:

W ::= C [λx. t]

and adapt the contexts accordingly:

Value left contexts Ev ::= [·] | (Ev) t | `x.Ev | (C [`x.Ev
1[x]])Ev

2

The call-by-value weak LHR is then obtained straightforwardly:

Definition (By-value LHR)
(βwlv) C [λx. t]u → C [`x. t]u

C [`x.Ev[x]]W → C [`x.Ev[W]]W

+ congruence w.r.t. Ev

Still stable by σ .
Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 21 / 30

By-value ?

• λwlv already implements a call-by-need strategy
• Not a reduction scheme from the literature, though.

There is a duplication of computation:

(C ′[`x.Ev[x]])C [V] → (C ′[`x.Ev[C [V]]])C [V]

C is copied, which will end up in recomputing its bound terms if ever they
are going to be used throughout the reduction.

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 22 / 30

(Step 3) Closure sharing

Solve this similarly to the Assoc rule in Ariola-Felleisen’s calculus:

Definition (By-value LHR with sharing)
(βwls) C [λx. t]u → C [`x. t]u

C ′[`x.Ev[x]]C [V] → C [C ′[`x.Ev[V]]V]

+ congruence w.r.t. Ev

Theorem
λwls is essentially Chang-Felleisen’s calculus.

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 23 / 30

Classical By-need
(At last!)

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 24 / 30

Classical By Need
Following the same three steps...

C ::= [·] | (C1[`x.C2]) t | C1[µα.Kv[[α]C2]]
Ev ::= [·] | (Ev) t | `x.Ev | (C [`x.Ev

1[x]])Ev
2 | µα.Kv[[α]Ev]

Kv ::= [·] | [α]Ev[µβ .Kv]

Definition (Classical-by-need)
(βcls) C [λx. t]u → C [`x. t]u

C ′[`x.Ev[x]]C [V] → C [C ′[`x.Ev[V]]V]
C ′[`x.Ev[x]]C [µα.c] → C [µα.c{α := [α](C ′[`x.Ev[x]])_}]

+ congruence w.r.t. Kv

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 25 / 30

A bit too powerful

• A very smart stack substitution!
• Thanks to closure contexts, never need to substitute stacks eagerly
• ... except when a µα.c term needed

This does not look like anything known from the literature, so we can’t
relate it to a previous calculus...

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 26 / 30

A Dumber Classical By Need

C ::= [·] | (C1[`x.C2]) t
Ev ::= [·] | (Ev) t | `x.Ev | (C [`x.Ev

1[x]])Ev
2

Kv ::= [·] | [α]Ev[µβ .Kv]

Definition (Classical-by-need with Intuitionistic Contexts)
(βcls′) C [λx. t]u → C [`x. t]u

C ′[`x.Ev[x]]C [V] → C [C ′[`x.Ev[V]]V]
[α]Ev[µβ .Kv[[β]t] → [α]Ev[µβ .Kv[[α]Ev[t]]

+ congruence w.r.t. Kv

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 27 / 30

Comparison with AHS classical call-by-need calculus

• Ariola, Herbelin and S. proposed a classical by-need λ -calculus
derived from a call-by-need λ µµ̃-calculus.

• In that calculus, β is implemented by plain βv-rule, a feature of
sequent calculus.

• Correspondence with a modified version of this calculus, AHS’,
featuring a deref-rule à la Ariola-Felleisen:

Theorem
For any command c, there exists an infinite standard reduction in
AHS’-calculus starting from c iff there exists an infinite reduction starting
from c in the classical by-need calculus with Intuitionistic contexts.

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 28 / 30

Conclusion

• Reformulation of LHR;
• Extension to the λ µ-calculus / classical logic;
• Connection between LHR and call-by-need by deriving call-by-need
from LHR. Surprisingly, this connection seemed to have remained
unexploited (and unnoticed?) until our work and Accattolli et al work.

Lazy = Demand-driven + Memoization + Sharing
(weak LHR) (by value) (closure shar.)

• Closure contexts are not new but we made explicit their central role
for both LHR and call-by-need, which are essentially calculi with
reductions up-to closure contexts.

• We defined a classical by-need calculus, again from LHR.

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 29 / 30

Thanks

Pierre-Marie Pédrot & Alexis Saurin Classical-by-Need 7th April 2016 30 / 30

