
Pierre-Marie Pédrot

INRIA

2023/12/01

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 1 / 32

Today’s Focus

Church’s thesis!

All reasonable computational models are equivalent.

The internal Church thesis in a theory T !

From within T , “all functions N → N are computable”.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 2 / 32

Today’s Focus

Church’s thesis!

All reasonable computational models are equivalent.

The internal Church thesis in a theory T !

From within T , “all functions N → N are computable”.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 2 / 32

Today’s Focus

Church’s thesis!

All reasonable computational models are equivalent.

The internal Church thesis in a theory T !

From within T , “all functions N → N are computable”.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 2 / 32

Horrible Encodings Ahead

Let’s fix a simple type theory T containing arithmetic.

⇝ One can define the (decidable) Turing predicate:

p : N n : N k : N
T(p,n, k) : Prop

“T(p,n, k) holds iff the Turing machine p returns n in ≤ k steps.”

[NB: for readability, I’ll henceforth write P := N to indicate numbers coding programs]

⇝ We say that f : N → N is computed by p : P, written calc f p when

⊢T ∀n : N. ∃k : N.T(p • n, f n, k)

Internal CT
T validates CT if ⊢T ∀f : N → N. ∃p : P. calc f p

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 3 / 32

Horrible Encodings Ahead

Let’s fix a simple type theory T containing arithmetic.

⇝ One can define the (decidable) Turing predicate:

p : N n : N k : N
T(p,n, k) : Prop

“T(p,n, k) holds iff the Turing machine p returns n in ≤ k steps.”

[NB: for readability, I’ll henceforth write P := N to indicate numbers coding programs]

⇝ We say that f : N → N is computed by p : P, written calc f p when

⊢T ∀n : N. ∃k : N.T(p • n, f n, k)

Internal CT
T validates CT if ⊢T ∀f : N → N. ∃p : P. calc f p

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 3 / 32

Horrible Encodings Ahead

Let’s fix a simple type theory T containing arithmetic.

⇝ One can define the (decidable) Turing predicate:

p : N n : N k : N
T(p,n, k) : Prop

“T(p,n, k) holds iff the Turing machine p returns n in ≤ k steps.”

[NB: for readability, I’ll henceforth write P := N to indicate numbers coding programs]

⇝ We say that f : N → N is computed by p : P, written calc f p when

⊢T ∀n : N. ∃k : N.T(p • n, f n, k)

Internal CT
T validates CT if ⊢T ∀f : N → N. ∃p : P. calc f p

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 3 / 32

Horrible Encodings Ahead

Let’s fix a simple type theory T containing arithmetic.

⇝ One can define the (decidable) Turing predicate:

p : N n : N k : N
T(p,n, k) : Prop

“T(p,n, k) holds iff the Turing machine p returns n in ≤ k steps.”

[NB: for readability, I’ll henceforth write P := N to indicate numbers coding programs]

⇝ We say that f : N → N is computed by p : P, written calc f p when

⊢T ∀n : N. ∃k : N.T(p • n, f n, k)

Internal CT
T validates CT if ⊢T ∀f : N → N. ∃p : P. calc f p

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 3 / 32

Alonzo in Maŝinmondo

CT is a weird principle!

Implies a mechanical world
A staple of Russian constructivism
In presence of choice, incompatible with funext
In presence of choice, incompatible with classical logic

A fleeting panic
Is it actually consistent?

Ja.

(Mumble something about The Effective Topos™ being a model of HOL + CT.)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 4 / 32

Alonzo in Maŝinmondo

CT is a weird principle!

Implies a mechanical world
A staple of Russian constructivism
In presence of choice, incompatible with funext
In presence of choice, incompatible with classical logic

A fleeting panic
Is it actually consistent?

Ja.

(Mumble something about The Effective Topos™ being a model of HOL + CT.)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 4 / 32

Alonzo in Maŝinmondo

CT is a weird principle!

Implies a mechanical world
A staple of Russian constructivism
In presence of choice, incompatible with funext
In presence of choice, incompatible with classical logic

A fleeting panic
Is it actually consistent?

Ja.

(Mumble something about The Effective Topos™ being a model of HOL + CT.)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 4 / 32

Blanket Propaganda

MARTIN-LÖF'S TYPE THEORY

Is this a logical foundation?
Is this a programming language?

Is this crypto-realizability?

Is this Coq?

All of this and much more!

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 5 / 32

Blanket Propaganda

MARTIN-LÖF'S TYPE THEORY

Is this a logical foundation?

Is this a programming language?
Is this crypto-realizability?

Is this Coq?

All of this and much more!

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 5 / 32

Blanket Propaganda

MARTIN-LÖF'S TYPE THEORY

Is this a logical foundation?
Is this a programming language?

Is this crypto-realizability?

Is this Coq?

All of this and much more!

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 5 / 32

Blanket Propaganda

MARTIN-LÖF'S TYPE THEORY

Is this a logical foundation?
Is this a programming language?

Is this crypto-realizability?

Is this Coq?

All of this and much more!

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 5 / 32

Blanket Propaganda

MARTIN-LÖF'S TYPE THEORY

Is this a logical foundation?
Is this a programming language?

Is this crypto-realizability?

Is this Coq?

All of this and much more!

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 5 / 32

Blanket Propaganda

MARTIN-LÖF'S TYPE THEORY

Is this a logical foundation?
Is this a programming language?

Is this crypto-realizability?

Is this Coq?

All of this and much more!

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 5 / 32

We Need to Go Deeper

A Legitimate Question

“Can we extend Martin-Löf’s Type Theory with CT?”

An Even More Legitimate Question

“Why would I do that?”

This watch does not smell of mustard.
Simple type theory is cool, but a bit old-fashioned and limited
In MLTT, functions are already programs
MLTT + CT is the foundation for synthetic computability

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 6 / 32

We Need to Go Deeper

A Legitimate Question

“Can we extend Martin-Löf’s Type Theory with CT?”

An Even More Legitimate Question

“Why would I do that?”

This watch does not smell of mustard.
Simple type theory is cool, but a bit old-fashioned and limited
In MLTT, functions are already programs
MLTT + CT is the foundation for synthetic computability

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 6 / 32

We Need to Go Deeper

A Legitimate Question

“Can we extend Martin-Löf’s Type Theory with CT?”

An Even More Legitimate Question

“Why would I do that?”

This watch does not smell of mustard.
Simple type theory is cool, but a bit old-fashioned and limited
In MLTT, functions are already programs
MLTT + CT is the foundation for synthetic computability

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 6 / 32

Synthetic Computability

Never suffer with Turing machines again!

Another instance of the synthetic trend
Prove computability results (almost) pain-free in Coq!
Synthetic homotopy: MLTT terms are paths
Synthetic computability: MLTT terms are programs

The one missing primitive: inspecting the code of a program.

That’s exactly what CT gives you.

⊢ Π(f : N → N).Σ(p : P). calc f p

Several people doing SCT in Coq
⇝ including this guy next door to me

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 7 / 32

Synthetic Computability

Never suffer with Turing machines again!

Another instance of the synthetic trend
Prove computability results (almost) pain-free in Coq!
Synthetic homotopy: MLTT terms are paths
Synthetic computability: MLTT terms are programs

The one missing primitive: inspecting the code of a program.

That’s exactly what CT gives you.

⊢ Π(f : N → N).Σ(p : P). calc f p

Several people doing SCT in Coq
⇝ including this guy next door to me

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 7 / 32

Synthetic Computability

Never suffer with Turing machines again!

Another instance of the synthetic trend
Prove computability results (almost) pain-free in Coq!
Synthetic homotopy: MLTT terms are paths
Synthetic computability: MLTT terms are programs

The one missing primitive: inspecting the code of a program.

That’s exactly what CT gives you.

⊢ Π(f : N → N).Σ(p : P). calc f p

Several people doing SCT in Coq
⇝ including this guy next door to me

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 7 / 32

Synthetic Computability

Never suffer with Turing machines again!

Another instance of the synthetic trend
Prove computability results (almost) pain-free in Coq!
Synthetic homotopy: MLTT terms are paths
Synthetic computability: MLTT terms are programs

The one missing primitive: inspecting the code of a program.

That’s exactly what CT gives you.

⊢ Π(f : N → N).Σ(p : P). calc f p

Several people doing SCT in Coq
⇝ including this guy next door to me

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 7 / 32

Synthetic Computability

Never suffer with Turing machines again!

Another instance of the synthetic trend
Prove computability results (almost) pain-free in Coq!
Synthetic homotopy: MLTT terms are paths
Synthetic computability: MLTT terms are programs

The one missing primitive: inspecting the code of a program.

That’s exactly what CT gives you.

⊢ Π(f : N → N).Σ(p : P). calc f p

Several people doing SCT in Coq
⇝ including this guy next door to me

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 7 / 32

Today’s Definitely Legitimate Question

“Can we extend Martin-Löf’s Type Theory with CT?”

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 8 / 32

I think, Therefore I merely am

In dependent type theories, existing is a complex matter

Σx : A.B v.s. ∃x : A.B
actual existence mere existence
proof relevant proof-irrelevant
choice built-in no choice a priori

in Type in Prop

We have not one, but two theses.

CT∃ := Π(f : N → N). ∃p : P. calc f p
CTΣ := Π(f : N → N).Σp : P. calc f p

Which do we want?

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 9 / 32

I think, Therefore I merely am

In dependent type theories, existing is a complex matter

Σx : A.B v.s. ∃x : A.B
actual existence mere existence
proof relevant proof-irrelevant
choice built-in no choice a priori

in Type in Prop

We have not one, but two theses.

CT∃ := Π(f : N → N). ∃p : P. calc f p
CTΣ := Π(f : N → N).Σp : P. calc f p

Which do we want?

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 9 / 32

I think, Therefore I merely am

In dependent type theories, existing is a complex matter

Σx : A.B v.s. ∃x : A.B
actual existence mere existence
proof relevant proof-irrelevant
choice built-in no choice a priori

in Type in Prop

We have not one, but two theses.

CT∃ := Π(f : N → N). ∃p : P. calc f p
CTΣ := Π(f : N → N).Σp : P. calc f p

Which do we want?

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 9 / 32

I choose you, Sigma-chu

CT∃ := Π(f : N → N). ∃p : P. calc f p

Π(x : A). ∃(y : B).P does not magically turn into a function
i.e. choice does not hold over ∃ / ∃ is non-computational
does not endanger function extensionality
MLTT + CT∃ is known to be consistent

(The Effective Topos™)

CTΣ := Π(f : N → N).Σp : P. calc f p

Dually, CTΣ is the hallmark of weird crap going on
Intuitionistic non-choice gives a quote function (N → N) → N
Consistency of MLTT + CTΣ is not established

This is the one we really want to have in MLTT!

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 10 / 32

I choose you, Sigma-chu

CT∃ := Π(f : N → N). ∃p : P. calc f p

Π(x : A). ∃(y : B).P does not magically turn into a function
i.e. choice does not hold over ∃ / ∃ is non-computational
does not endanger function extensionality
MLTT + CT∃ is known to be consistent (The Effective Topos™)

CTΣ := Π(f : N → N).Σp : P. calc f p

Dually, CTΣ is the hallmark of weird crap going on
Intuitionistic non-choice gives a quote function (N → N) → N
Consistency of MLTT + CTΣ is not established

This is the one we really want to have in MLTT!

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 10 / 32

I choose you, Sigma-chu

CT∃ := Π(f : N → N). ∃p : P. calc f p

Π(x : A). ∃(y : B).P does not magically turn into a function
i.e. choice does not hold over ∃ / ∃ is non-computational
does not endanger function extensionality
MLTT + CT∃ is known to be consistent (The Effective Topos™)

CTΣ := Π(f : N → N).Σp : P. calc f p

Dually, CTΣ is the hallmark of weird crap going on
Intuitionistic non-choice gives a quote function (N → N) → N
Consistency of MLTT + CTΣ is not established

This is the one we really want to have in MLTT!

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 10 / 32

I choose you, Sigma-chu

CT∃ := Π(f : N → N). ∃p : P. calc f p

Π(x : A). ∃(y : B).P does not magically turn into a function
i.e. choice does not hold over ∃ / ∃ is non-computational
does not endanger function extensionality
MLTT + CT∃ is known to be consistent (The Effective Topos™)

CTΣ := Π(f : N → N).Σp : P. calc f p

Dually, CTΣ is the hallmark of weird crap going on
Intuitionistic non-choice gives a quote function (N → N) → N
Consistency of MLTT + CTΣ is not established

This is the one we really want to have in MLTT!
P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 10 / 32

Second-hand “Quotes” from Anonymous Experts∗∗

∗∗ All these quotes are a pure work of fiction. Serving suggestion. May contain phthalates.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 11 / 32

Somebody is Wrong on the Internet

Are you seriously kidding me?

In MLTT, functions are already frigging programs!
CTΣ holds externally, it’s called extraction (duh)

for all ⊢ f : N → N there is ⊢ p : P s.t. ⊢ calc f p

It is hence obvious that CTΣ is compatible with MLTT
We just have to handle those pesky open terms!

A tiny detail...?

No: many properties are true externally but negated internally.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 12 / 32

Somebody is Wrong on the Internet

Are you seriously kidding me?

In MLTT, functions are already frigging programs!
CTΣ holds externally, it’s called extraction (duh)

for all ⊢ f : N → N there is ⊢ p : P s.t. ⊢ calc f p

It is hence obvious that CTΣ is compatible with MLTT
We just have to handle those pesky open terms!

A tiny detail...?

No: many properties are true externally but negated internally.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 12 / 32

Somebody is Wrong on the Internet

Are you seriously kidding me?

In MLTT, functions are already frigging programs!
CTΣ holds externally, it’s called extraction (duh)

for all ⊢ f : N → N there is ⊢ p : P s.t. ⊢ calc f p

It is hence obvious that CTΣ is compatible with MLTT
We just have to handle those pesky open terms!

A tiny detail...?

No: many properties are true externally but negated internally.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 12 / 32

The Plot Thickens

The literature is not very engaging either!

One line of work (implying T.S.) proves the consistency of mTT + CT.
⇝ a strict subset of MLTT, without the ξ rule.

Γ, x : A ⊢ M ≡ N : B
Γ ⊢ λx : A.M ≡ λx : A.N : Πx : A.B

... this is throwing the baby with the bathwater

Another line of work claims to prove the consistency of MLTT + CT.
Not even clear what theory they implement😕
Proved in three papers, not peer-reviewed, totalling > 120 pages! 😱
Using game semantics! 😨

ABANDON THREAD

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 13 / 32

The Plot Thickens

The literature is not very engaging either!

One line of work (implying T.S.) proves the consistency of mTT + CT.
⇝ a strict subset of MLTT, without the ξ rule.

Γ, x : A ⊢ M ≡ N : B
Γ ⊢ λx : A.M ≡ λx : A.N : Πx : A.B

... this is throwing the baby with the bathwater

Another line of work claims to prove the consistency of MLTT + CT.
Not even clear what theory they implement😕
Proved in three papers, not peer-reviewed, totalling > 120 pages! 😱
Using game semantics! 😨

ABANDON THREAD

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 13 / 32

The Plot Thickens

The literature is not very engaging either!

One line of work (implying T.S.) proves the consistency of mTT + CT.
⇝ a strict subset of MLTT, without the ξ rule.

Γ, x : A ⊢ M ≡ N : B
Γ ⊢ λx : A.M ≡ λx : A.N : Πx : A.B

... this is throwing the baby with the bathwater

Another line of work claims to prove the consistency of MLTT + CT.
Not even clear what theory they implement😕
Proved in three papers, not peer-reviewed, totalling > 120 pages! 😱
Using game semantics! 😨

ABANDON THREAD

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 13 / 32

The Plot Thickens

The literature is not very engaging either!

One line of work (implying T.S.) proves the consistency of mTT + CT.
⇝ a strict subset of MLTT, without the ξ rule.

Γ, x : A ⊢ M ≡ N : B
Γ ⊢ λx : A.M ≡ λx : A.N : Πx : A.B

... this is throwing the baby with the bathwater

Another line of work claims to prove the consistency of MLTT + CT.

Not even clear what theory they implement😕
Proved in three papers, not peer-reviewed, totalling > 120 pages! 😱
Using game semantics! 😨

ABANDON THREAD

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 13 / 32

The Plot Thickens

The literature is not very engaging either!

One line of work (implying T.S.) proves the consistency of mTT + CT.
⇝ a strict subset of MLTT, without the ξ rule.

Γ, x : A ⊢ M ≡ N : B
Γ ⊢ λx : A.M ≡ λx : A.N : Πx : A.B

... this is throwing the baby with the bathwater

Another line of work claims to prove the consistency of MLTT + CT.
Not even clear what theory they implement😕

Proved in three papers, not peer-reviewed, totalling > 120 pages! 😱
Using game semantics! 😨

ABANDON THREAD

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 13 / 32

The Plot Thickens

The literature is not very engaging either!

One line of work (implying T.S.) proves the consistency of mTT + CT.
⇝ a strict subset of MLTT, without the ξ rule.

Γ, x : A ⊢ M ≡ N : B
Γ ⊢ λx : A.M ≡ λx : A.N : Πx : A.B

... this is throwing the baby with the bathwater

Another line of work claims to prove the consistency of MLTT + CT.
Not even clear what theory they implement😕
Proved in three papers, not peer-reviewed, totalling > 120 pages! 😱

Using game semantics! 😨

ABANDON THREAD

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 13 / 32

The Plot Thickens

The literature is not very engaging either!

One line of work (implying T.S.) proves the consistency of mTT + CT.
⇝ a strict subset of MLTT, without the ξ rule.

Γ, x : A ⊢ M ≡ N : B
Γ ⊢ λx : A.M ≡ λx : A.N : Πx : A.B

... this is throwing the baby with the bathwater

Another line of work claims to prove the consistency of MLTT + CT.
Not even clear what theory they implement😕
Proved in three papers, not peer-reviewed, totalling > 120 pages! 😱
Using game semantics! 😨

ABANDON THREAD

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 13 / 32

The Plot Thickens

The literature is not very engaging either!

One line of work (implying T.S.) proves the consistency of mTT + CT.
⇝ a strict subset of MLTT, without the ξ rule.

Γ, x : A ⊢ M ≡ N : B
Γ ⊢ λx : A.M ≡ λx : A.N : Πx : A.B

... this is throwing the baby with the bathwater

Another line of work claims to prove the consistency of MLTT + CT.
Not even clear what theory they implement😕
Proved in three papers, not peer-reviewed, totalling > 120 pages! 😱
Using game semantics! 😨

ABANDON THREAD
P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 13 / 32

The Yes Needs The No To Win Against The No

But consistency of MLTT + CTΣ is obviously trivial...

Only one way out: prove that I am right!

Define an extension of MLTT proving CTΣ

Prove it’s consistent / canonical / strongly normalizing / ...
Formalize this in Coq otherwise nobody believes you

Spoiler alert: we will sketch that in the rest of the talk.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 14 / 32

The Yes Needs The No To Win Against The No

But consistency of MLTT + CTΣ is obviously trivial...

Only one way out: prove that I am right!

Define an extension of MLTT proving CTΣ

Prove it’s consistent / canonical / strongly normalizing / ...
Formalize this in Coq otherwise nobody believes you

Spoiler alert: we will sketch that in the rest of the talk.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 14 / 32

The Yes Needs The No To Win Against The No

But consistency of MLTT + CTΣ is obviously trivial...

Only one way out: prove that I am right!

Define an extension of MLTT proving CTΣ

Prove it’s consistent / canonical / strongly normalizing / ...
Formalize this in Coq otherwise nobody believes you

Spoiler alert: we will sketch that in the rest of the talk.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 14 / 32

“MLTT”
We define “MLTT” as the extension of MLTT with two new primitives.

M,N := . . . | ϙ M | Ϙ M N

Γ ⊢ M : N → N
Γ ⊢ ϙ M : P

Γ ⊢ M : N → N Γ ⊢ N : N
Γ ⊢ Ϙ M N : eval (ϙ M) N (M N)

where
eval : P → N → N → □
eval P N V ∼ program P applied to N normalizes to V

The system is parameterized by a computation model, given by:
A meta-function ⌈·⌉ : term ⇒ N (your favourite Gödel numbering)
An MLTT function ⊢ run : P → N → P(N)

where P(A) := N → option A is the partiality monad
and eval is derived from run through standard combinators

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 15 / 32

“MLTT”
We define “MLTT” as the extension of MLTT with two new primitives.

M,N := . . . | ϙ M | Ϙ M N

Γ ⊢ M : N → N
Γ ⊢ ϙ M : P

Γ ⊢ M : N → N Γ ⊢ N : N
Γ ⊢ Ϙ M N : eval (ϙ M) N (M N)

where
eval : P → N → N → □
eval P N V ∼ program P applied to N normalizes to V

The system is parameterized by a computation model, given by:
A meta-function ⌈·⌉ : term ⇒ N (your favourite Gödel numbering)
An MLTT function ⊢ run : P → N → P(N)

where P(A) := N → option A is the partiality monad
and eval is derived from run through standard combinators

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 15 / 32

“MLTT”
We define “MLTT” as the extension of MLTT with two new primitives.

M,N := . . . | ϙ M | Ϙ M N

Γ ⊢ M : N → N
Γ ⊢ ϙ M : P

Γ ⊢ M : N → N Γ ⊢ N : N
Γ ⊢ Ϙ M N : eval (ϙ M) N (M N)

where
eval : P → N → N → □
eval P N V ∼ program P applied to N normalizes to V

The system is parameterized by a computation model, given by:
A meta-function ⌈·⌉ : term ⇒ N (your favourite Gödel numbering)
An MLTT function ⊢ run : P → N → P(N)

where P(A) := N → option A is the partiality monad
and eval is derived from run through standard combinators

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 15 / 32

“MLTT”
We define “MLTT” as the extension of MLTT with two new primitives.

M,N := . . . | ϙ M | Ϙ M N

Γ ⊢ M : N → N
Γ ⊢ ϙ M : P

Γ ⊢ M : N → N Γ ⊢ N : N
Γ ⊢ Ϙ M N : eval (ϙ M) N (M N)

where
eval : P → N → N → □
eval P N V ∼ program P applied to N normalizes to V

The system is parameterized by a computation model, given by:
A meta-function ⌈·⌉ : term ⇒ N (your favourite Gödel numbering)

An MLTT function ⊢ run : P → N → P(N)

where P(A) := N → option A is the partiality monad
and eval is derived from run through standard combinators

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 15 / 32

“MLTT”
We define “MLTT” as the extension of MLTT with two new primitives.

M,N := . . . | ϙ M | Ϙ M N

Γ ⊢ M : N → N
Γ ⊢ ϙ M : P

Γ ⊢ M : N → N Γ ⊢ N : N
Γ ⊢ Ϙ M N : eval (ϙ M) N (M N)

where
eval : P → N → N → □
eval P N V ∼ program P applied to N normalizes to V

The system is parameterized by a computation model, given by:
A meta-function ⌈·⌉ : term ⇒ N (your favourite Gödel numbering)
An MLTT function ⊢ run : P → N → P(N)

where P(A) := N → option A is the partiality monad
and eval is derived from run through standard combinators

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 15 / 32

The Hard Part

What is the hard part?

Conversion!

Γ ⊢ M : B Γ ⊢ A ≡ B
Γ ⊢ M : A

In MLTT the type system embeds the runtime.

We need to ensure that convertible terms are quoted to the same number.

Remember that CTΣ is inconsistent with funext.
Thankfully conversion is intensional in MLTT...

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 16 / 32

The Hard Part

What is the hard part?

Conversion!

Γ ⊢ M : B Γ ⊢ A ≡ B
Γ ⊢ M : A

In MLTT the type system embeds the runtime.

We need to ensure that convertible terms are quoted to the same number.

Remember that CTΣ is inconsistent with funext.
Thankfully conversion is intensional in MLTT...

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 16 / 32

The Hard Part

What is the hard part?

Conversion!

Γ ⊢ M : B Γ ⊢ A ≡ B
Γ ⊢ M : A

In MLTT the type system embeds the runtime.

We need to ensure that convertible terms are quoted to the same number.

Remember that CTΣ is inconsistent with funext.
Thankfully conversion is intensional in MLTT...

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 16 / 32

The Hard Part

What is the hard part?

Conversion!

Γ ⊢ M : B Γ ⊢ A ≡ B
Γ ⊢ M : A

In MLTT the type system embeds the runtime.

We need to ensure that convertible terms are quoted to the same number.

Remember that CTΣ is inconsistent with funext.
Thankfully conversion is intensional in MLTT...

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 16 / 32

Naive Solution

We need to ensure that convertible terms are quoted to the same number.

Assume we can magically choose one representative per convertibility class.

Γ ⊢ M ≡ N : N → N iff ⌈ε(M)⌉ = ⌈ε(N)⌉

Unfortunately, this is not going to be stable by substitution.

ε(M{x := N}) ̸= ε(M){x := ε(N)}

Immediate breakage of conversion!

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 17 / 32

Naive Solution

We need to ensure that convertible terms are quoted to the same number.

Assume we can magically choose one representative per convertibility class.

Γ ⊢ M ≡ N : N → N iff ⌈ε(M)⌉ = ⌈ε(N)⌉

Unfortunately, this is not going to be stable by substitution.

ε(M{x := N}) ̸= ε(M){x := ε(N)}

Immediate breakage of conversion!

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 17 / 32

The Sigh Rule

This is the problem solved by mTT.

Remember the ξ rule:
Γ, x : A ⊢ M ≡ N : B

Γ ⊢ λx : A.M ≡ λx : A.N : Πx : A.B

No ξ rule ∼ conversion on functions implies syntactic equality

A violent way to resolve the problem!

We need something else.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 18 / 32

The Sigh Rule

This is the problem solved by mTT.

Remember the ξ rule:
Γ, x : A ⊢ M ≡ N : B

Γ ⊢ λx : A.M ≡ λx : A.N : Πx : A.B

No ξ rule ∼ conversion on functions implies syntactic equality

A violent way to resolve the problem!

We need something else.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 18 / 32

The Sigh Rule

This is the problem solved by mTT.

Remember the ξ rule:
Γ, x : A ⊢ M ≡ N : B

Γ ⊢ λx : A.M ≡ λx : A.N : Πx : A.B

No ξ rule ∼ conversion on functions implies syntactic equality

A violent way to resolve the problem!

We need something else.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 18 / 32

The major insight for “MLTT”

Open terms are a lie! It's a conspiracy from Big Variable!

(Source: X.)

ϙ and Ϙ will only compute on (deep normal) closed terms

Γ ⊢ M ≡ N : N → N

Γ ⊢ ϙ M ≡ ϙ N : P

Γ ⊢ M ≡ M′ : N → N Γ ⊢ N ≡ N′ : N

Γ ⊢ Ϙ M N ≡ Ϙ M′ N′ : eval (ϙ M) N (M N)

Γ ⊢ M : N → N M closed dnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

Γ ⊢ M : N → N M,P closed dnf n ∈ N Γ ⊢ P : eval ⌈M⌉ n (M n)
Γ ⊢ Ϙ M n ≡ P : eval ⌈M⌉ n (M n)

This One Weird Trick
Closed terms are stable by substitution!

(Some additional technicalities to validate η-laws.)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 19 / 32

The major insight for “MLTT”

Open terms are a lie! It's a conspiracy from Big Variable!

(Source: X.)

ϙ and Ϙ will only compute on (deep normal) closed terms

Γ ⊢ M ≡ N : N → N

Γ ⊢ ϙ M ≡ ϙ N : P

Γ ⊢ M ≡ M′ : N → N Γ ⊢ N ≡ N′ : N

Γ ⊢ Ϙ M N ≡ Ϙ M′ N′ : eval (ϙ M) N (M N)

Γ ⊢ M : N → N M closed dnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

Γ ⊢ M : N → N M,P closed dnf n ∈ N Γ ⊢ P : eval ⌈M⌉ n (M n)
Γ ⊢ Ϙ M n ≡ P : eval ⌈M⌉ n (M n)

This One Weird Trick
Closed terms are stable by substitution!

(Some additional technicalities to validate η-laws.)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 19 / 32

The major insight for “MLTT”

Open terms are a lie! It's a conspiracy from Big Variable!

(Source: X.)

ϙ and Ϙ will only compute on (deep normal) closed terms

Γ ⊢ M ≡ N : N → N

Γ ⊢ ϙ M ≡ ϙ N : P

Γ ⊢ M ≡ M′ : N → N Γ ⊢ N ≡ N′ : N

Γ ⊢ Ϙ M N ≡ Ϙ M′ N′ : eval (ϙ M) N (M N)

Γ ⊢ M : N → N M closed dnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

Γ ⊢ M : N → N M,P closed dnf n ∈ N Γ ⊢ P : eval ⌈M⌉ n (M n)
Γ ⊢ Ϙ M n ≡ P : eval ⌈M⌉ n (M n)

This One Weird Trick
Closed terms are stable by substitution!

(Some additional technicalities to validate η-laws.)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 19 / 32

The major insight for “MLTT”

Open terms are a lie! It's a conspiracy from Big Variable!

(Source: X.)

ϙ and Ϙ will only compute on (deep normal) closed terms

Γ ⊢ M ≡ N : N → N

Γ ⊢ ϙ M ≡ ϙ N : P

Γ ⊢ M ≡ M′ : N → N Γ ⊢ N ≡ N′ : N

Γ ⊢ Ϙ M N ≡ Ϙ M′ N′ : eval (ϙ M) N (M N)

Γ ⊢ M : N → N M closed dnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

Γ ⊢ M : N → N M,P closed dnf n ∈ N Γ ⊢ P : eval ⌈M⌉ n (M n)
Γ ⊢ Ϙ M n ≡ P : eval ⌈M⌉ n (M n)

This One Weird Trick
Closed terms are stable by substitution!

(Some additional technicalities to validate η-laws.)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 19 / 32

The major insight for “MLTT”

Open terms are a lie! It's a conspiracy from Big Variable!

(Source: X.)

ϙ and Ϙ will only compute on (deep normal) closed terms

Γ ⊢ M ≡ N : N → N

Γ ⊢ ϙ M ≡ ϙ N : P

Γ ⊢ M ≡ M′ : N → N Γ ⊢ N ≡ N′ : N

Γ ⊢ Ϙ M N ≡ Ϙ M′ N′ : eval (ϙ M) N (M N)

Γ ⊢ M : N → N M closed dnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

Γ ⊢ M : N → N M,P closed dnf n ∈ N Γ ⊢ P : eval ⌈M⌉ n (M n)
Γ ⊢ Ϙ M n ≡ P : eval ⌈M⌉ n (M n)

This One Weird Trick
Closed terms are stable by substitution!

(Some additional technicalities to validate η-laws.)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 19 / 32

The major insight for “MLTT”

Open terms are a lie! It's a conspiracy from Big Variable!

(Source: X.)

ϙ and Ϙ will only compute on (deep normal) closed terms

Γ ⊢ M ≡ N : N → N

Γ ⊢ ϙ M ≡ ϙ N : P

Γ ⊢ M ≡ M′ : N → N Γ ⊢ N ≡ N′ : N

Γ ⊢ Ϙ M N ≡ Ϙ M′ N′ : eval (ϙ M) N (M N)

Γ ⊢ M : N → N M closed dnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

Γ ⊢ M : N → N M,P closed dnf n ∈ N Γ ⊢ P : eval ⌈M⌉ n (M n)
Γ ⊢ Ϙ M n ≡ P : eval ⌈M⌉ n (M n)

This One Weird Trick
Closed terms are stable by substitution!

(Some additional technicalities to validate η-laws.)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 19 / 32

The major insight for “MLTT”

Open terms are a lie! It's a conspiracy from Big Variable!

(Source: X.)

ϙ and Ϙ will only compute on (deep normal) closed terms

Γ ⊢ M ≡ N : N → N

Γ ⊢ ϙ M ≡ ϙ N : P

Γ ⊢ M ≡ M′ : N → N Γ ⊢ N ≡ N′ : N

Γ ⊢ Ϙ M N ≡ Ϙ M′ N′ : eval (ϙ M) N (M N)

Γ ⊢ M : N → N M closed dnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

Γ ⊢ M : N → N M,P closed dnf n ∈ N Γ ⊢ P : eval ⌈M⌉ n (M n)
Γ ⊢ Ϙ M n ≡ P : eval ⌈M⌉ n (M n)

This One Weird Trick
Closed terms are stable by substitution!

(Some additional technicalities to validate η-laws.)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 19 / 32

The major insight for “MLTT”

Open terms are a lie! It's a conspiracy from Big Variable!

(Source: X.)

ϙ and Ϙ will only compute on (deep normal) closed terms

Γ ⊢ M ≡ N : N → N

Γ ⊢ ϙ M ≡ ϙ N : P

Γ ⊢ M ≡ M′ : N → N Γ ⊢ N ≡ N′ : N

Γ ⊢ Ϙ M N ≡ Ϙ M′ N′ : eval (ϙ M) N (M N)

Γ ⊢ M : N → N M closed dnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

Γ ⊢ M : N → N M,P closed dnf n ∈ N Γ ⊢ P : eval ⌈M⌉ n (M n)
Γ ⊢ Ϙ M n ≡ P : eval ⌈M⌉ n (M n)

This One Weird Trick
Closed terms are stable by substitution!

(Some additional technicalities to validate η-laws.)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 19 / 32

The Secret Sauce

These functions return hereditarily positive types (aka Σ0
1 formulae)

Γ ⊢ M : N → N M closed dnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

Γ ⊢ M : N → N M,P closed dnf n ∈ N Γ ⊢ P : eval ⌈M⌉ n (M n)
Γ ⊢ Ϙ M n ≡ P : eval ⌈M⌉ n (M n)

eval : P → N → N → □
eval f n v := Σk : N. step k (run f n) v

step : N → (N → option N) → N → □
step O p v := p O = Some v
step (S k) p v := (p k = None)× (step k (p ◦ S) v)

These types have canonical “absolute” values!

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 20 / 32

The Secret Sauce

These functions return hereditarily positive types (aka Σ0
1 formulae)

Γ ⊢ M : N → N M closed dnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

Γ ⊢ M : N → N M,P closed dnf n ∈ N Γ ⊢ P : eval ⌈M⌉ n (M n)
Γ ⊢ Ϙ M n ≡ P : eval ⌈M⌉ n (M n)

eval : P → N → N → □
eval f n v := Σk : N. step k (run f n) v

step : N → (N → option N) → N → □
step O p v := p O = Some v
step (S k) p v := (p k = None)× (step k (p ◦ S) v)

These types have canonical “absolute” values!

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 20 / 32

The Secret Sauce

These functions return hereditarily positive types (aka Σ0
1 formulae)

Γ ⊢ M : N → N M closed dnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

Γ ⊢ M : N → N M,P closed dnf n ∈ N Γ ⊢ P : eval ⌈M⌉ n (M n)
Γ ⊢ Ϙ M n ≡ P : eval ⌈M⌉ n (M n)

eval : P → N → N → □
eval f n v := Σk : N. step k (run f n) v

step : N → (N → option N) → N → □
step O p v := p O = Some v
step (S k) p v := (p k = None)× (step k (p ◦ S) v)

These types have canonical “absolute” values!

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 20 / 32

The Secret Sauce

These functions return hereditarily positive types (aka Σ0
1 formulae)

Γ ⊢ M : N → N M closed dnf
Γ ⊢ ϙ M ≡ ⌈M⌉ : P

Γ ⊢ M : N → N M,P closed dnf n ∈ N Γ ⊢ P : eval ⌈M⌉ n (M n)
Γ ⊢ Ϙ M n ≡ P : eval ⌈M⌉ n (M n)

eval : P → N → N → □
eval f n v := Σk : N. step k (run f n) v

step : N → (N → option N) → N → □
step O p v := p O = Some v
step (S k) p v := (p k = None)× (step k (p ◦ S) v)

These types have canonical “absolute” values!

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 20 / 32

The Basic Model

A variant of Abel’s style NbE model in (small) IR

Type formation is defined inductively: Γ ⊩ A
A ⇒∗

wh N

rN : Γ ⊩ A
A ⇒∗

wh Π(x : X).Y p : Γ ⊩ X q : Γ, x : X ⊩ Y
rΠ p q : Γ ⊩ A

. . .

Term typedness Γ ⊩ M : A | p is defined by recursion on p : Γ ⊩ A

Γ ⊩ M : N | rN := Γ ⊩ M ∈ N
Γ ⊩ M : Π(x : A).B | rΠ p q :=

Π(ρ : ∆ ≤ Γ). (∆ ⊩ a : A⟨ρ⟩ | p) → ∆ ⊩ M⟨ρ⟩ a : B{ρ, a} | q

M ⇒∗
wh O

Γ ⊩ M ∈ N

M ⇒∗
wh S N Γ ⊩ N ∈ N

Γ ⊩ M ∈ N

Γ ⊢ n : N wne (n)
Γ ⊩ n ∈ N

(ditto for conversion) (+ second layer of validity aka closure by substitution)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 21 / 32

The Basic Model

A variant of Abel’s style NbE model in (small) IR

Type formation is defined inductively: Γ ⊩ A
A ⇒∗

wh N

rN : Γ ⊩ A
A ⇒∗

wh Π(x : X).Y p : Γ ⊩ X q : Γ, x : X ⊩ Y
rΠ p q : Γ ⊩ A

. . .

Term typedness Γ ⊩ M : A | p is defined by recursion on p : Γ ⊩ A

Γ ⊩ M : N | rN := Γ ⊩ M ∈ N
Γ ⊩ M : Π(x : A).B | rΠ p q :=

Π(ρ : ∆ ≤ Γ). (∆ ⊩ a : A⟨ρ⟩ | p) → ∆ ⊩ M⟨ρ⟩ a : B{ρ, a} | q

M ⇒∗
wh O

Γ ⊩ M ∈ N

M ⇒∗
wh S N Γ ⊩ N ∈ N

Γ ⊩ M ∈ N

Γ ⊢ n : N wne (n)
Γ ⊩ n ∈ N

(ditto for conversion) (+ second layer of validity aka closure by substitution)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 21 / 32

The Basic Model

A variant of Abel’s style NbE model in (small) IR

Type formation is defined inductively: Γ ⊩ A
A ⇒∗

wh N

rN : Γ ⊩ A
A ⇒∗

wh Π(x : X).Y p : Γ ⊩ X q : Γ, x : X ⊩ Y
rΠ p q : Γ ⊩ A

. . .

Term typedness Γ ⊩ M : A | p is defined by recursion on p : Γ ⊩ A

Γ ⊩ M : N | rN := Γ ⊩ M ∈ N
Γ ⊩ M : Π(x : A).B | rΠ p q :=

Π(ρ : ∆ ≤ Γ). (∆ ⊩ a : A⟨ρ⟩ | p) → ∆ ⊩ M⟨ρ⟩ a : B{ρ, a} | q

M ⇒∗
wh O

Γ ⊩ M ∈ N

M ⇒∗
wh S N Γ ⊩ N ∈ N

Γ ⊩ M ∈ N

Γ ⊢ n : N wne (n)
Γ ⊩ n ∈ N

(ditto for conversion) (+ second layer of validity aka closure by substitution)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 21 / 32

The Basic Model

A variant of Abel’s style NbE model in (small) IR

Type formation is defined inductively: Γ ⊩ A
A ⇒∗

wh N

rN : Γ ⊩ A
A ⇒∗

wh Π(x : X).Y p : Γ ⊩ X q : Γ, x : X ⊩ Y
rΠ p q : Γ ⊩ A

. . .

Term typedness Γ ⊩ M : A | p is defined by recursion on p : Γ ⊩ A

Γ ⊩ M : N | rN := Γ ⊩ M ∈ N
Γ ⊩ M : Π(x : A).B | rΠ p q :=

Π(ρ : ∆ ≤ Γ). (∆ ⊩ a : A⟨ρ⟩ | p) → ∆ ⊩ M⟨ρ⟩ a : B{ρ, a} | q

M ⇒∗
wh O

Γ ⊩ M ∈ N

M ⇒∗
wh S N Γ ⊩ N ∈ N

Γ ⊩ M ∈ N

Γ ⊢ n : N wne (n)
Γ ⊩ n ∈ N

(ditto for conversion) (+ second layer of validity aka closure by substitution)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 21 / 32

The Basic Model for Dummies

This is just realizability with (a lot of) bells and whistles

Γ ⊩ M : A | pA ∼ M wh-normalizes to a value at type A

Being a value at type A is defined by case-analysis on A.

Importantly, all well-typed neutrals are values of the corresponding type.

wne (x)
wne (n)

wne (n M)

wne (n)
wne (Nrec P TO TS n)

. . .

This is the standard and correct way to handle open terms.

(They don’t exist anyways, remember?)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 22 / 32

The Basic Model for Dummies

This is just realizability with (a lot of) bells and whistles

Γ ⊩ M : A | pA ∼ M wh-normalizes to a value at type A

Being a value at type A is defined by case-analysis on A.

Importantly, all well-typed neutrals are values of the corresponding type.

wne (x)
wne (n)

wne (n M)

wne (n)
wne (Nrec P TO TS n)

. . .

This is the standard and correct way to handle open terms.

(They don’t exist anyways, remember?)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 22 / 32

The Basic Model for Dummies

This is just realizability with (a lot of) bells and whistles

Γ ⊩ M : A | pA ∼ M wh-normalizes to a value at type A

Being a value at type A is defined by case-analysis on A.

Importantly, all well-typed neutrals are values of the corresponding type.

wne (x)
wne (n)

wne (n M)

wne (n)
wne (Nrec P TO TS n)

. . .

This is the standard and correct way to handle open terms.

(They don’t exist anyways, remember?)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 22 / 32

The Basic Model for Dummies

This is just realizability with (a lot of) bells and whistles

Γ ⊩ M : A | pA ∼ M wh-normalizes to a value at type A

Being a value at type A is defined by case-analysis on A.

Importantly, all well-typed neutrals are values of the corresponding type.

wne (x)
wne (n)

wne (n M)

wne (n)
wne (Nrec P TO TS n)

. . .

This is the standard and correct way to handle open terms.

(They don’t exist anyways, remember?)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 22 / 32

Comparison with standard NbE
Type interpretation unchanged

No funny business with effects or whatnot
In particular we have the same canonicity properties

Differences with Abel’s model
⇝ annotate reducibility proofs with deep normalization

Γ ⊩ M : A | pA implies M ⇓deep M0 with Γ ⊢ M ≡ M0 : A

⇝ normal / neutral terms generalized into deep and weak-head variants
⇝ extend neutrals to contain quotes blocked on open terms

dnf (M) M not closed
wne (ϙ M)

dnf (M) dnf (N) M or N not closed
wne (Ϙ M N)

... and that’s about it.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 23 / 32

Comparison with standard NbE
Type interpretation unchanged

No funny business with effects or whatnot
In particular we have the same canonicity properties

Differences with Abel’s model
⇝ annotate reducibility proofs with deep normalization

Γ ⊩ M : A | pA implies M ⇓deep M0 with Γ ⊢ M ≡ M0 : A

⇝ normal / neutral terms generalized into deep and weak-head variants
⇝ extend neutrals to contain quotes blocked on open terms

dnf (M) M not closed
wne (ϙ M)

dnf (M) dnf (N) M or N not closed
wne (Ϙ M N)

... and that’s about it.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 23 / 32

Comparison with standard NbE
Type interpretation unchanged

No funny business with effects or whatnot
In particular we have the same canonicity properties

Differences with Abel’s model
⇝ annotate reducibility proofs with deep normalization

Γ ⊩ M : A | pA implies M ⇓deep M0 with Γ ⊢ M ≡ M0 : A

⇝ normal / neutral terms generalized into deep and weak-head variants
⇝ extend neutrals to contain quotes blocked on open terms

dnf (M) M not closed
wne (ϙ M)

dnf (M) dnf (N) M or N not closed
wne (Ϙ M N)

... and that’s about it.
P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 23 / 32

Some Dust under the Rug

“MLTT” is reduction-free. I didn’t define properly reduction!

For the MLTT fragment, weak-head reduction is standard.
Deep reduction is just iterated weak-head reduction.

M N ⇒wh R
M N ⇒deep R

wne (M) M ⇒wh R
M N ⇒deep R N

dne (M) N ⇒wh R
M N ⇒deep M R

In particular, it is deterministic (critical!)

Reduction for ϙ is straightforward

M ⇒deep R
ϙ M ⇒wh ϙ R

M closed dnf
ϙ M ⇒wh ⌈M⌉

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 24 / 32

Some Dust under the Rug

“MLTT” is reduction-free. I didn’t define properly reduction!

For the MLTT fragment, weak-head reduction is standard.
Deep reduction is just iterated weak-head reduction.

M N ⇒wh R
M N ⇒deep R

wne (M) M ⇒wh R
M N ⇒deep R N

dne (M) N ⇒wh R
M N ⇒deep M R

In particular, it is deterministic (critical!)

Reduction for ϙ is straightforward

M ⇒deep R
ϙ M ⇒wh ϙ R

M closed dnf
ϙ M ⇒wh ⌈M⌉

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 24 / 32

Don’t Quote Me on That

The only tricky case is the rule for Ϙ

Γ ⊢ M : N → N Γ ⊢ N : N

Γ ⊢ Ϙ M N : eval (ϙ M) N (M N)

⇝ congruence as expected

M ⇒deep R
Ϙ M N ⇒wh Ϙ R N

M dnf N ⇒deep R
Ϙ M N ⇒wh Ϙ M R

⇝ for the actual reduction, basically compute the unique fuel

M closed, dnf k smallest integer s.t. M n ⇓k v
Ϙ M n ⇒wh (k, refl, . . . , refl)

Fact 1: Ϙ M n : eval ⌈M⌉ n (M n) ≡ Σk : N. step k (run ⌈M⌉ n) (M n)

Fact 2: step k p v := (p O = None)× . . .× (p k − 1 = None)× (p k = Some v)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 25 / 32

Don’t Quote Me on That

The only tricky case is the rule for Ϙ

Γ ⊢ M : N → N Γ ⊢ N : N

Γ ⊢ Ϙ M N : eval (ϙ M) N (M N)

⇝ congruence as expected

M ⇒deep R
Ϙ M N ⇒wh Ϙ R N

M dnf N ⇒deep R
Ϙ M N ⇒wh Ϙ M R

⇝ for the actual reduction, basically compute the unique fuel

M closed, dnf k smallest integer s.t. M n ⇓k v
Ϙ M n ⇒wh (k, refl, . . . , refl)

Fact 1: Ϙ M n : eval ⌈M⌉ n (M n) ≡ Σk : N. step k (run ⌈M⌉ n) (M n)

Fact 2: step k p v := (p O = None)× . . .× (p k − 1 = None)× (p k = Some v)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 25 / 32

Don’t Quote Me on That

The only tricky case is the rule for Ϙ

Γ ⊢ M : N → N Γ ⊢ N : N

Γ ⊢ Ϙ M N : eval (ϙ M) N (M N)

⇝ congruence as expected

M ⇒deep R
Ϙ M N ⇒wh Ϙ R N

M dnf N ⇒deep R
Ϙ M N ⇒wh Ϙ M R

⇝ for the actual reduction, basically compute the unique fuel

M closed, dnf k smallest integer s.t. M n ⇓k v
Ϙ M n ⇒wh (k, refl, . . . , refl)

Fact 1: Ϙ M n : eval ⌈M⌉ n (M n) ≡ Σk : N. step k (run ⌈M⌉ n) (M n)

Fact 2: step k p v := (p O = None)× . . .× (p k − 1 = None)× (p k = Some v)
P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 25 / 32

L’η de droit

Some technical details to handle η-laws

Γ ⊢ M : Π(x : A).B x ̸∈ M
Γ ⊢ λx : A.M x ≡ M : Π(x : A).B

Γ ⊢ M : Σ(x : A).B
Γ ⊢ ⟨M.fst,M.snd⟩A,B ≡ M : Σ(x : A).B

Quoting has to be stable by these η laws!

We have to pick a canonical representative for dnf up to η

We cannot infer the type annotations
Thankfully they are not computationally relevant

Simple∗ solution
Quoting performs η-reduction and erasure of type annotations.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 26 / 32

L’η de droit

Some technical details to handle η-laws

Γ ⊢ M : Π(x : A).B x ̸∈ M
Γ ⊢ λx : A.M x ≡ M : Π(x : A).B

Γ ⊢ M : Σ(x : A).B
Γ ⊢ ⟨M.fst,M.snd⟩A,B ≡ M : Σ(x : A).B

Quoting has to be stable by these η laws!

We have to pick a canonical representative for dnf up to η

We cannot infer the type annotations
Thankfully they are not computationally relevant

Simple∗ solution
Quoting performs η-reduction and erasure of type annotations.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 26 / 32

L’η de droit

Some technical details to handle η-laws

Γ ⊢ M : Π(x : A).B x ̸∈ M
Γ ⊢ λx : A.M x ≡ M : Π(x : A).B

Γ ⊢ M : Σ(x : A).B
Γ ⊢ ⟨M.fst,M.snd⟩A,B ≡ M : Σ(x : A).B

Quoting has to be stable by these η laws!

We have to pick a canonical representative for dnf up to η

We cannot infer the type annotations
Thankfully they are not computationally relevant

Simple∗ solution
Quoting performs η-reduction and erasure of type annotations.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 26 / 32

The Theorems

We say that the computation model (⌈·⌉, run) is adequate when:
for all M ∈ term and n, r, k ∈ N, M n ⇓k r implies

run ⌈M⌉ n k ⇓ Some r
run ⌈M⌉ n k′ ⇓ None for all k′ < k

Theorem
If the model is adequate, the logical relation is sound and complete.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 27 / 32

The Theorems

We say that the computation model (⌈·⌉, run) is adequate when:
for all M ∈ term and n, r, k ∈ N, M n ⇓k r implies

run ⌈M⌉ n k ⇓ Some r
run ⌈M⌉ n k′ ⇓ None for all k′ < k

Theorem
If the model is adequate, the logical relation is sound and complete.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 27 / 32

A Taste of Not Nice and Dire

A sketch of why ϙ and Ϙ validate their type

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 28 / 32

The Real Results

Theorem (It’s written on the can)
“MLTT” proves CTΣ.

Reminder
Soundness means that a typable term is in the logical relation.

Theorem (Consistency)
There is no closed term of type ⊥ in “MLTT”.

Theorem (Canonicity)
All closed terms of type N in “MLTT” reduce to an integer.

Theorem (Normalization)
All typed terms of “MLTT” weak-head normalize.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 29 / 32

The Real Results

Theorem (It’s written on the can)
“MLTT” proves CTΣ.

Reminder
Soundness means that a typable term is in the logical relation.

Theorem (Consistency)
There is no closed term of type ⊥ in “MLTT”.

Theorem (Canonicity)
All closed terms of type N in “MLTT” reduce to an integer.

Theorem (Normalization)
All typed terms of “MLTT” weak-head normalize.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 29 / 32

The Real Results

Theorem (It’s written on the can)
“MLTT” proves CTΣ.

Reminder
Soundness means that a typable term is in the logical relation.

Theorem (Consistency)
There is no closed term of type ⊥ in “MLTT”.

Theorem (Canonicity)
All closed terms of type N in “MLTT” reduce to an integer.

Theorem (Normalization)
All typed terms of “MLTT” weak-head normalize.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 29 / 32

The Real Results

Theorem (It’s written on the can)
“MLTT” proves CTΣ.

Reminder
Soundness means that a typable term is in the logical relation.

Theorem (Consistency)
There is no closed term of type ⊥ in “MLTT”.

Theorem (Canonicity)
All closed terms of type N in “MLTT” reduce to an integer.

Theorem (Normalization)
All typed terms of “MLTT” weak-head normalize.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 29 / 32

The Real Results

Theorem (It’s written on the can)
“MLTT” proves CTΣ.

Reminder
Soundness means that a typable term is in the logical relation.

Theorem (Consistency)
There is no closed term of type ⊥ in “MLTT”.

Theorem (Canonicity)
All closed terms of type N in “MLTT” reduce to an integer.

Theorem (Normalization)
All typed terms of “MLTT” weak-head normalize.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 29 / 32

Formalization

Based on Adjedj et al. CPP’24 “Martin-Löf à la Coq” (using small IR)

The base theory contains one universe, Π / Σ types with η-laws, ⊥, N, Id

MLTT + ϙ fully formalized in Coq
As of 2023/12/01, Ϙ basically done, only annoying stuff remains
No expected surprise, just tedious proofs on untyped reduction.

A weak form of confluence
Proving that erasure is computationally harmless

Nightmare stuff I’m not gonna prove: the existence of adequate models

Typical instance of “conceptually trivial but practically impossible”.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 30 / 32

Formalization

Based on Adjedj et al. CPP’24 “Martin-Löf à la Coq” (using small IR)

The base theory contains one universe, Π / Σ types with η-laws, ⊥, N, Id

MLTT + ϙ fully formalized in Coq
As of 2023/12/01, Ϙ basically done, only annoying stuff remains

No expected surprise, just tedious proofs on untyped reduction.
A weak form of confluence
Proving that erasure is computationally harmless

Nightmare stuff I’m not gonna prove: the existence of adequate models

Typical instance of “conceptually trivial but practically impossible”.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 30 / 32

Formalization

Based on Adjedj et al. CPP’24 “Martin-Löf à la Coq” (using small IR)

The base theory contains one universe, Π / Σ types with η-laws, ⊥, N, Id

MLTT + ϙ fully formalized in Coq
As of 2023/12/01, Ϙ basically done, only annoying stuff remains
No expected surprise, just tedious proofs on untyped reduction.

A weak form of confluence
Proving that erasure is computationally harmless

Nightmare stuff I’m not gonna prove: the existence of adequate models

Typical instance of “conceptually trivial but practically impossible”.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 30 / 32

Formalization

Based on Adjedj et al. CPP’24 “Martin-Löf à la Coq” (using small IR)

The base theory contains one universe, Π / Σ types with η-laws, ⊥, N, Id

MLTT + ϙ fully formalized in Coq
As of 2023/12/01, Ϙ basically done, only annoying stuff remains
No expected surprise, just tedious proofs on untyped reduction.

A weak form of confluence
Proving that erasure is computationally harmless

Nightmare stuff I’m not gonna prove: the existence of adequate models

Typical instance of “conceptually trivial but practically impossible”.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 30 / 32

Conclusion

MLTT + CTΣ is obviously consistent, obviously
The model is a trivial adaptation of standard NbE models
Open terms do not exist. I have met them.
A sizable chunk proved in Coq
I must be missing something from our anonymous experts

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 31 / 32

Scribitur ad narrandum, non ad probandum

Thanks for your attention.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 32 / 32

