“A quote? .
In my type theory?

It's more likely than you think.

FREE CT CHECK! .

Pierre-Marie Pédrot

INRIA

2023/12/01

M Padrot (INRIA) A quote? Inmy type theory? 01/12/2023 173

All reasonable computational models are equivalent.

Today's Focus

All reasonable computational models are equivalent.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 2/32

Today's Focus

All reasonable computational models are equivalent.

The internal Church thesis in a theory T

From within 7, “all functions N — N are computable”.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 2/32

Horrible Encodings Ahead

Let's fix a simple type theory 7 containing arithmetic.

~> One can define the (decidable) Turing predicate:

p:N n:N k:N
T(p, n, k) : Prop

“T(p, n, k) holds iff the Turing machine p returns n in < k steps.”

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 3/32

Horrible Encodings Ahead

Let's fix a simple type theory 7 containing arithmetic.

~> One can define the (decidable) Turing predicate:

p:N n:N k:N
T(p, n, k) : Prop

“T(p, n, k) holds iff the Turing machine p returns n in < k steps.”

[NB: for readability, I'll henceforth write P := N to indicate numbers coding programs]

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 3/32

Horrible Encodings Ahead

Let's fix a simple type theory 7 containing arithmetic.

~> One can define the (decidable) Turing predicate:

p:N n:N k:N
T(p, n, k) : Prop

“T(p, n, k) holds iff the Turing machine p returns n in < k steps.”

[NB: for readability, I'll henceforth write P := N to indicate numbers coding programs]

~> We say that f: N — N is computed by p : P, written calc f p when

Frvn:N.3k:N.T(pen,fnk)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 3/32

Horrible Encodings Ahead

Let's fix a simple type theory 7 containing arithmetic.

~> One can define the (decidable) Turing predicate:

p:N n:N k:N
T(p, n, k) : Prop

“T(p, n, k) holds iff the Turing machine p returns n in < k steps.”

[NB: for readability, I'll henceforth write P := N to indicate numbers coding programs]

~> We say that f: N — N is computed by p : P, written calc f p when

Frvn:N.3k:N.T(pen,fnk)

T validates CT if 7 Vf: N — N.dp: P.calc f p

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 3/32

o Implies a mechanical world
o A staple of Russian constructivism
o In presence of choice, incompatible with funext

o In presence of choice, incompatible with classical logic

Implies a mechanical world
A staple of Russian constructivism

In presence of choice, incompatible with funext

In presence of choice, incompatible with classical logic

A fleeting panic

Is it actually consistent?

Implies a mechanical world
A staple of Russian constructivism

In presence of choice, incompatible with funext

In presence of choice, incompatible with classical logic

A fleeting panic

Is it actually consistent?

Ja.
(Mumble something about The {ffective Topea™ being a model of HOL + CT.)

Is this a logical foundation?

Is this a logical foundation?

Is this a programming language?

Blanket Propaganda

MARTIN-LOF'S TYPE THEORY

Is this a logical foundation?
Is this a programming language?

Is this crypto-realizability?

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 5/32

Blanket Propaganda

MARTIN-LOF'S TYPE THEORY

Is this a logical foundation?
Is this a programming language?

Is this crypto-realizability?

-

Is this Coq?

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 5/32

Blanket Propaganda

MARTIN-LOF'S TYPE THEORY

Is this a logical foundation?
Is this a programming language?

Is this crypto-realizability?

All of this and much more!

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 5/32

We Need to Go Deeper

A Legitimate Question

M Padrot (INRIA) Aquote? Inmytypetheoy? S N

We Need to Go Deeper

A Legitimate Question

“Can we extend Martin-Lo6f's Type Theory with CT?"

An Even More Legitimate Question

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 6/32

We Need to Go Deeper

A Legitimate Question

“Can we extend Martin-Lo6f's Type Theory with CT?"

An Even More Legitimate Question

This watch does not smell of mustard.

Simple type theory is cool, but a bit old-fashioned and limited
In MLTT, functions are already programs

MLTT + CT is the foundation for synthetic computability

© © o o

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 6/32

Synthetic Computability

‘Never suffer with Turing machines again!

Another instance of the synthetic trend

©

Prove computability results (almost) pain-free in Coq!

Synthetic homotopy: MLTT terms are paths

© © o

Synthetic computability: MLTT terms are programs

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 7/32

Synthetic Computability

‘Never suffer with Turing machines again!

o Another instance of the synthetic trend

o Prove computability results (almost) pain-free in Coq!
o Synthetic homotopy: MLTT terms are paths

o Synthetic computability: MLTT terms are programs

The one missing primitive: inspecting the code of a program.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 7/32

Synthetic Computability

‘Never suffer with Turing machines again!

o Another instance of the synthetic trend

o Prove computability results (almost) pain-free in Coq!
o Synthetic homotopy: MLTT terms are paths

o Synthetic computability: MLTT terms are programs

The one missing primitive: inspecting the code of a program.

That's exactly what CT gives you.

FII(f: N— N).X(p:P).calc fp

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023

7/32

Synthetic Computability

‘Never suffer with Turing machines again!

o Another instance of the synthetic trend

o Prove computability results (almost) pain-free in Coq!
o Synthetic homotopy: MLTT terms are paths

o Synthetic computability: MLTT terms are programs

The one missing primitive: inspecting the code of a program.

That's exactly what CT gives you.
FII(f: N— N).X(p:P).calc fp

Several people doing SCT in Coq

~ including this guy next door to me \ A

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 7/32

| think, Therefore | merely am

In dependent type theories, existing is a complex matter

Yx:A. B V.S. Jdx: A. B
actual existence mere existence
proof relevant proof-irrelevant
choice built-in no choice a priori
in Type in Prop

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023

9/32

| think, Therefore | merely am

In dependent type theories, existing is a complex matter

Yx:A. B V.S. Jdx: A. B
actual existence mere existence
proof relevant proof-irrelevant
choice built-in no choice a priori
in Type in Prop

We have not one, but two theses.

CTs = I(f:N—N).dp:P.calc fp
CTy = II(f:N—=N).Xp:P.calc fp
P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023

9/32

| think, Therefore | merely am

In dependent type theories, existing is a complex matter

Yx:A. B V.S. Jdx: A. B
actual existence mere existence
proof relevant proof-irrelevant
choice built-in no choice a priori
in Type in Prop

We have not one, but two theses.

CTs = I(f:N—N).dp:P.calc fp
CTy = I(f:N—=N).Xp:P.calc fp

Which do we want?

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023

9/32

| choose you, Sigma-chu

CTs = II(f:N—=N).dp:P.calc fp

II(z: A).3(y : B). P does not magically turn into a function
i.e. choice does not hold over 3 / 3 is non-computational

© © o

does not endanger function extensionality
MLTT + CT3 is known to be consistent

©

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 10/32

| choose you, Sigma-chu

CTs = II(f:N—=N).dp:P.calc fp

II(z: A).3(y : B). P does not magically turn into a function
i.e. choice does not hold over 3 / 3 is non-computational

© © o

does not endanger function extensionality
MLTT + CT3 is known to be consistent (™)

©

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 10/32

| choose you, Sigma-chu

CTs = II(f:N—=N).dp:P.calc fp

II(z: A).3(y : B). P does not magically turn into a function
i.e. choice does not hold over 3 / 3 is non-computational

© © o

does not endanger function extensionality
MLTT + CT3 is known to be consistent (™)

©

CTy = I(f:N—N).Xp:P.calc fp

©

Dually, CTyx; is the hallmark of weird crap going on

©

Intuitionistic non-choice gives a quote function (N — N) — N
Consistency of MLTT + CTy is not established

(]

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 10/32

| choose you, Sigma-chu

CTs = II(f:N—=N).dp:P.calc fp

II(z: A).3(y : B). P does not magically turn into a function
i.e. choice does not hold over 3 / 3 is non-computational

© © o

does not endanger function extensionality
MLTT + CT3 is known to be consistent (™)

©

CTy = I(f:N—N).Xp:P.calc fp

©

Dually, CTyx; is the hallmark of weird crap going on

©

Intuitionistic non-choice gives a quote function (N — N) — N
Consistency of MLTT + CTy is not established

(]

This is the one we really want to have in MLTT!

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 10/32

Second-hand “Quotes” from Anonymous Experts**

“MLTT is obviously
inconsistent with CTy”’

“I believe that MLTT
cannot validate C'Ty’

T.S. (Darmstadt)
** All these quotes are a pure work of fiction. Serving suggestion. May contain phthalates.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 11/32

Somebody is Wrong on the Internet

Are you seriously kidding me?

©

In MLTT, functions are already frigging programs!

©

CTsy, holds externally, it's called extraction (duh)

forall Ff:N—N thereis Fp:P st. Fecalcfp

©

It is hence obvious that CTy is compatible with MLTT

(+]

We just have to handle those pesky open terms!

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 12/32

Somebody is Wrong on the Internet

Are you seriously kidding me?

In MLTT, functions are already frigging programs!
CTsy, holds externally, it's called extraction (duh)

©

©

forall Ff:N—N thereis Fp:P st. Fecalcfp

It is hence obvious that CTy is compatible with MLTT

©

(+]

We just have to handle those pesky open terms!

A tiny detail...?

No: many properties are true externally but negated internally.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 12/32

One line of work (implying T.S.) proves the consistency of mTT + CT.

~> a strict subset of MLTT, without the & rule.

I'z:AFM=N:B
'tXz: AM=Xe: A N:1lz: A. B

The Plot Thickens

The literature is not very engaging either!

One line of work (implying T.S.) proves the consistency of mTT 4 CT.
~> a strict subset of MLTT, without the £ rule.

I'z: A M=N:B
T'FXz: A M=Xx: A N:1lz: A.B

... this is throwing the baby with the bathwater

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 13/32

The Plot Thickens

The literature is not very engaging either!

One line of work (implying T.S.) proves the consistency of mTT 4 CT.
~> a strict subset of MLTT, without the £ rule.

I'z: A M=N:B
T'FXz: A M=Xx: A N:1lz: A.B

... this is throwing the baby with the bathwater

Another line of work claims to prove the consistency of MLTT + CT.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 13/32

The Plot Thickens

The literature is not very engaging either!

One line of work (implying T.S.) proves the consistency of mTT 4 CT.
~> a strict subset of MLTT, without the £ rule.

I'z: A M=N:B
T'FXz: A M=Xx: A N:1lz: A.B

... this is throwing the baby with the bathwater

Another line of work claims to prove the consistency of MLTT + CT.

o Not even clear what theory they implement

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 13/32

The Plot Thickens

The literature is not very engaging either!

One line of work (implying T.S.) proves the consistency of mTT 4 CT.
~> a strict subset of MLTT, without the £ rule.

I'z: A M=N:B
T'FXz: A M=Xx: A N:1lz: A.B

... this is throwing the baby with the bathwater

Another line of work claims to prove the consistency of MLTT + CT.

o Not even clear what theory they implement
o Proved in three papers, not peer-reviewed, totalling > 120 pages!

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023

13/32

The Plot Thickens

The literature is not very engaging either!

One line of work (implying T.S.) proves the consistency of mTT 4 CT.
~> a strict subset of MLTT, without the £ rule.

I'z: A M=N:B
T'FXz: A M=Xx: A N:1lz: A.B

... this is throwing the baby with the bathwater

Another line of work claims to prove the consistency of MLTT + CT.

o Not even clear what theory they implement
o Proved in three papers, not peer-reviewed, totalling > 120 pages!
o Using game semantics!

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 13/32

The Plot Thickens

The literature is not very engaging either!

One line of work (implying T.S.) proves the consistency of mTT + CT.
~> a strict subset of MLTT, without the & rule.

I'z:AFM=N:B
I'FXz: A M=Xz: A N:Ilz: A.B

... this is throwing the baby with the bathwater

Another line of work claims to prove the consistency of MLTT + CT.

o Not even clear what theory they implement
o Proved in three papers, not peer-reviewed, totalling > 120 pages!
o Using game semantics! S

ABANDON THRERAD

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 13/32

The Yes Needs The No To Win Against The No

But consistency of MLTT + CTy; is obviously trivial...

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 14 /32

The Yes Needs The No To Win Against The No

But consistency of MLTT + CTy; is obviously trivial...

Only one way out: prove that | am right!

o Define an extension of MLTT proving CTx
o Prove it's consistent / canonical / strongly normalizing / ...

o Formalize this in Coq otherwise nobody believes you

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023

14 /32

The Yes Needs The No To Win Against The No

But consistency of MLTT + CTy; is obviously trivial...

Only one way out: prove that | am right!

o Define an extension of MLTT proving CTyx,
o Prove it's consistent / canonical / strongly normalizing / ...
o Formalize this in Coq otherwise nobody believes you

Spoiler alert: we will sketch that in the rest of the talk.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 14 /32

M,N:=...|¢ M| M N

M,N:=...|¢ M| M N

I'FM:N— N
'FeM:P

“MLTT"

We define “MLTT" as the extension of MLTT with two new primitives.

MN:=...|9 M|?MN
I'FM:N—N I'FM:N—N I'-N:N
F'Fe M:P 'FQ M N:eval (¢ M) N(MN)
where
eval : P-N—->N-—-0O

eval PNV ~ program P applied to N normalizes to V

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023

15 /32

“MLTT"

We define “MLTT" as the extension of MLTT with two new primitives.

MN:=...|9 M|?MN
I'FM:N—N I'FM:N—N I'-N:N
F'Fe M:P 'FQ M N:eval (¢ M) N(MN)
where
eval : P-N—->N-—-0O

eval PNV ~ program P applied to N normalizes to V

The system is parameterized by a computation model, given by:
o A meta-function [-] : term = N (your favourite Gédel numbering)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 15/32

“MLTT"

We define “MLTT" as the extension of MLTT with two new primitives.

MN:=...|9 M|?MN
I'FM:N—N I'HM:N—N I'-N:N
F'FeM:P 'FQ M N:eval (¢ M) N(MN)
where
eval : P-N—->N-—-0O

eval PNV ~ program P applied to N normalizes to V

The system is parameterized by a computation model, given by:
o A meta-function [-] : term = N (your favourite Gédel numbering)
o An MLTT function - run: P — N — B(N)

where B(A4) := N — option A is the partiality monad
and eval is derived from run through standard combinators

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023

15 /32

Conversion!

The Hard Part

What is the hard part?

Conversion!

I'tM:B I'FA=1B
TFM:A

In MLTT the type system embeds the runtime.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 16 /32

The Hard Part

What is the hard part?

Conversion!

I'tM:B I'FA=1B
TFM:A

In MLTT the type system embeds the runtime.

We need to ensure that convertible terms are quoted to the same number.

Remember that CTy; is inconsistent with funext.

Thankfully conversion is intensional in MLTT...

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 16 /32

Naive Solution

We need to ensure that convertible terms are quoted to the same number.

Assume we can magically choose one representative per convertibility class.
'FM=N:N—=N iff [¢(M)]=][e(N)]
Unfortunately, this is not going to be stable by substitution.

e(M{z:= N}) # e(M){z:=e(N)}

Immediate breakage of conversion!

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 17/32

Remember the £ rule:

I'z:AFM=N:B
'tXz: AM=Xe:AN:1lz: A. B

Remember the £ rule:

I'z:AFM=N:B
'tXz: AM=Xe:AN:1lz: A. B

No & rule ~ conversion on functions implies syntactic equality

Remember the £ rule:

I'z:AFM=N:B
'tXz: AM=Xe:AN:1lz: A. B

No & rule ~ conversion on functions implies syntactic equality

We need something else.

(Source: X.)

(Source: X.)

The major insight for “MLTT"

OPEN TERMS ARE A LIE! IT'S A CONSPIRACY FROM BIG VARIABLE!

(Source: X.)

¢ and ? will only compute on (deep normal) closed terms

I'M=N:N—>N 'M=M:N>N TFN=N:N
T M=¢ N:P TFQMN=9 M N :eval (? M) N (M N)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023

19/32

The major insight for “MLTT"

OPEN TERMS ARE A LIE! IT'S A CONSPIRACY FROM BIG VARIABLE!

(Source: X.)

¢ and ? will only compute on (deep normal) closed terms

'FrM=N:N—-N ''M=M:N—N 'FN=N:N
T'FeM=9N:P FFQMN=9 M N :eval (3 M) N(M N)
'tM:N—N M closed dnf
PrFeM=[M]:P

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 19/32

The major insight for “MLTT"

OPEN TERMS ARE A LIE! IT'S A CONSPIRACY FROM BIG VARIABLE!

(Source: X.)

¢ and ? will only compute on (deep normal) closed terms

'FrM=N:N—-N ''M=M:N—N 'FN=N:N
T'FeM=9N:P FFQMN=9 M N :eval (3 M) N(M N)
'tM:N—N M closed dnf
PrFeM=[M]:P
I'FM:N—N M, P closed dnf neN 'k P:eval [M| 7 (Mmn)
' Mn=P:eval [M] n (M)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 19/32

The major insight for “MLTT"

OPEN TERMS ARE A LIE! IT'S A CONSPIRACY FROM BIG VARIABLE!

(Source: X.)

¢ and ? will only compute on (deep normal) closed terms

'FrM=N:N—-N ''M=M:N—N 'FN=N:N
T'FeM=9N:P FFQMN=9 M N :eval (3 M) N(M N)
'tM:N—N M closed dnf
PrFeM=[M]:P
I'FM:N—N M, P closed dnf neN 'k P:eval [M| 7 (Mmn)
' Mn=P:eval [M] n (M)

This One Weird Trick
Closed terms are stable by substitution!

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 19/32

The major insight for “MLTT"

OPEN TERMS ARE A LIE! IT'S A CONSPIRACY FROM BIG VARIABLE!

(Source: X.)

¢ and ? will only compute on (deep normal) closed terms

'FrM=N:N—-N ''M=M:N—N 'FN=N:N
T'FeM=9N:P FFQMN=9 M N :eval (3 M) N(M N)
'tM:N—N M closed dnf
PrFeM=[M]:P
I'FM:N—N M, P closed dnf neN 'k P:eval [M| 7 (Mmn)
' Mn=P:eval [M] n (M)

This One Weird Trick
Closed terms are stable by substitution!

(Some additional technicalities to validate n-laws.)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 19/32

These functions return hereditarily positive types (aka X9 formulae)

The Secret Sauce

These functions return hereditarily positive types (aka X{ formulae)

I'FM:N— N M closed dnf
ToM=[M]:P

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 20/32

The Secret Sauce

These functions return hereditarily positive types (aka X{ formulae)

I'FM:N— N M closed dnf
ToM=[M]:P

I'M:N—N MPcloseddnf neN Tt P:eval [M] 7 (Mn)

' Mn=P:eval [M| 7 (Mmn)

eval : P+-N—-N-=UO

eval fnv = Xk:N.stepk (runfn)v
step : N — (N — option N) - N — [
step O pv = pO=2Somewv

step (Sk)pov (p k= None) X (step k (poS) v)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023

20/32

The Secret Sauce

These functions return hereditarily positive types (aka X{ formulae)

I'FM:N— N M closed dnf
ToM=[M]:P

I'M:N—N MPcloseddnf neN Tt P:eval [M] 7 (Mn)

' Mn=P:eval [M| 7 (Mmn)

eval : P+-N—-N-=UO

eval fnv = Xk:N.stepk (runfn)v
step : N — (N — option N) - N — [
step O pv = pO=2Somewv

step (Sk)pov (p k= None) X (step k (poS) v)

These types have canonical “absolute” values!

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023

20/32

o Type formation is defined inductively: I' IF A
A=: N A=5T(z:X).Y p:TFX ¢:Daz:XkFY

w:lIFA tmpq:TIFA

The Basic Model

A variant of Abel's style NbE model in (small) IR

o Type formation is defined inductively: I' IF A
A= N A=5T(z:X).Y p:TFX ¢:Daz:XFY
w:lIFA tupq:TIFA

o Term typedness I' I M : A | p is defined by recursion on p:T' I A

I'lFM:N|t = TI'lFMeN
'FM:II(z: A).B|tnpq =
M(p: A<T).(Ala: Alp) | p) > A Mig) a: Blp,a} | g

M=, O M=;,SN T'FNeN T'Fn:N wne (n)
I'FMeN 'FMeN I'FneN

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 21/32

The Basic Model

A variant of Abel's style NbE model in (small) IR

o Type formation is defined inductively: I' IF A
A= N A=5T(z:X).Y p:TFX ¢:Daz:XFY
w:lIFA tupq:TIFA

o Term typedness I' I M : A | p is defined by recursion on p:T' I A

I'lFM:N|t = TI'lFMeN
'FM:II(z: A).B|tnpq =
M(p: A<T).(Ala: Alp) | p) > A Mig) a: Blp,a} | g

M=, O M=;,SN T'FNeN T'Fn:N wne (n)
I'FMeN 'FMeN I'FneN

(ditto for conversion) (4 second layer of validity aka closure by substitution)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 21/32

D'IFEM:A|ps ~ Mwh-normalizes to a value at type A

D'IFEM:A|ps ~ Mwh-normalizes to a value at type A

Being a value at type A is defined by case-analysis on A.

The Basic Model for Dummies

This is just realizability with (a lot of) bells and whistles

C'lFM:A|pg ~ Mwh-normalizes to a value at type A

Being a value at type A is defined by case-analysis on A.

Importantly, all well-typed neutrals are values of the corresponding type.

wne (n) wne (n)

wne () wne (n M) wne (Nyee P To Ts n)

This is the standard and correct way to handle open terms.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 22/32

The Basic Model for Dummies

This is just realizability with (a lot of) bells and whistles

C'lFM:A|pg ~ Mwh-normalizes to a value at type A

Being a value at type A is defined by case-analysis on A.

Importantly, all well-typed neutrals are values of the corresponding type.

wne (n) wne (n)

wne () wne (n M) wne (Nyee P To Ts n)

This is the standard and correct way to handle open terms.

(They don't exist anyways, remember?)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023

22/32

o No funny business with effects or whatnot

o In particular we have the same canonicity properties

Comparison with standard NbE
Type interpretation unchanged

o No funny business with effects or whatnot
o In particular we have the same canonicity properties

Differences with Abel’s model
~» annotate reducibility proofs with deep normalization
T'FM:A|pa implies M Jgeep My with THM=My: A
~» normal / neutral terms generalized into deep and weak-head variants

~> extend neutrals to contain quotes blocked on open terms

dnf (M) M not closed dnf (M) dnf (N) M or N not closed
wne (9 M) wne (2 M N)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 23/32

Comparison with standard NbE
Type interpretation unchanged

o No funny business with effects or whatnot
o In particular we have the same canonicity properties

Differences with Abel’s model
~» annotate reducibility proofs with deep normalization
T'FM:A|pa implies M Jgeep My with THM=My: A
~» normal / neutral terms generalized into deep and weak-head variants

~> extend neutrals to contain quotes blocked on open terms

dnf (M) M not closed dnf (M) dnf (N) M or N not closed
wne (9 M) wne (2 M N)

. and that’s about it.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 23/32

Some Dust under the Rug

“MLTT" is reduction-free. | didn’t define properly reduction!

o For the MLTT fragment, weak-head reduction is standard.

o Deep reduction is just iterated weak-head reduction.
MN=u R wne (M) M= R dne (M) N=u R
M N =geep R M N =geep R N M N =geep M R

o In particular, it is deterministic (critical!)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 24 /32

Some Dust under the Rug

“MLTT" is reduction-free. | didn’t define properly reduction!

o For the MLTT fragment, weak-head reduction is standard.

o Deep reduction is just iterated weak-head reduction.
MN=u R wne (M) M= R dne (M) N=u R
M N =geep R M N =geep R N M N =geep M R

o In particular, it is deterministic (critical!)

Reduction for ¢ is straightforward

M = geep R M closed dnf
SM=uw?R S M= [M]

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 24 /32

I'FM:N—N '-N:N

I'F? M N:eval (9§ M) N(MN)

I'FM:N—N I'EN:N

I'F? M N:eval (9§ M) N(MN)
~+ congruence as expected

M =geep R Mdnf N=sgeep R
QMN=;,wQ? RN QMN=u,w? MR

Don’t Quote Me on That

The only tricky case is the rule for ¢

I'FM:N—N I'EN:N
I'F? M N:eval (§ M) N (M N)

~~» congruence as expected

M:>deepR M dnf N:>deepR
SMN=w?RN PMN=w?MR

~ for the actual reduction, basically compute the unique fuel

M closed, dnf k smallest integer s.t. M7 ||¥%
Q M7=y (krefl,..., refl)

Fact 1: @ Mm:eval [M] 7 (M7n) =Xk:N.step k (run [M] 7)) (M 7)
Fact 2: step kp v:= (p O = None) x ... x (p k— 1 = None) x (p k = Some 7)

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 25/32

-M:1I(z: A).B zg M FM:%(z:A).B

Xz AMz=M:1(z: A).B Itk (Mfst,Msnd)ap=M:%(z: A).B

L'n de droit

Some technical details to handle n-laws

PFM:I(z: A).B z¢M TFM:S(z: A).B
F'FXz:AMz=M:1(z: A).B - (Mfst,Msnd)ap=M:3(z: A). B

Quoting has to be stable by these 7 laws!

o We have to pick a canonical representative for dnf up to 7
o We cannot infer the type annotations

o Thankfully they are not computationally relevant

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 26 /32

-M:1I(z: A).B zg M FM:%(z:A).B
Xz AMz=M:1(z: A).B Itk (Mfst,Msnd)ap=M:%(z: A).B

o We have to pick a canonical representative for dnf up to

o We cannot infer the type annotations

o Thankfully they are not computationally relevant

Simple* solution

The Theorems

We say that the computation model ([-], run) is adequate when:
for all M € term and n,7, k€ N, M7 ||* 7 implies

o run [M] 7 k || Some 7
o run [M] 7 K || None forall ¥ <k

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 27 /32

The Theorems

We say that the computation model ([-], run) is adequate when:
for all M € term and n,7, k€ N, M7 ||* 7 implies

o run [M] 7 k || Some 7
o run [M] 7 K || None forall ¥ <k

Theorem

If the model is adequate, the logical relation is sound and complete.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023

27/32

“MLTT" proves CTy,. l

“MLTT" proves CTy,.

The Real Results

Theorem (It's written on the can)
“MLTT" proves CTy.

Reminder

Soundness means that a typable term is in the logical relation.

Theorem (Consistency)

There is no closed term of type | in “MLTT" J

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 29/32

The Real Results

Theorem (It's written on the can)
“MLTT" proves CTy.

Reminder

Soundness means that a typable term is in the logical relation.

Theorem (Consistency)
There is no closed term of type | in “MLTT"

Theorem (Canonicity)
All closed terms of type N in “MLTT"” reduce to an integer.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 29/32

The Real Results

Theorem (It's written on the can)
“MLTT" proves CTy.

Reminder
Soundness means that a typable term is in the logical relation.

Theorem (Consistency)
There is no closed term of type | in “MLTT"

Theorem (Canonicity)
All closed terms of type N in “MLTT"” reduce to an integer.

Theorem (Normalization)
All typed terms of “MLTT" weak-head normalize.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023

29/32

Formalization

Based on Adjedj et al. CPP'24 “Martin-Lof a la Coq"” (using small IR)

The base theory contains one universe, 11 / ¥ types with n-laws, L, N, Id
MLTT + ¢ fully formalized in Coq

As of 2023/12/01, ?Q basically done, only annoying stuff remains

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 30/32

Formalization

Based on Adjedj et al. CPP'24 “Martin-Lof a la Coq"” (using small IR)

The base theory contains one universe, 11 / ¥ types with n-laws, L, N, Id
MLTT + ¢ fully formalized in Coq
As of 2023/12/01, ?Q basically done, only annoying stuff remains

No expected surprise, just tedious proofs on untyped reduction.
o A weak form of confluence

o Proving that erasure is computationally harmless

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 30/32

Formalization

Based on Adjedj et al. CPP'24 “Martin-Lof a la Coq"” (using small IR)
The base theory contains one universe, 11 / ¥ types with n-laws, L, N, Id
MLTT + ¢ fully formalized in Coq
As of 2023/12/01, ?Q basically done, only annoying stuff remains

No expected surprise, just tedious proofs on untyped reduction.

o A weak form of confluence

o Proving that erasure is computationally harmless

Nightmare stuff I'm not gonna prove: the existence of adequate models

Typical instance of “conceptually trivial but practically impossible”.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 30/32

Conclusion

MLTT + CTy is obviously consistent, obviously

©

The model is a trivial adaptation of standard NbE models
Open terms do not exist. | have met them.

A sizable chunk proved in Coq

© © o o

| must be missing something from our anonymous experts

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 31/32

Scribitur ad narrandum, non ad probandum

Thanks for your attention.

P.-M. Pédrot (INRIA) A quote? In my type theory? 01/12/2023 32/32

