The Next 700 Syntactic Models of Type Theory

Simon Boulier! Pierre-Marie Pédrot? Nicolas Tabareau!

LINRIA, 2University of Ljubljana

CPP
17th January 2017

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017

1/22

A Beginner's Tale

Historical recollection of a younger self using Coq:

— | need to prove that Ilx. f x = g x implies f= g to...

— Nay, can’t do that.

— Right, I'd also like to have Ilej e3 : p = q. e = e2. How...
— Nope, not possible either.

— Fine. And what about IIA B : Prop. (A <+ B) - A = B?
— Sigh.

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017 2/22

A Beginner's Tale

Historical recollection of a younger self using Coq:

— | need to prove that Ilx. f x = g x implies f= g to...

— Nay, can’t do that.

— Right, I'd also like to have Ilej e3 : p = q. e = e2. How...
— Nope, not possible either.

— Fine. And what about IIA B : Prop. (A <+ B) - A = B?
— Sigh.

Are you kidding me? This has to be obviously true!

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017 2/22

What You're Usually Told

If you ask why, generally you get something along the lines of:

“That’s very simple to disprove. Let’s consider the split
comprehension category where the Grothendieck fibration is the
well-known blue-haired syzygetic Kardashian functor and the
cartesian structure is canonically given by the algebra morphisms
of hyper-loremipsum w-potatoids. It is trivially a
counter-model.”

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017

3/22

What You're Usually Told

If you ask why, generally you get something along the lines of:

“That’s very simple to disprove. Let’s consider the split
comprehension category where the Grothendieck fibration is the
well-known blue-haired syzygetic Kardashian functor and the
cartesian structure is canonically given by the algebra morphisms
of hyper-loremipsum w-potatoids. It is trivially a
counter-model.”

(Obviously up to my brain's isomorphisms. Any resemblance to nlLab is purely coincidental.)

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017 3/22

What You're Usually Told

If you ask why, generally you get something along the lines of:

unctor and the
ebra morphisms

well-known blue=
cartesian structur

(Obviously up to my brain’s isomorphisms. Any resemblance to nLab is purely coincidental.)

We propose something that anybody* can understand instead.

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017

3/22

Proofs-as-programs to the rescue

What is a model?

Takes syntax as input.

©

©

Interprets it into some low-level language.
o Must preserve the meaning of the source.

©

Refines the behaviour of under-specified structures.

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017 4 /22

Proofs-as-programs to the rescue

What is a model?

Takes syntax as input.

©

©

Interprets it into some low-level language.
o Must preserve the meaning of the source.

©

Refines the behaviour of under-specified structures.

Luckily we're computer scientists in here.

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017 4 /22

Proofs-as-programs to the rescue

What is a model?

Takes syntax as input.

©

©

Interprets it into some low-level language.
o Must preserve the meaning of the source.

o Refines the behaviour of under-specified structures.

Luckily we're computer scientists in here.

« Oh yes, we call that a compiler... »

(Thanks, Curry-Howard!)

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017

4/ 22

Syntactic Models
o | don't understand crazy category theory.

o But | understand well type-theory!

o And | know how to write program translations.

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017 5/22

Syntactic Models

o | don't understand crazy category theory.
o But I understand well type-theory!

o And | know how to write program translations.

Let’s write models as compilers from type theory into itself!

compilation of X

Type

-
Theory Type
I Theory
Axiom X
of Y of Z
[} = =

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017 5/22

aQ >

Syntactic Models Il
Define [-] on the syntax and derive the type interpretation [-] from it s.t.

HFM:A implies F[M] : [4]

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017 6 /22

Syntactic Models Il
Define [-] on the syntax and derive the type interpretation [-] from it s.t.

HFM:A implies F[M] : [4]

Obviously, that's subtle.
o The correctness of [-] lies in the meta (Darn, Godell)
o The translation must preserve typing (Not easy)

o In particular, it must preserve conversion (Argh!)

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017 6 /22

Syntactic Models Il

Define [-] on the syntax and derive the type interpretation [-] from it s.t.

HFM:A implies F[M] : [4]

Obviously, that's subtle.
o The correctness of [-] lies in the meta (Darn, Godell)
o The translation must preserve typing (Not easy)

o In particular, it must preserve conversion (Argh!)

Yet, a lot of nice consequences.

o Does not require non-type-theoretical foundations (monism)

©

Can be implemented in your favourite proof assistant

(+]

Easy to show (relative) consistency, look at [False]

(+]

Easier to understand computationally

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017

6/ 22

In The Remainder of This Talk

700 Syntactic Models You Probably Didn't
Know Provide the Most Striking
Counter-Examples to Type Theory

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017 7 / 43571

In The Remainder of This Talk

700 Syntactic Models You Probably Didn't
Know Provide the Most Striking
Counter-Examples to Type Theory

The 578" Will Shock You!

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017 7 / 43571

In The Remainder of This Talk

700 Syntactic Models You Probably Didn't
Know Provide the Most Striking
Counter-Examples to Type Theory

The 578" Will Shock You!

(Just kidding. | don't want doctors to hate me.)

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017 7 / 43571

Where the Wild Things Are

— What is fully specified in type theory?

o Inductive types, because of dependent elimination.

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017 8 /22

Where the Wild Things Are

— What is fully specified in type theory?

o Inductive types, because of dependent elimination.

— What is not fully specified in type theory?
Everything else!

o Functions: only specified w.r.t. S-reduction
o Co-inductive types: only specified w.r.t. projections

o Universes: only specified w.r.t. rhs of a colon

Qo ...

Let's joyfully refine the intensional behaviour of random stuff in there.

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017

8/ 22

Negating Functional Extensionality

First target: functions. The only thing you know about them:

(Ax: A. M) N = M{z:= N}

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017 9 /22

Negating Functional Extensionality

First target: functions. The only thing you know about them:
(Ax: A. M) N = M{z:= N}

Let's take advantage of this by mangling functions.

[x] =z

Az: A.M] = (Az:[A].[M],true)
[M N = [M].m [N]

O] = 0O

[MMz: A.B] := (Iz: [A].[B]) x bool

] —
A] = [4]

i

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017 9 /22

Negating Functional Extensionality

First target: functions. The only thing you know about them:
(Ax: A. M) N = M{z:= N}

Let's take advantage of this by mangling functions.

[] =z

Az: A.M] = (Az:[A].[M],true)
[M N = [M].m [N]

(O] = O

[MMz: A.B] := (Iz: [A].[B]) x bool
[4] = [4]

Obviously I' = M : A implies [I'] - [M] : [A].

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017 9 /22

Through The Looking Glass

Now, we interpret everything through the [-] translation.

o We call the source theory all terms that have some type [A]

o Given M : [A] we can extend the source with a constant M® : A
[M®]:=M
o Conversion is extended the same way:

M =gource N 1= [M] =target [N}

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017 10 / 22

Negating Functional Extensionality Il

Syntactically, this means that you can extend the source theory with

I'z:A-M:B
THFNz: A M:1lx: A.B

defined as:

Nz: A M]:= (\z: [A].[M], false)
Rembember:

Az:A.M] = (Az:[A].[M],true)

[MN] = [M].m[N]
Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models

17/01/2017 11 /22

Negating Functional Extensionality Il

Syntactically, this means that you can extend the source theory with

I'z:A-M:B
THFNz: A M:1lx: A.B

defined as:
Nz: A M]:= (\z: [A].[M], false)
Rembember:
Az:A.M] = (Az:[A].[M],true)
(MN] = (Ml [N

Clearly this new abstraction has the same behaviour as the original one.

[(Nz: A. M) N] = [M{z:= N}|

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017 11 /22

Negating Functional Extensionality IlI

Now, it is easy to see how to negate functional extensionality. Consider:

S(fg:1—=1).(Ili: 1.fi=gi)ANf#g

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017 12 / 22

Negating Functional Extensionality IlI

Now, it is easy to see how to negate functional extensionality. Consider:
S(fg:1—=1).(Ili: 1.fi=gi)ANf#g
This is translated into something that is essentially:
X(fg: (1 —1)xbool).(Ili: 1. fmy i=gm)Af#g

(The actual translation is a little noisier, but this does not change the idea.)

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017 12 / 22

Negating Functional Extensionality IlI

Now, it is easy to see how to negate functional extensionality. Consider:

S(fg:1—=1).(Ili: 1.fi=gi)ANf#g
This is translated into something that is essentially:
X(fg: (1 —1)xbool).(Ili: 1. fmy i=gm)Af#g
(The actual translation is a little noisier, but this does not change the idea.)

Take f:=[Az:1.z] and g:= [Nz : 1. z], and voild!

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017

12 /22

We did not explicit the rules of the source theory.
«O>» <Fr «=Z»r «E>» = Q>
 Pédrot & al. (INRIA & U. Ljubljana) ~ The Next 700 Syntactic Models ~ 17/01/2017 13 /22

Where We Cheated

We did not explicit the rules of the source theory.
In particular, it is clear that the model invalidates n-rules.

[Az: A. M 1] £ [M]
Il Il
(Az: [A]. [M].7, z,true) # [M]

It's much harder to negate extensionality while preserving 7.
(Dialectica does that.)

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017

13 / 22

Stream extensionality

We can use a very similar trick to intentionalize steams. ldea:
[stream A] := (stream [A]) X bool
This interprets all negative co-inductive properties (“co-pattern style”).

And there is no reasonable 7-rule on cofixpoints anyway.

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017 14 / 22

Stream extensionality

We can use a very similar trick to intentionalize steams. ldea:
[stream A] := (stream [A]) X bool

This interprets all negative co-inductive properties (“co-pattern style”).

And there is no reasonable 7-rule on cofixpoints anyway.

Then just as easily we show that:

S(fg: stream 1). (bisimilar 1 fg) A f#£ g

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017 14 / 22

Type Extensionality

Once again, the same trick can be applied to types.

[z] =z

Ax: A.M] = MXz:[A].[M]

[M N] = [M][N]

(O] := (O; x bool, true)
Mz: A.B] = ((Hw [A].[B]), true)
4] = ()

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017 15 / 22

Type Extensionality

Once again, the same trick can be applied to types.

[x] =

Ax: A.M] = MXz:[A].[M]

[MN] = [M][N]

(O] = (0; X bool, true)
Mz: A.B] = ((IIz:[A].[B]),true)
[A] = [A]l.m

“New types are a pair of a type and a boolean!” Tricky fixpoint:

O] : [Oi41] < (0; x bool,true) : ;1 X bool

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017

15 / 22

Negating Propositional Extensionality

You can translate an impredicative universe alike:
[¥*] := (% X bool,true)

It is still an impredicative universe!

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017

16 / 22

Negating Propositional Extensionality

You can translate an impredicative universe alike:

[¥*] := (% X bool,true)

It is still an impredicative universe!

It is then easy to show:

[B(PQ:#).(Po QAP#Q]
~ 3(PQ: % xbool). (Pm < Qm)ANP# Q
Take for instance True and its evil twin True':

[True] := (True,true)
[Truef] := (True,false)

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017

16 / 22

Where Will They Stop?

o This shows that universes are “amorphous” in type theory
o The only thing that matters is [-] in the translation!
o We simply used a projection here

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017 17 / 22

Where Will They Stop?

o This shows that universes are “amorphous” in type theory
o The only thing that matters is [-] in the translation!
o We simply used a projection here

Let's do way much better (or worse, depends on your beliefs).

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017

17 / 22

Where Will They Stop?

o This shows that universes are “amorphous” in type theory

o The only thing that matters is [-] in the translation!
o We simply used a projection here

Let's do way much better (or worse, depends on your beliefs)

Pédrot & al.

(INRIA & U. Ljubljana)

]
The Next 700 Syntactic Models

DA
17/01/2017 17 / 22

The Basilisk

Idea: if A : [then [A]: TYPE, the type of inductive-recursive codes!

Inductive TYPE :=

| U : TYPE

| Pi: II (A : TYPE), (E1t A — TYPE) — TYPE
[...
with E1t (A4 : TYPE) := match A with
| U = TYPE

| Pi A B=1II (z: E1t A), E1t (B z)
| ...

end.

(Note: We need to stratify a bit to make this work.)

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017

18 / 22

The Basilisk

Idea: if A : [then [A]: TYPE, the type of inductive-recursive codes!

Inductive TYPE :=

| U : TYPE

| Pi: II (A : TYPE), (E1t A — TYPE) — TYPE
[...
with E1t (A4 : TYPE) := match A with
| U = TYPE

| Pi A B=1II (z: E1t A), E1t (B z)
| ...

end.

(Note: We need to stratify a bit to make this work.)
O] = U

[z : A. B) Pi [A] (Az: [A].[B)
[4] .= Elt [A]

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017

18 / 22

Behold!

This allows definitions by case-analysis on types!

For instance, it is now possible to define:
o f:1MA:0A— A (NHA:TYPE.EltA—>EltA)
o fbool : bool — bool is negation
o f A is identity otherwise

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017

19 /22

Behold!

This allows definitions by case-analysis on types!

For instance, it is now possible to define:
o f:MA:0.A— A (~TIA:TYPE.Elt A — Elt A)
o fbool : bool — bool is negation
o f A is identity otherwise

Morally it is the most anti-parametric thing one can do. Abstractly:

Type theory is compatible with ad-hoc polymorphism.

(Yes, this surprised me as well.)

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017 19 / 22

What else

We have a soundness proof in Coq for most of the previous translations.
o Based on Siles's definition of De Bruijn implementaton of CC
o “Deep embedding”

o Shows that the model preserve consistency in a easy way

There is also an experimental plugin to translate terms automagically.

https://github.com/CoqHott/Program-translations-CC-omega

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017 20 / 22

https://github.com/CoqHott/Program-translations-CC-omega

Conclusion

o We've described a simple class of models

o Rooted in computer science POV

o Sufficient to negate a lot of extensionality principles

o Functions
o Co-inductive types
o Universes

o Implemented them!

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017 21 /22

Conclusion

o We've described a simple class of models

o Rooted in computer science POV

o Sufficient to negate a lot of extensionality principles
o Functions
o Co-inductive types
o Universes

o Implemented them!

o We advocate for this kind of models

o A few more instances from the literature

o Stay tuned!

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017 21 /22

Scribitur ad narrandum, non ad probandum

Thanks for your attention.

Pédrot & al. (INRIA & U. Ljubljana) The Next 700 Syntactic Models 17/01/2017 22 /22

