«Or «Fr o« [> Q>

Pierre-Marie Pédrot

INRIA

Coq Implementor Workshop

Disclaimer: what follows applies to trunk (next 8.6)

(And | don't want to discuss history in this talk anyway)

Pierre-Marie Pédrot (INRIA) Ltac Internals 30/05/2016 2/31

@ Bird's eye view
@ Engine
Q Tactics

@ Ltac

@ Future plans

30/05/2016

DA
3/31

Overall organization of the code

o Lower strata (engine folder)
o ML-defined tactics (tactics folder)
o Ltac itself (1tac folder)

Some folders also of interest: pretyping, proofs

Pierre-Marie Pédrot (INRIA) Ltac Internals 30/05/2016 4 /31

1

Bird's eye view
e Engine
3) Tactics

D Ltac

5

Future plans

«Or «Fr o« . ’ N

i
a

Engine

This part defines the basic blocks upon which Ltac relies.

o The Evd.evar_map proof state
o The a Proofview.tactic monad

o The @ Ftactic.t monad (or is it?)

Pierre-Marie Pédrot (INRIA) Ltac Internals 30/05/2016

6 /31

The evar map (evd.ml)

“The one proof state to rule them all”
type Evd.evar_map
It contains many things defining the proof term being built.

o A map from evars to partial terms

o The current universe unification graph

©

Some ugly stuff from the past (the infamous metas)
More stuff | don't want to talk about

©

Extensible state for clever hacks

©

Pierre-Marie Pédrot (INRIA) Ltac Internals 30/05/2016 7/31

The evar map (continued)

Relevant files:
o Low-level definitions: evd.ml
o Statically monotonous variant: sigma.ml

o High-level interaction: evarutil.ml
Note that I'm actively promoting the use of Sigma to get static

guarantees, but the API is not entirely ported, so your mileage may vary.
You may have to use glue code that will eventually disappear.

Pierre-Marie Pédrot (INRIA) Ltac Internals 30/05/2016 8 /31

Proofview (proofview.ml)

‘I would like backtrack. And state. And 10."

type « tactic

Monadically defines the core effects of the proof engine.
o Tarte a la créme (tclUNIT, tc1BIND)

o Backtrack (tc1ZERO, tclOR)
o Backtracking state (tc1EVARS, tc1EVARMAP, ...)
o Contains an evar map, but not only

o 10 (NonLogical, | am not too fond of this API)
(See my CogqHoTT-minute blog post for semantics)

Pierre-Marie Pédrot (INRIA) Ltac Internals 30/05/2016

9/31

Proofview (continued)

Correct mental model of tactics:

From a state, produce a list of results that have a local state

where State = evar map + goals + focus
and Goals = hypothesis + conclusion

tclZERO = nil, tclPLUS = app

Pierre-Marie Pédrot (INRIA) Ltac Internals 30/05/2016

10 / 31

Proofview.Goal (proofview.ml)

Emulate the historical engine: Proofview.Goal.enter and variants

type (a,p) Proofview.Goal.t

val enter : ... enter — unit tactic
o Indexed by a phantom normalization type + a stage just as Sigma
o Can be projected to recover data (concl, hyps, evar map, ...)
o enter apply a continuation on each focussed goal
o Two orthogonal flags

@ nf_x: Do we normalize the goal w.r.t evars?
@ s_x: Do we change the current state?

Pierre-Marie Pédrot (INRIA) Ltac Internals 30/05/2016 11 / 31

Ftactic (motivation)

From 8.5 onwards, tactics may act on several goals.

This conflicts with Ltac (lack of) semantics! E.g.

let t := constr:(x) in ...

o Is x a variable local to a goal (i.e. hypothesis)?

o Is x a global variable (i.e. definition or section variable)?

Ltac says: the former.

We need to focus on the fly!

Pierre-Marie Pédrot (INRIA) Ltac Internals 30/05/2016

12 / 31

Ftactic (ftactic.ml)

type « Ftactic.t

o Built upon Proofview.tactic

Monadic API as well

Two modes: global vs. focussed

Once focussed, this is forever

Currently incorrect implementation (not a monad)

Pierre-Marie Pédrot (INRIA) Ltac Internals 30/05/2016 13 /31

1) Bird's eye view
2

Engine

e Tactics

D Ltac

5

Future plans

«Or «Fr o« . ’ N

i
a

Tactics

Not much to say here.

o Many files that implement Coq core tactics
o The kind of code that breaks from being looked at

Have a look at tactics/tactics.ml for 5 kloc of joyful codel!

(Everything mentioning clenv not to be looked at)

Pierre-Marie Pédrot (INRIA) Ltac Internals 30/05/2016

15 / 31

Vademecum

Essentially, the complete, most basic primitives you can use:
o Proofview.Goal.enter to focus on goals
o Evarutil.new_evar to introduce holes

o Refine.refine to solve a goal

Pierre-Marie Pédrot (INRIA) Ltac Internals 30/05/2016 16 / 31

1

Bird's eye view
2 Engine
3) Tactics

@ Luxc

=

Future plans

«Or «Fr o« . ’ N

i
a

Ltac overview
Same three-level steps as terms, with a bit of variations

d parsing
Tacexpr.raw_tactic_expr
+ Tacintern.glob_tactic
Tacexpr.glob_tactic_expr
+ Tacinterp.value_interp
Geninterp.Val.t Ftactic.t
i Tacinterp.tactic_of_value

unit tactic

Pierre-Marie Pédrot (INRIA) Ltac Internals 30/05/2016

18 / 31

User-facing expressions

raw_tactic_expr and glob_tactic_expr share the same skeleton.

Defined in Tacexpr

©

Essentially reflect the syntax

©

Parameterized by the inner arguments

©

Globalization is functorial

©

Mutually defined with tactic arguments and atomic tactics.

Pierre-Marie Pédrot (INRIA) Ltac Internals 30/05/2016 19 / 31

Toplevel values

Type Val.t is a dynamic extensible type.
o You can create new arguments (unique name)

o You can inject and project from this dynamic type

Interpretation function of Ltac parameterized by an environment

type interp_sign ~ Val.t Id.Map.t

Pierre-Marie Pédrot (INRIA) Ltac Internals 30/05/2016

20 / 31

Ltac lack of semantics

The great catastrophe of Ltac:

When are things evaluated?

Answer: Do | look like | know?

Pierre-Marie Pédrot (INRIA) Ltac Internals

30/05/2016

21 /31

Ltac lack of semantics Il

Some constructs are evaluated upfront:
o closures
o let, let rec
o the various match

o tactic arguments

The remaining is thunked, and evaluated according to heuristics.

A lot to say and to fix here, but time is running. See value_interp.

Pierre-Marie Pédrot (INRIA) Ltac Internals 30/05/2016

22 /31

Ltac lack of semantics Il

Another problem: lack of variables

o Many hacks relying on dynamic typing

o TeX-like confusion between quoted code and meta
Tactic Notation "foo" ident_list(l) := intros 1.
o No quotation feature, everything uses heuristics
intro x; let x := constr:(0) in exact x
o Horrendous parsing tricks to counter this

do int_or_var(x) tactic(t) :=

See tacinterp.ml and taccoerce.ml for gory details.

Pierre-Marie Pédrot (INRIA) Ltac Internals 30/05/2016 23 /31

Extensible language

Atomic tactics are historical remnants and should die.

The recommanded way of adding tactics is through the generic extension
mechanism.

o ARGUMENT EXTEND (for arguments, see TacGeneric)
o TACTIC EXTEND (for tactics, see TacML)

Pierre-Marie Pédrot (INRIA) Ltac Internals 30/05/2016 24 / 31

Generic arguments (genarg.ml)

Those are dynamic types that implement some primitives.
type (a,[3,7) Genarg.genarg_type

As for every Coq stuff, three levels
o The raw level (user facing)
o The glob level (internalized)
o The typed level (ML-side typing)

A few hardwired genargs are defined in Stdarg and Constrarg.

By convention, they are named wit_x*.

Pierre-Marie Pédrot (INRIA) Ltac Internals 30/05/2016

25 / 31

Required operations

We can declare extensible operations on genargs.
module Genarg.Register

Important ones in the Coq codebase:
o Parsing to raw (pcoq.ml)
o Printing from raw, glob, typed (genprint.ml)
o Internalization from raw to glob (genintern.ml)
o Substitution from glob to glob (genintern.ml)
o Interpretation from glob to Val.t (geninterp.ml)
Toplevel representation from Val.t to typed (geninterp.ml)

©

Pierre-Marie Pédrot (INRIA) Ltac Internals 30/05/2016

26 / 31

ARGUMENT EXTEND

There is a CAMLPX macro to generate such boilerplate.

ARGUMENT EXTEND auto_using
TYPED AS uconstr_list
PRINTED BY pr_auto_using

| ["using" ne_uconstr_list_sep(l, ",") 1 -> [1]
1 ->C010]1
END

Simple example, there is a more complicated variant.
(See extraargs.ml4)

Pierre-Marie Pédrot (INRIA) Ltac Internals 30/05/2016 27 /31

Extending tactics (tacenv.ml)

One can register ML code to use as tactics.
type ml_tactic = Val.t list — interp_sign — unit tactic

Such tactics are referred by a m1_tactic_name:

o A ML plugin name (DECLARE PLUGIN foo)
o A ML tactic name

o An integer corresponding to the entry number

No way to directly refer to those primitives from Coq side!

Pierre-Marie Pédrot (INRIA) Ltac Internals 30/05/2016 28 /31

TACTIC EXTEND

Once again a CAMLPX macro to generate boilerplate.

TACTIC EXTEND econstructor
| ["econstructor"] -> [Tactics.econstructor]

| ["econstructor" int_or_var(i)]

-> [Tactics.econstructor_n i]
END

This macro

o registers an ML tactic (with automatic casts from Val.t)

o adds a tactic notation referring to the TacML node.

Pierre-Marie Pédrot (INRIA) Ltac Internals 30/05/2016 29 /31

1

Bird's eye view
2 Engine
3) Tactics

D Ltac

(® Future plans

«Or «Fr o« . ’ N

i
a

Future plans

General guideline: turn Ltac into a ML.

©

Fix the evaluation order (outch!)

©

Add static typing (see above)
Add datatypes

Fix tactic notations

©

©

©

Generic quoting mechanism

Pierre-Marie Pédrot (INRIA) Ltac Internals 30/05/2016 31 /31

	Bird's eye view
	Engine
	Tactics
	Ltac
	Future plans

