Computational interpretation of classical forcing

Lionel Rieg

Collège de France

July 22nd, 2016

The question

Logic	Programs
¬¬-translation	CPS translation
\sim formula ot	→ return type
Forcing → forcing conditions → forcing transformation	???

Forcing in one drawing

Forcing in one drawing

Forcing in one drawing

Outline

- **1** Formal proof system: $PA\omega^+$
- 2 Forcing in $PA\omega^+$
- 3 An example of computation by forcing

$PA\omega^+$: syntax

Sorts

$$\tau, \sigma := \iota \mid 0 \mid \tau \rightarrow \sigma$$

Expressions

$$M, N, A, B := x^{\tau} \mid \lambda x^{\tau}. M \mid MN$$

$$\mid 0 \mid S \mid \operatorname{rec}_{\tau}$$

$$\mid A \Rightarrow B \mid \forall x^{\tau}. A$$

λ-calculus arithmetic minimal logic

Proof-terms

$$t, u := x \mid \lambda x. t \mid t u \mid \text{callcc}$$

$PA\omega^+$: Logical connectives

Second-order encodings:

$$\begin{array}{rcl}
\bot & := & \forall Z.Z \\
\neg A & := & A \Rightarrow \bot \\
A \land B & := & \forall Z.(A \Rightarrow B \Rightarrow Z) \Rightarrow Z \\
A \lor B & := & \forall Z.(A \Rightarrow Z) \Rightarrow (B \Rightarrow Z) \Rightarrow Z \\
\exists x.A & := & \forall Z.(\forall x.A \Rightarrow Z) \Rightarrow Z \\
e_1 = e_2 & := & \forall Z.Ze_1 \Rightarrow Ze_2
\end{array}$$

Notations:
$$x \in P := P(x)$$
 $\forall x \in P. A := \forall x. x \in P \Rightarrow A$
 $\exists x \in P. A := \exists x. x \in P \land A$

$PA\omega^+$: syntax

Sorts

$$\tau, \sigma := \iota \mid 0 \mid \tau \rightarrow \sigma$$

Expressions

Proof-terms

$$t, u := x \mid \lambda x. t \mid t u \mid \text{callcc}$$

$$M \doteq_{\tau} N \hookrightarrow A \iff M = N \Rightarrow A$$

+ some congruence on formulas

7/29

$PA\omega^+$: proof system

8/29

- Different from intuitionistic realizability
 - intuitionistic: limits proofs, full extraction
 - classical: full proofs, limits extraction

- Different from intuitionistic realizability
 - intuitionistic: limits proofs, full extraction
 - classical: full proofs, limits extraction
- The KAM (Krivine's Abstract Machine)
 Stack machine for λ-calculus + callcc

- Different from intuitionistic realizability
 - intuitionistic: limits proofs, full extraction
 - classical: full proofs, limits extraction
- The KAM (Krivine's Abstract Machine)
 Stack machine for λ-calculus + callcc
- Realizability interpretation
 - Based on a pole
 ⊥ (set of processes of the KAM)
 - Propositions interpreted by stacks (refutations)
 - Realizers defined by orthogonality: |A| := [A][⊥]

- Different from intuitionistic realizability
 - intuitionistic: limits proofs, full extraction
 - classical: full proofs, limits extraction
- Realizability interpretation
 - Based on a pole
 ⊥ (set of processes of the KAM)
 - Propositions interpreted by stacks (refutations)
 - Realizers defined by orthogonality: |A| := [A][⊥]
- Results:
 - Adequacy: ⊢ t : A implies t ⊩ A
 - Logical consistency: when $\mu = \emptyset$, Tarski model
 - Simple methods to extract witnesses for Σ_1^0 formulas

Outline

- 1 Formal proof system: $PA\omega^+$
- $m{2}$ Forcing in PA ω^+
- 3 An example of computation by forcing

Forcing: overall idea

Forcing: input

Definition (Forcing structure)

A forcing structure is given by

- a sort κ of forcing conditions
- a predicate $C^{\kappa \to o}$ of well-formed conditions
- a product operation · on forcing conditions
- a maximal condition 1
- a bunch of proof terms $\alpha_0, \ldots, \alpha_8$
- G = generic filter on the set of forcing conditions
 - = "approximations of g"

$$g = \bigcup G$$

 $(p \in C \text{ written } C[p])$

Forcing: input (example)

Example (Forcing structure)

The forcing structure to add a single Cohen real

- ullet $\kappa := \iota$ (finite relations between $\mathbb N$ and Bool)
- C[p] := p is functional" $(p : \mathbb{N} \to Bool)$
- $p \cdot q := p \cup q$
- 1 := Ø
- \bullet $\alpha_0, \ldots, \alpha_8$

G :=pair-wise compatible finite functions from \mathbb{N} to Bool = "approximations of g"

 $g = \bigcup G$ (a full function from \mathbb{N} to Bool)

3 translations (_)*:

3 translations (_)*:

on kinds:

$$\iota^* := \iota$$

$$o^* := \kappa \to o$$

$$(\sigma \to \tau)^* := \sigma^* \to \tau^*$$

3 translations (_)*:

on kinds:

$$\iota^* := \iota$$
 $0^* := \kappa \to 0$ $(\sigma \to \tau)^* := \sigma^* \to \tau^*$

- on expressions:
 - $(A \Rightarrow B)^* p := \forall q \forall r. p \doteq q \cdot r \hookrightarrow (\forall s. C[q \cdot s] \Rightarrow A^* s) \Rightarrow B^* r$
 - merely propagates through other constructions

3 translations (_)*:

on kinds:

$$\iota^* := \iota$$
 $0^* := \kappa \to 0$ $(\sigma \to \tau)^* := \sigma^* \to \tau^*$

- on expressions:
 - $(A \Rightarrow B)^* p := \forall q \forall r. p \doteq q \cdot r \hookrightarrow (\forall s. C[q \cdot s] \Rightarrow A^* s) \Rightarrow B^* r$
 - merely propagates through other constructions

The forcing transformation:
$$p F A := \forall r. C[p \cdot r] \Rightarrow A^* r$$

3 translations (_)*:

on kinds:

$$\iota^* := \iota$$
 $0^* := \kappa \to 0$ $(\sigma \to \tau)^* := \sigma^* \to \tau^*$

- on expressions:
 - $(A \Rightarrow B)^* p := \forall q \forall r. p \doteq q \cdot r \hookrightarrow (\forall s. C[q \cdot s] \Rightarrow A^* s) \Rightarrow B^* r$
 - merely propagates through other constructions

The forcing transformation:
$$p F A := \forall r. C[p \cdot r] \Rightarrow A^* r$$

on proof terms:

$$x^*$$
 := x
 $(t u)^*$:= $\gamma_3 t^* u^*$
 $(\lambda x. t)^*$:= $\gamma_1 (\lambda x. t^* [(\beta_3 y)/y] [(\beta_4 x)/x])$ $y \neq x$
callcc* := λcx . callcc $(\lambda k. x (\alpha_{14} c) (\gamma_4 k))$

The KFAM: regular mode

Like the KAM

Skip
$$x[e, y \leftarrow c] \star \pi > x[e] \star \pi$$
 π Access $x[e, x \leftarrow c] \star \pi > c \star \pi$ Push $(t u)[e] \star \pi > t[e] \star u[e] \cdot \pi$ Grab $(\lambda x. t)[e] \star c \cdot \pi > t[e, x \leftarrow c] \star \pi$ Save $callcc[e] \star c \cdot \pi > c \star \pi$ Restore $k_{\pi'} \star c \cdot \pi > c \star \pi$

The KFAM: regular mode

Like the KAM + forcing

The KFAM: evaluation

Skip
$$x[e, y \leftarrow c] \star \pi > x[e] \star \pi$$

Access $x[e, x \leftarrow c] \star \pi > c \star \pi$

Push $(t \ u)[e] \star \pi > t[e] \star u[e] \cdot \pi$

Grab $(\lambda x. t)[e] \star c \cdot \pi > t[e, x \leftarrow c] \star \pi$

Save callcc[e] $\star c \cdot \pi > c \star \kappa_{\pi} \cdot \pi$

Restore $k_{\pi'} \star c \cdot \pi > c \star \pi'$
 $\downarrow \downarrow$
 $p^* \quad x[e, y \leftarrow c]^* \star f \cdot \pi > x[e]^* \star \alpha_9 f \cdot$

```
Skip*
                   x[e, x \leftarrow c]^* \star f \cdot \pi > c
Access*
                                                                                     \star \alpha_{10} f
                   (t u)[e]^* \star f \cdot \pi > t[e]^*
Push*
                                                                                     \star \alpha_{11} f \cdot u[e]^* \cdot \pi
                   (\lambda x. t)[e]^* \star f \cdot c \cdot \pi > t[e, x \leftarrow c]^* \star \alpha_6 f
Grab*
                                                                                                            \pi
                   callcc*
Save*
                                 \star f \cdot c \cdot \pi > c
                                                                                     \star \alpha_{14} f \cdot k_{\pi}^* \cdot \pi
Restore*
                   k_{\pi'}^*
                                     \star f \cdot c \cdot \pi > c
                                                                                     \star \alpha_{15} f
```

Forcing: overall idea

Restriction: *C* is invariant by forcing (arithmetical)

Restriction: *C* is invariant by forcing (arithmetical)

$$PA\omega^{+} + G \longrightarrow Forcing translation \longrightarrow PA\omega^{+}$$
 $A \qquad p F A$
 $t: A \qquad t^{*}: p F A$
 $q \in G \qquad ??$

Restriction: *C* is invariant by forcing (arithmetical)

Restriction: *C* is invariant by forcing (arithmetical)

Nice properties of *G* in the forcing universe:

- non empty $1 \in G$
 - subset of $C \quad \forall p \in G. C[p]$
 - filter $\forall p \forall q. (p \cdot q) \in G \Rightarrow p \in G$ $\forall p \in G. \forall q \in G. (p \cdot q) \in G$
 - genericity ...

We need to prove that they are forced

forcing/kernel modes

We want to prove $A_1 \dots A_n$.

Base universe

We want to prove $A_1 \dots A_n$

Base universe

Build the forcing structure

We want to prove $\frac{A_1}{A}$... $\frac{A_n}{A}$

Base universe

- Build the forcing structure
- 2 Assume the premises $x_1 \dots x_n$

We want to prove $\frac{A_1}{A}$... $\frac{A_n}{A}$

Base universe

- Build the forcing structure
- 2 Assume the premises $x_1 \dots x_n$

Forcing universe

3 Lift the premises $x_1 \dots x_n$

We want to prove $\begin{array}{cccc} A_1 & \dots & A_n \\ \hline & A & \end{array}$

Base universe

- Build the forcing structure
- 2 Assume the premises $x_1 \dots x_n$

- **3** Lift the premises $x_1 \dots x_n$
- Make the proof (using g/G) $t(x_1,...,x_n): A$

Forcing usage: the big picture

We want to prove $\frac{A_1}{A}$ \dots $\frac{A_n}{A}$

Base universe

- Build the forcing structure
- 2 Assume the premises $x_1 \dots x_n$

Use the forcing translation $t^*(x_1^*,...,x_n^*): 1 F A$

Forcing universe

- **3** Lift the premises $x_1 \dots x_n$
- Make the proof (using g/G) $t(x_1, ..., x_n) : A$

Forcing usage: the big picture

We want to prove $\frac{A_1}{A}$ \dots $\frac{A_n}{A}$

Base universe

- Build the forcing structure
- 2 Assume the premises $x_1 \dots x_n$

- Use the forcing translation $t^*(x_1^*,...,x_n^*): 1 F A$
- Remove forcing $w t^*(x_1^*,...,x_n^*) : A$

Forcing universe

- **3** Lift the premises $x_1 \dots x_n$
- Make the proof (using g/G) $t(x_1, ..., x_n) : A$

Forcing usage: the big picture

We want to prove $\frac{A_1 \quad \dots \quad A_n}{A}$

Base universe

- Build the forcing structure
- 2 Assume the premises $x_1 \dots x_n$

- Use the forcing translation $t^*(x_1^*,...,x_n^*): 1 F A$
- Remove forcing $w \ t^*(x_1^*, \dots, x_n^*) : A$
- Extract a witness (classical realizability)

Forcing universe

- 3 Lift the premises $x_1 \dots x_n$
- Make the proof (using g/G) $t(x_1, ..., x_n) : A$

Outline

- 1 Formal proof system: $PA\omega^+$
- 2 Forcing in $PA\omega^+$
- An example of computation by forcing

Disjunction property and Herbrand's theorem

Disjunction property

(intuitionistic logic)

If $\exists \vec{x}. F(\vec{x})$ is provable, then there exists a closed term \vec{t} such that $F(\vec{t})$ is provable.

Herbrand's theorem

(classical logic)

If $\exists \vec{x}. F(\vec{x})$ is provable, then there exists closed terms $\vec{t}_1, \ldots, \vec{t}_k$ such that $F(\vec{t}_1) \vee \ldots \vee F(\vec{t}_k)$ is provable.

Disjunction property and Herbrand's theorem

Disjunction property

(intuitionistic logic)

If $\exists \vec{x}$. $F(\vec{x})$ is provable, then there exists a closed term \vec{t} such that $F(\vec{t})$ is provable.

Herbrand's theorem

(classical logic)

If $\exists \vec{x}. F(\vec{x})$ is provable, then there exists closed terms $\vec{t}_1, \ldots, \vec{t}_k$ such that $F(\vec{t}_1) \vee \ldots \vee F(\vec{t}_k)$ is provable.

To which model correspond each witness?

Herbrand trees

Definition (Herbrand tree)

A *Herbrand tree* is a finite binary tree such that:

- inner nodes = atomic formulas
 - atomic formulas branch = partial valuation

 →
- leaves = witnesses \vec{t}

Example

$$F n := F_1 \vee F_2 \vee F_3$$

- $F_1 := \neg P 3$
- $F_2 := P n \land \neg P (n+1)$
- $F_3 := P6$


```
If \exists \vec{x}. F(\vec{x}) is provable,
then there exists closed terms \vec{t}_1, \ldots, \vec{t}_k
such that F(\vec{t}_1) \vee \ldots \vee F(\vec{t}_k) is provable.
```

Let us fix an enumeration $(a_i)_{i\in\mathbb{N}}$ of the atoms. (atoms = closed atomic formulas)

If $\exists \vec{x}. F(\vec{x})$ is provable, then there exists closed terms $\vec{t}_1, \ldots, \vec{t}_k$ such that $F(\vec{t}_1) \vee \ldots \vee F(\vec{t}_k)$ is provable.

consider the atom-enumerating complete infinite tree

If $\exists \vec{x}. F(\vec{x})$ is provable, then there exists closed terms $\vec{t}_1, \ldots, \vec{t}_k$ such that $F(\vec{t}_1) \vee \ldots \vee F(\vec{t}_k)$ is provable.

pick any infinite branch

If $\exists \vec{x}. F(\vec{x})$ is provable, then there exists closed terms $\vec{t}_1, \ldots, \vec{t}_k$ such that $F(\vec{t}_1) \vee \ldots \vee F(\vec{t}_k)$ is provable.

by hypothesis (and $F(\vec{w})$ finite), we can cut it at finite depth

If $\exists \vec{x}. F(\vec{x})$ is provable, then there exists closed terms $\vec{t}_1, \ldots, \vec{t}_k$ such that $F(\vec{t}_1) \vee \ldots \vee F(\vec{t}_k)$ is provable.

conclude using the fan theorem

The interest of forcing here

- forcing takes care of the tree structure only perform the proof on the generic branch
- no need to give a priori an order on atoms

g is here a generic model i.e. a generic branch

The interest of forcing here

- forcing takes care of the tree structure only perform the proof on the generic branch
- no need to give a priori an order on atoms

g is here a generic model i.e. a generic branch

Our forcing structure: 1 specific Cohen real

forcing conditions := finite functions from atoms to bool

$$\kappa := \iota$$

$$C[p] := (p : Atom \rightarrow Bool) \land k$$

$$p \cdot q := p \cup q$$

$$1 := \emptyset$$

G = pairwise compatible conditions

The computational content of forcing conditions

$$C[p] := p : Atom \rightarrow Bool \wedge k$$

Key ingredients of the forcing proof

- Forcing structure:
 - → contains the Herbrand tree under construction
- Proof in the forcing universe:
 - uses only one model: g
 - uses the (classical) proof of $\exists \vec{x}. F(\vec{x})$
 - uses the axioms about g: specifically the genericity axiom

Key ingredients of the forcing proof

- Forcing structure:
 - → contains the Herbrand tree under construction
- Proof in the forcing universe:
 - uses only one model: g
 - uses the (classical) proof of $\exists \vec{x}. F(\vec{x})$
 - uses the axioms about g: specifically the genericity axiom
 - \rightarrow actually a weaker form: the totality of g
 - (A) $\forall a \in \text{Atom. } \exists q \in G. \exists b \in \text{Bool. } q(a) = b$
- Realize the axiom A

Used instead of genericity

$$p F \forall a \in Atom. \exists q \in G. \exists b \in Bool. q(a) = b$$

Used instead of genericity

$$p F \forall a \in Atom. \exists q \in G. \exists b \in Bool. q(a) = b$$

2 cases:

Used instead of genericity

$$p F \forall a \in Atom. \exists q \in G. \exists b \in Bool. q(a) = b$$

2 cases:

• $a \in p$: answer b as in p

Used instead of genericity

$$p F \forall a \in Atom. \exists q \in G. \exists b \in Bool. q(a) = b$$

2 cases:

- $a \in p$: answer b as in p
- $a \notin p$: we try both true and false

Used instead of genericity

$$p F \forall a \in Atom. \exists q \in G. \exists b \in Bool. q(a) = b$$

2 cases:

- $a \in p$: answer b as in p
- $a \notin p$: we try both true and false

Used instead of genericity

$$p F \forall a \in Atom. \exists q \in G. \exists b \in Bool. q(a) = b$$

2 cases:

- $a \in p$: answer b as in p
- $a \notin p$: we try both true and false


```
\lambda caf. let p, t := \alpha c in if \operatorname{Tot}_{\operatorname{test}} a' true p then f(\alpha c) I true* I* else if \operatorname{Tot}_{\operatorname{test}} a' false p then f(\alpha c) I false* I* else f(\operatorname{Up}_{\operatorname{FVal}}((a')^+ \cup p), \lambda u. f(\operatorname{Up}_{\operatorname{FVal}}((a')^- \cup p), \lambda v. f(\operatorname{merge} a' u v)) I false* I* I true* I*
```

Used instead of genericity

$$p F \forall a \in Atom. \exists q \in G. \exists b \in Bool. q(a) = b$$

2 cases:

- $a \in p$: answer b as in p
- a ∉ p: we try both true and false


```
\lambda caf. let p, t := \alpha c in if \operatorname{Tot_{test}} a' true p then f(\alpha c) I true* I* else if \operatorname{Tot_{test}} a' false p then f(\alpha c) I false* I* else f(\operatorname{Up_{FVal}}((a')^+ \cup p), \lambda u.
f(\operatorname{Up_{FVal}}((a')^- \cup p), \lambda v.
f(\operatorname{merge} a' u v)) I false* I*) I true* I*
```

Used instead of genericity

$$p F \forall a \in Atom. \exists q \in G. \exists b \in Bool. q(a) = b$$

2 cases:

- $a \in p$: answer b as in p
- $a \notin p$: we try both true and false

Used instead of genericity

$$p F \forall a \in Atom. \exists q \in G. \exists b \in Bool. q(a) = b$$

2 cases:

- $a \in p$: answer b as in p
- $a \notin p$: we try both true and false


```
\lambda caf. let p, t := \alpha c in if \operatorname{Tot}_{\operatorname{test}} a' true p then f(\alpha c) I true* I* else if \operatorname{Tot}_{\operatorname{test}} a' false p then f(\alpha c) I false* I* else f(\operatorname{Up}_{\operatorname{FVal}}((a')^+ \cup p), \lambda u. f(\operatorname{Up}_{\operatorname{FVal}}((a')^- \cup p), \lambda v. f(\operatorname{merge} a' u v)) I false* I* I true* I*
```

More insight on the computational content

- Realizer of C[p]: zipper with hole
- Proof in the forcing universe
 - gives a user-level program
 → no direct access to the forcing condition
 - access to the tree is provided by the axioms on G (mostly A)
- Realizer of A performs the extension of the tree + querrying
 No erasing of the tree (even with backtrack in the forcing proof)
- G is a "moving set"

and g a "moving branch"

More insight on the computational content

- Realizer of C[p]: zipper with hole
- Proof in the forcing universe
 - gives a user-level program
 - \rightarrow no direct access to the forcing condition
 - access to the tree is provided by the axioms on G (mostly A)
- Realizer of A performs the extension of the tree + querrying
 No erasing of the tree (even with backtrack in the forcing proof)
- G is a "moving set"

and g a "moving branch"

We can put datatypes inside C[p]

Conclusion

- Practical method for extracting proofs using forcing
- Extend Curry-Howard correspondence

Logic	Programs
forcing transformation	add a memory cell
forcing conditions	value of the memory cell
axioms on G	instructions on the memory cell
new object g	"meaning" of the memory cell

- One example (Herbrand) where forcing "=" tree library
- More generally: forcing performs an abstraction barrier
- Very efficient: datatypes

Conclusion

- Practical method for extracting proofs using forcing
- Extend Curry-Howard correspondence

Logic	Programs
forcing transformation	add a memory cell
forcing conditions	value of the memory cell
axioms on G	instructions on the memory cell
new object g	"meaning" of the memory cell

- One example (Herbrand) where forcing "=" tree library
- More generally: forcing performs an abstraction barrier
- Very efficient: datatypes

Conclusion

- Practical method for extracting proofs using forcing
- Extend Curry-Howard correspondence

Logic	Programs
forcing transformation	add a memory cell
forcing conditions	value of the memory cell
axioms on G	instructions on the memory cell
new object g	"meaning" of the memory cell

- One example (Herbrand) where forcing "=" tree library
- More generally: forcing performs an abstraction barrier
- Very efficient: datatypes

$PA\omega^+$: congruence

Reflexivity, symmetry, transitivity and base case

$$M \approx_{\mathcal{E}} M$$

$$M \approx_{\mathcal{E}} N$$
$$N \approx_{\mathcal{E}} M$$

$$\frac{M \approx_{\mathcal{E}} M}{N \approx_{\mathcal{E}} M} \qquad \frac{M \approx_{\mathcal{E}} N}{N \approx_{\mathcal{E}} M} \qquad \frac{M \approx_{\mathcal{E}} N \qquad N \approx_{\mathcal{E}} P}{M \approx_{\mathcal{E}} P} \qquad \frac{M \approx_{\mathcal{E}} N}{M \approx_{\mathcal{E}} N} \quad (M = N) \in \mathcal{E}$$

$$\overline{M \approx_{\mathcal{E}} N} (M = N) \in \mathcal{E}$$

Context closure

$\beta n\iota$ -conversion

$$(\lambda x^{\tau}. M) N^{\tau} \approx_{\varepsilon} M[N^{\tau}/x]$$

$$\frac{1}{(\lambda x^{\tau}. M) N^{\tau} \approx_{\mathcal{E}} M[N^{\tau}/x^{\tau}]} \qquad \frac{1}{\lambda x. M x \approx_{\mathcal{E}} M} x \notin FV(M)$$

$$\operatorname{rec}_{\tau} M N 0 \approx_{\varepsilon} M$$
 $\operatorname{rec}_{\tau} M N (S P) \approx_{\varepsilon} N P (\operatorname{rec}_{\tau} M N P)$

Semantically equivalent propositions

$$\frac{\forall x^{\tau} \forall y^{\sigma}. A \approx_{\mathcal{E}} \forall y^{\sigma} \forall x^{\tau}. A}{A \Rightarrow \forall x^{\tau}. B \approx_{\mathcal{E}} \forall x^{\tau}. A \Rightarrow_{\mathcal{E}} A} \xrightarrow{\forall x^{\tau}. A \approx_{\mathcal{E}} A} x \notin FV(A)$$

$$M \doteq M \hookrightarrow A \approx_{\mathcal{E}} A$$
 $M \doteq N \hookrightarrow A \approx_{\mathcal{E}} N \doteq M \hookrightarrow A$

$$M \doteq N \hookrightarrow P \doteq Q \hookrightarrow A \approx_{\mathcal{E}} P \doteq Q \hookrightarrow M \doteq N \hookrightarrow A$$

$$A \Rightarrow M \doteq N \hookrightarrow B \approx_{\mathcal{E}} M \doteq N \hookrightarrow A \Rightarrow B$$

$$x \notin FV(M)$$

$$\forall x^{\mathsf{T}}. M \doteq N \hookrightarrow A \approx_{\mathcal{E}} M \doteq N \hookrightarrow \forall x^{\mathsf{T}}. A \not\in \mathsf{FV}(M, N)$$

Classical realizability interpretation

Sorts $\llbracket \iota \rrbracket := \mathbb{N}$ $\llbracket o \rrbracket := \mathcal{P}(\Pi)$ $\llbracket \sigma \to \tau \rrbracket := \llbracket \tau \rrbracket^{\llbracket \sigma \rrbracket}$ $\llbracket x^{\tau} \rrbracket_{\rho} := \rho(x)$ Terms $[\![\lambda x.M]\!]_{\rho} := v \mapsto [\![M]\!]_{\rho,X^{\tau}\leftarrow v}$ $[\![MN]\!]_{\rho} := [\![M]\!]_{\rho} [\![N]\!]_{\rho}$ $[\![0]\!]_{\rho} := 0$ $\llbracket S \rrbracket_o := n \mapsto n+1$ $\llbracket \operatorname{rec}_{\tau} \rrbracket_{o} := \operatorname{rec}_{\llbracket \tau \rrbracket}$ $\llbracket A \Rightarrow B \rrbracket_{\rho} := \{ t \cdot \pi \mid t \in |A|_{\rho} \land \pi \in ||B||_{\rho} \}$ $|A|_{\rho} := \{t \in \Lambda \mid \forall \pi \in \llbracket A \rrbracket_{\rho} . t \star \pi \in \bot \}$ Truth values

2/2