Formal proof system: PAw™
Forcing in PAw™
An example of computation by forcing

Lionel Riea

Collége de France

July 227, 2016

The question

Logic Programs
——-translation CPS translation
~» formula L ~» return type

Forcing
~» forcing conditions
~» forcing transformation

Lionel Riec (Collége de France) Computational interpretation of classical forcing

22?

July 227, 2016

2/29

Forcing in one drawing

construction
(model theory)

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 3/29

Forcing in one drawing

construction
(model theory)

translation
(proof theory)

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 3/29

Forcing in one drawing

construction
(model theory)

t: A

translation
*:pFA (proof theory)

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 3/29

Formal proof system: PAw™
Forcing in PAw™
An example of computation by forcing

Outline

@ Formal proof system: PAw™
© Forcing in PAwt

o An example of computation by forcing

Formal proof system: PAw*

PAw™: syntax

Sorts
o = (| o | To0
Expressions
M,N,A,B = x™ | AX*"M | MN A-calculus
| 0 | S | rec arithmetic
| A=>B | ¥x"A minimal logic
Proof-terms
tbu = x | Ax.t | tu | callcc

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 5/29

Formal proof system: PAw*

PAw™: Logical connectives

Second-order encodings:

L = VvZ.Z

-A = A= 1

AAB = VZ.(A=B=2)=>Z
AvB = VZ(A=>2)>(B=>2)="Z
Ix.A = VZ.(VWXA=>2)=2Z
eg=6 = VZ.Zeit=>Zes

Notations: x € P := P(x) VxeP.A:=Vx.xeP=A
dxeP.A:=Ix.xe PAA

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 6/29

Formal proof system: PAw*

PAw™: syntax

Sorts
o = (| o | To0
Expressions
M,N,A,B = x™ | AX™.M | MN
| 0 | S | rec
| A=>B | VXA | M= N—>A
Proof-terms
tbu = x | Ax.t | tu | callcc

M=N—A M=N=A

+ some congruence on formulas

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016

7129

Formal proof system: PAw*

PAw™: proof system

Axi Pei
N T X Arx:A ETlrcallcc: (A=B)=A)=>A eree
ETrHEA
C — T A=rg A
ongruence ST T A s

=, ENx: At t:B ETNrt:A=B ETru:A
CET FAX.t:A= B ETrtu:B °
v, ETrt: A x ¢ FV(T.8) ETrt:¥Xx". A v,
ETrt:Vx".A ETrt: AIN/XT]
. EM=NTrt:A ETrt: M=M= A
’ ETFt:M= N—A ETFt:A ‘

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016

8/29

Formal proof system: PAw™
Forcing in PAw™
An example of computation by forcing

Classical realizability semantics _

@ Different from intuitionistic realizability

@ intuitionistic: limits proofs, full extraction
o classical: full proofs, limits extraction

Lionel Riee (College de France) Computational interpretation of classical forcing July 221 2016 9/29

Formal proof system: PAw*

Classical realizability semantics

@ Different from intuitionistic realizability

e intuitionistic: limits proofs, full extraction
e classical: full proofs, limits extraction

@ The KAM (Krivine’s Abstract Machine)
Stack machine for A-calculus + callcc

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 9/29

Formal proof system: PAw*

Classical realizability semantics

@ Different from intuitionistic realizability
e intuitionistic: limits proofs, full extraction
e classical: full proofs, limits extraction
@ The KAM (Krivine’s Abstract Machine)
Stack machine for A-calculus + callcc
@ Realizability interpretation

e Based on a pole 1 (set of processes of the KAM)
e Propositions interpreted by stacks (refutations)
o Realizers defined by orthogonality: |A| := [A]"*

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 9/29

Formal proof system: PAw*

Classical realizability semantics

@ Different from intuitionistic realizability
@ intuitionistic: limits proofs, full extraction
e classical: full proofs, limits extraction
@ The KAM (Krivine’s Abstract Machine)
Stack machine for A-calculus + callcc
@ Realizability interpretation
e Based on a pole 1 (set of processes of the KAM)
e Propositions interpreted by stacks (refutations)
o Realizers defined by orthogonality: |A| := [A]"*
@ Results:
o Adequacy: +t: Aimpliesti- A
e Logical consistency: when 1L = @, Tarski model
e Simple methods to extract witnesses for)Z? formulas

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016

9/29

Formal proof system: PAw™
Forcing in PAw™
An example of computation by forcing

Outline

0 Formal proof system: PAw™
© Forcing in PAw™

Q An example of computation by forcing

Forcing in PAw™

Forcing: overall idea

PAW+G
PAwW*

t: A

translation
t*:pFA (proof theory)

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 221 2016 11/29

Forcing in PAw™

Forcing: input

Definition (Forcing structure)
A forcing structure is given by

a sort « of forcing conditions
a predicate C*~° of well-formed conditions (p € C written C[p])
a product operation - on forcing conditions

°
°

@ a maximal condition 1

@ a bunch of proof terms «ay, ..., as

G = generic filter on the set of forcing conditions
= “approximations of g’

g=UG

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 12/29

Forcing in PAw™

Forcing: input (example)

Example (Forcing structure)

The forcing structure to add a single Cohen real
@ « := (finite relations between N and Bool)
@ C[p] := “p is functional” (p : N — Bool)
®p-g=pUq
e 1:=0

@ ap,...,0a8

G := pair-wise compatible finite functions from N to Bool
= “approximations of g’

g=UG (a full function from N to Bool)

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 221 2016 13/29

Formal proof system: PAw™
Forcing in PAw™
An example of computation by forcing

Forcing: o

3 translations (_)*:

Formal proof system: PAw™
Forcing in PAw™
An example of computation by forcing

Forcing: out

3 translations (_)*:
@ on kinds:

U= 0" :=k—>o0 (c-1)i=0">1

Forcing in PAw™

Forcing: output

3 translations (_)*:
@ on kinds:

U= 0*:=k—>0 (0> 1) =0 > 1
@ on expressions:
o (A=>B)' p:=VYg¥r.p=q-r— (¥s.C[qg-s] > A*s) = B"r

e merely propagates through other constructions

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016

14/29

Forcing in PAw™

Forcing: output

3 translations (_)*:
@ on kinds:

U= 0*:=k—>0 (0> 1) =0 > 1
@ on expressions:
o (A=>B)' p:=VYg¥r.p=q-r— (¥s.C[qg-s] > A*s) = B"r

e merely propagates through other constructions

The forcing transformation: pFA:=VYr.Clp-r]= A*r

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016

14/29

Forcing in PAw™

Forcing: output

3 translations (_)*:
@ on kinds:

U= 0*:=k—>0 (0> 1) =0 > 1
@ on expressions:
o (A=>B)' p:=VYg¥r.p=q-r— (¥s.C[qg-s] > A*s) = B"r

e merely propagates through other constructions
The forcing transformation: pFA:=VYr.Clp-r]= A*r

@ on proof terms:
X* =X
(tu)* =yt u*
(x.1)" == y1(x- t°[(Bay) /y][(Bax) /X]) y#Xx
callcc™ := Acx. callcc (k. x (@14 €) (va k))

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016

14/29

Forcing in PAw™

The KFAM: regular mode

Like the KAM

terms tbu = x | Ax.t | tu | callecc |

environments e = @ | ex«c

closures c = tle] | ke

stacks n = «a | c-7m

processes p = Ccxrx
Skip xle,y «<c]lx x > x[e] * T
Access Xxle,x—clx = > ¢ * n
Push (tu)[e] * 1 > t[e] * ule] -
Grab (x.t)le] xc-m > tle,x —c]* n
Save callccle] *c-m > ¢ *x kp-m
Restore Ky xC-m > C * b d

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 15/29

Forcing in PAw™

The KFAM: regular mode

Like the KAM + forcing

terms tbu = x | Ax.t | tu | callecc |

environments e = @ | ex«c

closures c = tle] | ke | tle]* | ki

stacks n = «a | c-7m

processes p = Ccxnm
Skip xle,y «<c]lx x > x[e] * T
Access Xxle,x—clx = > ¢ * n
Push (tu)[e] * 1 > t[e] * ule] -
Grab (x.t)le] xc-m > tle,x —c]* n
Save callccle] *c-m > ¢ *x kp-m
Restore Ky xC-m > C * b d

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 15/29

Forcing in PAw™

The KFAM: evaluation

Skip xle,y <c]lx n > x[e] * n

Access Xxle,x—clx = > ¢ * n

Push (tu)le] * 1 > t[e] * ule]-n

Grab (x.t)le] xc-m > tle,x —c]* n

Save callccle] *c-m > ¢ * Ky

Restore Ky xC-m > C * b

™ 1

Skip* xle,y —cl*x f- > x[e|* * g f- T
Access® x[e,x —c|*x f- 7 > ¢ * aqp f- T
Push* (tuwle]* x f- > tle]* * aqq fule]” - m
Grab* (Ax.t)e]* x fc-m > tle,x «c]* xap f n
Save* callcc* x fcom > ¢ * aqaf- Ki-m
Restore® Kk, * f-com > ¢ * a1s I Vi

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 16/29

Forcing in PAw™

Forcing: overall idea

PAW+G
PAwW*

t: A

translation
t*:pFA (proof theory)

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 221 2016 17/29

Formal proof system: PAw™
Forcing in PAw™
An example of computation by forcing

Restriction: C is invariant by forcing (arithmetical)

Forcing in PAw™

Forcing: extension to the generic filter

Restriction: C is invariant by forcing (arithmetical)

PAWT + G
A
t:A
ge G

Lionel Riec (Collége de France)

— | Forcing translation| —

Computational interpretation of classical forcing

PAw™
pFA
t':pFA
77

July 221, 2016

18/29

Forcing in PAw™

Forcing: extension to the generic filter

Restriction: C is invariant by forcing (arithmetical)

PAWT +G — ’Forcing translation‘ — PAw™

A pFA
t:A t':pFA
qeG p<q

pFqeG = p<q := VYr.Clp-r] = Clq-r]

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 221 2016

18/29

Forcing in PAw™

Forcing: extension to the generic filter

Restriction: C is invariant by forcing (arithmetical)

PAWT +G — ’Forcing translation‘ — PAw™

A pFA
t:A F:pFA
qeG p<q

pFqeG = p<q := VYr.Clp-r] = Clq-r]

Nice properties of G in the forcing universe:
@ non empty 1eG
e subsetof C Vpe G.CJp]
o filter Yp¥g.(p-q) e G=peG
Ype G.¥Yqe G.(p-q) G
@ genericity

We need to prove that they are forced forcing/kernel modes

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 221 2016 18/29

Formal proof system: PAw™
Forcing in PAw™
An example of computation by forcing

Forcing usage

A1 An

We want to prove A
Base universe Forcing universe

Formal proof system: PAw*
Forcing in PAw™
An example of computation by forcing

Forcing usage : the big picture _

A1 . o An
A
Base universe Forcing universe

We want to prove

@ Build the forcing structure

Lionel Riee (College de France) Computational interpretation of classical forcing July 221 2016 19/29

Forcing in PAw™

Forcing usage : the big picture

/‘1 . o /‘n
A
Base universe Forcing universe

We want to prove

@ Build the forcing structure
© Assume the premises x; ... Xp

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 221 2016

19/29

Forcing in PAw™

Forcing usage : the big picture

/‘1 . o /‘n
A
Base universe Forcing universe

We want to prove

@ Build the forcing structure
© Assume the premises x; ... Xp
© Lift the premises x; ... Xp

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016

19/29

Forcing in PAw™

Forcing usage : the big picture

A1 . o An
a .
Base universe Forcing universe

We want to prove

@ Build the forcing structure
© Assume the premises x; ... Xp
© Lift the premises x; ... Xp

© Make the proof (using g/G)
t(X1,....Xn) : A

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 19/29

Forcing in PAw™

Forcing usage : the big picture

We want to prove Ar

An

A
Base universe
@ Build the forcing structure

© Assume the premises x; ... Xp

© Use the forcing translation
F(x:,...x) s 1 FA

Lionel Riec (Collége de France)

Computational interpretation of classical forcing

Forcing universe

© Lift the premises x; ... Xp

© Make the proof (using g/G)
t(X1,....Xn) : A

July 22m 2016 19/29

Forcing in PAw™

Forcing usage : the big picture

We want to prove Ar

An

A
Base universe
@ Build the forcing structure

© Assume the premises x; ... Xp

© Use the forcing translation
F(x:,...x) s 1 FA

© Remove forcing
W (X},xp) T A

Lionel Riec (Collége de France)

Computational interpretation of classical forcing

Forcing universe

© Lift the premises x; ... Xp

© Make the proof (using g/G)
t(X1,....Xn) : A

July 22m 2016 19/29

Forcing in PAw™

Forcing usage : the big picture

A‘] . o An
A .
Base universe Forcing universe

We want to prove

@ Build the forcing structure
© Assume the premises x; ... Xp
© Lift the premises x; ... Xp

© Make the proof (using g/G)
t(X1,....Xn) : A

© Use the forcing translation
t(x,.. ., xg) 1 FA

@ Remove forcing
W (X},xp) T A

@ Extract a witness
(classical realizability)

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 19/29

Formal proof system: PAw™
Forcing in PAw™
An example of computation by forcing

Outline

Q Formal proof system: PAw™
© Forcing in PAwt

e An example of computation by forcing

An example of computation by forcing

Disjunction property and Herbrand’s theorem

Disjunction property (intuitionistic logic)

If 3X. F(X) is provable,
then there exists a closed term
such that F(f) is provable.

v

Herbrand’s theorem (classical logic)

If 3X. F(X) is provable,
then there exists closed terms ﬂ . ?k
such that F(f;) v ... v F(f) is provable.

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 21/29

An example of computation by forcing

Disjunction property and Herbrand’s theorem

Disjunction property (intuitionistic logic)

If 3X. F(X) is provable,
then there exists a closed term
such that F(f) is provable.

v

Herbrand’s theorem (classical logic)

If 3X. F(X) is provable,
then there exists closed terms ﬂ . ?k
such that F(f;) v ... v F(f) is provable.

To which model correspond each witness?

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 21/29

An example of computation by forcing

Herbrand trees

Definition (Herbrand tree)

A Herbrand tree is a finite binary tree such that:
@ inner nodes = atomic formulas branch = partial valuation
@ leaves = witnesses

Fn:=FVFVF

@ F:=-P3
@ F2:= PnA-P(n+1)
o F3 =P6

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 22/29

An example of computation by forcing

Build Herbrand trees by a proof of Herbrand’s theorem

If 3X. F(X) is provable,
then there exists closed terms ?1,. . .,?k
such that F(f;) v ... v F(f) is provable.

Let us fix an enumeration (a;);en of the atoms.
(atoms = closed atomic formulas)

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 23/29

An example of computation by forcing

Build Herbrand trees by a proof of Herbrand’s theorem

If 3X. F(X) is provable,
then there exists closed terms ?1,. . .,?k
such that F(f;) v ... v F(f) is provable.

ao
a1 a1

/ /\ A\ “\3
aa/a as as 4\a4

consider the atom-enumerating complete infinite tree

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 23/29

An example of computation by forcing

Build Herbrand trees by a proof of Herbrand’s theorem

If 3X. F(X) is provable,
then there exists closed terms ?1,. . .,?k
such that F(f;) v ... v F(f) is provable.

N
AN AN

AN AN AN AN

3
aa aa aa aa aa aa aa aa aa aa a 4 aa aa

az az

pick any infinite branch

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 23/29

An example of computation by forcing

Build Herbrand trees by a proof of Herbrand’s theorem

If 3X. F(X) is provable,
then there exists closed terms ?1,. . .,?k
such that F(f;) v ... v F(f) is provable.

TN,
az/az az\
IR
34\64 as

by hypothesis (and F(7v) finite), we can cut it at finite depth

az

N
N

4 aa aa aa

a/a3
/1A

3
aa aa aa aa

as

aa a

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 23/29

An example of computation by forcing

Build Herbrand trees by a proof of Herbrand’s theorem

If 3X. F(X) is provable,
then there exists closed terms ?1,. . .,?k
such that F(f;) v ... v F(f) is provable.

/ao
ai

conclude using the fan theorem

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 23/29

Formal proof system: PAw
Forcing in PAw™
An example of computation by forcing

The interest of forcing here _

o forcing takes care of the tree structure
only perform the proof on the generic branch
@ no need to give a priori an order on atoms

g is here a generic model i.e. a generic branch

Lionel Riee (College de France) Computational interpretation of classical forcing July 221 2016 24/29

An example of computation by forcing

The interest of forcing here

o forcing takes care of the tree structure
only perform the proof on the generic branch
@ no need to give a priori an order on atoms

g is here a generic model i.e. a generic branch

Our forcing structure: 1 Cohen real

forcing conditions := finite functions from atoms to bool

K =1
C[p] := (p : Atom — Bool) A k
p-q:=pugq

1:=0

G = pairwise compatible conditions

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 24/29

An example of computation by forcing

The computational content of forcing conditions

Clp] := p : Atom — Bool A k

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 25/29

An example of computation by forcing

Key ingredients of the forcing proof

@ Forcing structure:
~» contains the Herbrand tree under construction

© Proof in the forcing universe:

@ uses only one model: g
e uses the (classical) proof of IX. F(X)
e uses the axioms about g: specifically the genericity axiom

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 26/29

An example of computation by forcing

Key ingredients of the forcing proof

@ Forcing structure:
~» contains the Herbrand tree under construction

© Proof in the forcing universe:
@ uses only one model: g
e uses the (classical) proof of IX. F(X)
e uses the axioms about g: specifically the genericity axiom
~» actually a weaker form: the totality of g
(A) Va € Atom.3q € G.3b € Bool.g(a) = b

© Realize the axiom A

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 221 2016 26/29

Formal proof system: PAw™
Forcing in PAw™
An example of computation by forcing

Used instead of genericity
p F Ya € Atom.dg € G.3b € Bool.q(a) = b

Formal proof system: PAw™
Forcing in PAw™
An example of computation by forcing

The totality ax

Used instead of genericity
p F Ya € Atom.dg € G.3b € Bool.q(a) = b

2 cases:

An example of computation by forcing

The totality axiom

Used instead of genericity

p F Ya € Atom.dg € G.3b € Bool.q(a) = b

2 cases: a
@ acp:answerbasinp

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 221 2016 27129

An example of computation by forcing

The totality axiom

Used instead of genericity

p F Ya € Atom.dg € G.3b € Bool.q(a) = b

2 cases:
@ acp:answerbasinp
@ a ¢ p: we try both true and false /

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 221 2016 27129

An example of computation by forcing

The totality axiom

Used instead of genericity

p F Ya € Atom.dg € G.3b € Bool.q(a) = b

2 cases:
@ acp:answerbasinp
@ a ¢ p: we try both true and false

/m

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 221 2016 27129

An example of computation by forcing

The totality axiom

Used instead of genericity

p F Ya € Atom.dg € G.3b € Bool.q(a) = b

2 cases:
@ acp:answerbasinp
@ a ¢ p: we try both true and false

The program realizing the totality axiom

Acaf. letp,t :==acin
if Totest @’ true p then f(ac) | true* I* else
if Totest @’ false p then f (ac) | false™ I* else
f(UPeva ((@')* U p), Au.
f(Upgva (@) U p), Av.
t (merge a’ uv)) | false™ I") | true* I

V.

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 27129

An example of computation by forcing

The totality axiom

Used instead of genericity

p F Ya € Atom.dg € G.3b € Bool.q(a) = b

2 cases: a
@ acp:answerbasinp
@ a ¢ p: we try both true and false

The program realizing the totality axiom

Acaf. letp,t :==acin
if Totest @’ true p then f(ac) | true* I* else
if Totest @’ false p then f (ac) | false™ I* else
f(UPeva ((@')* U p), Au.
f(Upgva (@) U p), Av.
t (merge a’ uv)) | false™ I") | true* I

V.

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 27129

An example of computation by forcing

The totality axiom

Used instead of genericity

p F Ya € Atom.dg € G.3b € Bool.q(a) = b

2 cases:
@ acp:answerbasinp
@ a ¢ p: we try both true and false /S

The program realizing the totality axiom

Acaf. letp,t :==acin
if Totest @’ true p then f(ac) | true* I* else
if Totest @’ false p then f (ac) | false™ I* else
f(UPeva ((@')" U p), Au.
f(Upgva (@) U p), Av.
t (merge a’ uv)) | false™ I") | true* I

V.

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 27129

An example of computation by forcing

The totality axiom

Used instead of genericity

p F Ya € Atom.dg € G.3b € Bool.q(a) = b

2 cases:
@ acp:answerbasinp
@ a ¢ p: we try both true and false

/QJ

The program realizing the totality axiom

Acaf. letp,t :==acin
if Totest @’ true p then f(ac) | true* I* else
if Totest @’ false p then f (ac) | false™ I* else
f(UPeva ((@')* U p), Au.
f(Uppval ((2") U p), Av.
t (merge a’ uv)) | false™ I") | true* I

V.

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 27129

An example of computation by forcing

More insight on the computational content

@ Realizer of C[p]: zipper with hole
@ Proof in the forcing universe

@ gives a user-level program
~» no direct access to the forcing condition
@ access to the tree is provided by the axioms on G (mostly A)

@ Realizer of A performs the extension of the tree + querrying
No erasing of the tree (even with backtrack in the forcing proof)

@ Gis a “moving set” and g a “moving branch”

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 221 2016 28/29

An example of computation by forcing

More insight on the computational content

@ Realizer of C[p]: zipper with hole
@ Proof in the forcing universe

@ gives a user-level program
~» no direct access to the forcing condition
@ access to the tree is provided by the axioms on G (mostly A)

@ Realizer of A performs the extension of the tree + querrying
No erasing of the tree (even with backtrack in the forcing proof)
@ Gis a “moving set” and g a “moving branch”

We can put datatypes inside C|p]

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 221 2016 28/29

An example of computation by forcing

Conclusion

Practical method for extracting proofs using forcing
Extend Curry-Howard correspondence
Logic | Programs
forcing transformation | add a memory cell
forcing conditions value of the memory cell
axioms on G instructions on the memory cell
new object g “meaning” of the memory cell

One example (Herbrand) where forcing “=” tree library
More generally: forcing performs an abstraction barrier
Very efficient: datatypes

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 29/29

An example of computation by forcing

Conclusion

Practical method for extracting proofs using forcing
Extend Curry-Howard correspondence
Logic | Programs
forcing transformation | add a memory cell
forcing conditions value of the memory cell
axioms on G instructions on the memory cell
new object g “meaning” of the memory cell

One example (Herbrand) where forcing “=” tree library
More generally: forcing performs an abstraction barrier
Very efficient: datatypes

The End

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 29/29

An example of computation by forcing

Conclusion

Practical method for extracting proofs using forcing
Extend Curry-Howard correspondence
Logic | Programs
forcing transformation | add a memory cell
forcing conditions value of the memory cell
axioms on G instructions on the memory cell
new object g “meaning” of the memory cell

One example (Herbrand) where forcing “=” tree library
More generally: forcing performs an abstraction barrier
Very efficient: datatypes

The End

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016 29/29

PAw™: congruence

Reflexivity, symmetry, transitivity and base case
. M=z~g N M=z~g N N=g P ——— (M=N)eé&
M=~g M N~g M M~g P M=g N

Context closure

Bni-conversion

——— x ¢ FV(M
(X" M) N* ~ M[N/x"] o ix g < VM)
recc MNO =g M rec MN(S P) ~¢ NP (rec: MN P)
Semantically equivalent propositions
——— x ¢ FV(A)
VYXTVY7. A ~g YYyIVXT. A VXT.A ~g A
x ¢ FV(A)
A= VYX".Brg¥XT.A= B
M=M= A=xgA M=N—>AxgN=M<=A

M=N—>P=Q—>AxgP=Q—>M=N<=A

A>M=N—o>BrgM=NwA—=B
X ¢ FV(M,N)

VX" M=N—>A~xgM=N=Vx".A

Lionel Riec (Collége de France) Computational interpretation of classical forcing July 22nd 2016

1/2

Classical realizability interpretation

Sorts

Terms

Truth values

Lionel Riec (Collége de France)

[

[ol
[oc— 7]
[x71,
[Ax. M1,
[MN],
[o1,,
[S1,
[rec.I,
[A = B],
[vx*.Al,

M=, N< A],

Al

N

P ()

I[T]]ll‘ﬂ]

p(x)

Vi IIM]]p,xT<—v

M1, [N1,

0

ne—n+1

recpry

{t-m|telAl, AxelBl,}

Uve[[r]] [[A]]p,xN—V
[Al, if [MI, = [NI,
@ otherwise

{teN|vrelAl, . txme)

Computational interpretation of classical forcing July 22nd 2016 2/2

	Formal proof system: PAw+
	Forcing in PAw+
	An example of computation by forcing
	Appendix

