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o Cataclysm: Godel's incompleteness theorem (1931)
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Once upon a time...

o Cataclysm: Godel's incompleteness theorem (1931)

We do not fight alienation with an alienated logic.
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Once upon a time...

o Cataclysm: Godel's incompleteness theorem (1931)

We do not fight alienation with an alienated logic.

o Justifying arithmetic differently
o ... Intuitionistic logic!

o Double-negation translation (1933)
o Dialectica (30's, published in 1958)
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Once upon a time...

o The name comes from the journal it was published in
o Also known as Gédel’s functional interpretation

o Strange beast typical of German-style logic
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@ Overview
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(3 Realizing more by Working more
(@ Curry-Howard at the rescue

(8) Enters Linear Logic

(@ Intepretation of the \-calculus

@ Towards CC¥
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Part |

Undusting Dialectica
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@ Overview
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4) Curry-Howard at the rescue

Enters Linear Logic
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What is Dialectica?
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Overview

What is Dialectica?

o A realizability interpretation of HA

o That preserves intuitionistic content (V, 3)
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Overview

What is Dialectica?

o A realizability interpretation of HA
o That preserves intuitionistic content (V, 3)

o But interprets two semi-classical principles:

o Markov's principle
o Independence of premises
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Overview

What is Dialectica?

o A realizability interpretation of HA
o That preserves intuitionistic content (V, 3)

o But interprets two semi-classical principles:

o Markov's principle
o Independence of premises

Let us discuss each point in more detail.
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Realizability?

o Consider some target programming language

o Define a meta notion of a program p realizing a formula A

plE A

©

Extract proofs to programs
T A ~ - A
o Preserve soundness

thereisnopst. pl- L

©

Hope it realizes more

there are p, Ast. pl-FA butno 7wk A
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Realizability!

Some interesting remarks:
o Dialectica somehow predates the notion of realizability

o Kleene ~ 1945
o Kreisel ~ 1959

o Actually Kreisel realizability is a byproduct of Dialectica
Kreisel: “Dialectica too complicated, let us do simpler!”

o You've been warned...
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Preserves intuitionistic content?

This means that:
o A realizer of AV B provides you with
a realizer of A or a realizer of B
o A realizer of 3z : N. A provides you with

an integer n and realizer of A[x := n]
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Markov's principle?

—(Vn € N.=Pn)

MP dneN.Pn

o Requires P decidable

o Naive computational justification: unbounded loop
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Independence of Premises?

P—-3dmeN.Qm
dInmeN.P—Qm

IP

o Requires P computationally irrelevant (e.g. P := —P’)

o Naive computational justification: dummy argument
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o I'll present the historical version of Godel

o Features a lot of horrible kludges, hacks and tricks
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Warning

o I'll present the historical version of Godel
o Features a lot of horrible kludges, hacks and tricks
o ... yet in a modernized fashion
~> in particular, stick to classical realizability Zeitgeist
~~ terms, types, stacks, orthogonality...
o So that it is readable by a computer scientist!
o Cleaned-up version afterwards
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Warning

o I'll present the historical version of Godel
o Features a lot of horrible kludges, hacks and tricks
o ... yet in a modernized fashion
~> in particular, stick to classical realizability Zeitgeist
~~ terms, types, stacks, orthogonality...
o So that it is readable by a computer scientist!
o Cleaned-up version afterwards

Wunderbar... Ca valide ¢a?
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1) Overview

(@ Godel's Dialectica Translation

3) Realizing more by Working more

4) Curry-Howard at the rescue
5

Enters Linear Logic
6

Intepretation of the A-calculus

7) Towards C'C¥
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Source theory

We will look at the translation of Heyting arithmetic.
o Intuitionistic

o First-order, one-sorted over integers

o Usual natural deduction on sequents ' - A
o Usual axioms for integers

tbun=x|0|St|t+ultxu
AB:=1|T|AVB|AANB|A— B|Vz. A|3z.A|t=u
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Source theory

We will look at the translation of Heyting arithmetic.
o Intuitionistic
o First-order, one-sorted over integers
o Usual natural deduction on sequents ' - A
°

Usual axioms for integers

tbun=x|0|St|t+ultxu
AB:=1|T|AVB|AANB|A— B|Vz. A|3z.A|t=u

I'll not present the rules for it is annoying...
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Target language

o We'll use Godel's famous System T.
o Pedantic name for simply-typed A-calculus + integers

o Very limited, this will require a lot of hacks

o,ru:=N|o=r71

M,N:=xz|Xe. M| MN|O|SM|recM N P
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Target language (typing)

We'll use usual simple types, together with

I'M:N
I'HFO:N I'FSM:N

I'Ng:o I'"Ng:N=oc=o0 I'-M:N
I'rec Ng Ngs M : 0
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Target language (reduction)

Again, this is the usual A-calculus plus integer recursion.

(Ax. M) N —g Mz := N]
rec Ny Ng 0 —g  No
rec No Ng (8 M) —3 Ng M (rec Ng Ng M)
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Meta-theory

| don't want to dwell too much on this, but
o We'll reason intuitionistically all of the time
o Mostly about term equivalence generated by —g
o No fancy stuff
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Hacking in System T

There are many things we're lacking in System T!
o booleans
o pairs
o algebraic datatypes

Qo ...
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Hacking in System T

There are many things we're lacking in System T!
o booleans

o pairs

©

algebraic datatypes

We actually need them for the Dialectica interpretation...

Let us do a bit of assembly to emulate them.
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That one is easy!

oB:=N
o tt:=0
o ff:=8S0

o if M then N else P:=rec N (A\_ _.P) M

Everything works as expected.
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Sequences

That one is hairy... I'll consider sequences of
o System T types: &
o System T terms: M

o Variables: #

and I'll write
o empty sequence ()

o concatenation M; N

o implicit lifting from an object to a singleton

and forget about the “when I'm fed up with it.

Pierre-Marie Pédrot (INRIA) Dialectica

22/07/2016

22 / 101



Sequences (moar)

Due to associativity, there are natural notations for sequences:

F=7T = 01=>...=>0,=>T (a type)
o=7 = (6=m7);...;(c =1, (asequence of types)
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Sequences (moar)

Due to associativity, there are natural notations for sequences:

F=7T = 01=>...=>0,=>T (a type)
o=7 = (6=m7);...;(c =1, (asequence of types)

This induces a similar structure on abstraction and application:

MM = dr1...z, M (a term)
M. M = (Axz.Mp);...;(\x.M,) (asequence of terms)
MN = MN;...N, (a term)
MN = (MyN);...;(M,N) (asequence of terms)
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Sequences (moar)

Due to associativity, there are natural notations for sequences:

F=7T = 01=>...=>0,=>T (a type)

o=7 = (6=m7);...;(c =1, (asequence of types)

This induces a similar structure on abstraction and application:

MM = dr1...z, M (a term)
M. M = (Axz.Mp);...;(\x.M,) (asequence of terms)
MN = MN;...N, (a term)
MN = (MyN);...;(M,N) (asequence of terms)

Typing and reduction are pointwise compatible with this sequencification.
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Sequences (moar)

In particular,

D=1 = 7 (a type)

o=10 := 0 (asequence of types)
and

N.M = M (a term)

Ax.0 = 0 (asequence of terms)

MO = M (a term)

PN = 0 (asequence of terms)

Pierre-Marie Pédrot (INRIA) Dialectica 22/07/2016

24 / 101



Godel’'s anatomy

To any HA formula A, associate a meta formula

Ju.VZ. Aplu

VAN

Sequence of types Sequence of types ~ W(A) — C(A) — Prop

Witness Counter  Orthogonality
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Godel’'s anatomy

To any HA formula A, associate a meta formula

Ju.VZ. Aplu

/\\

1a

Sequence of types Sequence of types  W(A) — C(A) — Prop

Witness Counter  Orthogonality

To any HA proof w - A, associate a meta proof of

vz : C(A). Ap[r®, 7] where 7* : W(A)
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Building bridges

Intuitively, seen through Krivine's realizability,
o W(A) = |A|, typed truth values
o C(A) = ||A||, typed falsity values
o MIFA=VZ:C(A). M L4 & (assumes implicitly M : W(A))

Yet, actually in Krivine realizability
o |A| C A and ||A|| CII are untyped
o Orthogonality untyped as well: M L 7= (M |x)C I
o MIFA=Vrel|lA||lM L~

(Another alternative explanation as logical games.)
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Roadmap

We're going to do the following in the next slides:
o Define W(-), C(-) and L.,y by induction on the type
o State the soundness theorem abstractly

o Look at a few key cases from the proof and get an idea of the realizers

Then we'll have a look at what we got new.

Pierre-Marie Pédrot (INRIA) Dialectica 22/07/2016 27 / 101



Dialectica translation (easy cases)

W(AAB) :=W(A) ; W(B) C(ANAB):=C(A); C(B)
My 1L g104 Mg 1Lp1lp
My ;s Mp Lanp 14 5 11p

W(AV B) :=B;W(A); W(B) C(AV B):=C(A); C(B)
My LaIly Mp Lpllp
tt; Ma; Mp Lavp Ua ;g ££5Ma; Mp Lavp 11451
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Dialectica translation (easy cases)

W(T):=0
W(L):=0
Wt =u):=

Pierre-Marie Pédrot (INRIA)

C(T) =0
C(L):=10
Clt=u):=

Dialectica

0Lr0

(no orthogonality)
t=u

@ J—t:u @

22/07/2016
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Dialectica translation (first-order)

W(Vz. A) :=N=W(A) C(Vz.A) :=N; C(A4)
M N Lgjg.=n 11
M Ly, 4 N;I1I

W(3z. A) :=N; W(A) C(3z. A) :=N= C(A)
M J-A[x::N] Ir N
N M L3, 410
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Dialectica translation (first-order)

W(Vz. A) :=N=W(A) C(Vz.A) :=N; C(A4)
M N Lgjg.=n 11
M Ly, 4 N;I1I

W(3z. A) :=N; W(A) C(3z. A) :=N= C(A)
M J-A[x::N] Ir N
N M L3, 410

(I'm a bit cheating here for pedagogical purposes.)
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Dialectica translation: the wondrous intuitionistic arrow

The mysterious part of the Dialectica translation comes from the arrow...

WA — B) = (W(A)=W(B)); (WA = C(B)=C(A4))
C(A—B) := W(A);C(B)

if N1y, ®NII then M N 1pII
M;® 1La,p N;II

The witness of an arrow has a second, fancy component!
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except for the arrow.

o The W(-) translation corresponds essentially to Kreisel extraction.
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Remarks

o The W(-) translation corresponds essentially to Kreisel extraction.
o ... except for the arrow.
o Most of the logical content is pushed into the meta

o ... thanks to the orthogonality.
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Remarks

©

The W(-) translation corresponds essentially to Kreisel extraction.

©

. except for the arrow.

©

Most of the logical content is pushed into the meta

©

... thanks to the orthogonality.

©

Hacks are quite clear, e.g.

A+B~Bx AxB
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Our realizability interpretation is trivially consistent.
Theorem (Consistency)
«O0> 4F» «E)r «E)» Q>
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Easy result

Our realizability interpretation is trivially consistent.

Theorem (Consistency)

There is no System T sequence of terms M |- L.

Proof.

Assume such sequence M, then there should not be Z : C(_L) by definition
of L. But C(L) =0 and the empty sequence is trivially inhabited, which
contradicts the above statement.

O

Note that we do have paraproofs of falsity...

o F = = DA
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We will now sketch the proof of the following statement.
Theorem (Soundness)
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Soundness (overview)

We will now sketch the proof of the following statement.
Theorem (Soundness)

If Fra A, then there is a sequence of System T terms M I A.

We will prove a generalized statement by induction on the proof.
Theorem (Generalized soundness)

If 7:T,..., Ty Fga A, then there is:

o a sequence of terms 7* : W(I') = W(A)
o n sequences of terms 77 : W(I') = C(A) = C(I'y)
s.t. for all M : W(T') and I : C(A),

if for all 7 < n,

Pierre-Marie Pédrot (INRIA)
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M 1411
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Enters technique

The theorem relies on two essential facts of the translation.
o All System T types are inhabited.

o The L4 relation is decidable in System T for all A, i.e. thereis a
term of type W(A) = C(A) = B which internalizes L 4.

Pierre-Marie Pédrot (INRIA) Dialectica 22/07/2016 35 / 101



Enters technique

The theorem relies on two essential facts of the translation.
o All System T types are inhabited.

o The L4 relation is decidable in System T for all A, i.e. thereis a
term of type W(A) = C(A) = B which internalizes L 4.

Proof.
By induction on the considered type. Ol
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Hack, hack, hack your bloat

This allows to define two families of System T terms:
o The dummy terms "4y : C(A)

o The merge terms @4 : C(A) = C(A) = W(A) = C(A) s.t. for all
II,=E:C(A) and M : W(A),

M1ia({Ma¥=E) iff M1IaI1 and M 14E.
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Hack, hack, hack your bloat

This allows to define two families of System T terms:
o The dummy terms "4y : C(A)

o The merge terms @4 : C(A) = C(A) = W(A) = C(A) s.t. for all
II,=E:C(A) and M : W(A),

M1la{Ma¥=) iff M1s1 and M 1yE.

Proof.
o Take an arbitrary inhabitant of C(A) for "4

o Define
HEB]X[E :=1f M 1 4 II then E else II

Pierre-Marie Pédrot (INRIA) Dialectica 22/07/2016 36 / 101



Soundness (Axiom)

Let us give the interpretation of the rule (axm) :

axi1n

axim
o

axi1n k
o

axIn,,
axm,;

o =

aximn

=8

Pierre-Marie Pédrot (INRIA)

Ty,...,T, F Ty

W(I) = W(I'k)

AL1 ... Ty Tk
W(T) = C(Tx) = C(T)
AL] oo Ty AT T

W) = C(T) = C(y) (i # k)
AZL . Ty AT,
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Soundness (Axiom)

Let us give the interpretation of the rule (axm) :

axm®

axm®
o)
axmy,

o
axIn,,

axm;
(e}

axI,

Ty,...,T, F Ty

W(I) = W(I'k)

AL1 ... Ty Tk
W(T) = C(Tx) = C(T)
AL] oo Ty AT T

W) = C(T) = C(y) (i # k)
AZL . Ty AT,

We easily show for all v : W(I") and 7 : C(T'y):

/\% lp, axmi y7m — axm®~ylp, 7

)
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Soundness (Axiom)

Everything has been done implicitly with sequences in the previous slide!

The actual demacroified sequence of terms is less palatable...
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Soundness (A-abstraction)

Rule qg:T A+ B :
p:T'HFA— B
py W) =>W(A) = W(B)
* Pl = M Ar.¢®vz

pt . W) = W(A) = C(B)= C(A)
Pt = M Az AmgGyam

Dy o W) = W(A4) = C(B) = C(IY)
p; = AV AT AT, v T
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Soundness (A-abstraction)

Rule

qg:T A+ B

o
o ) DY
p*
p.
D5
2

p:THFA=B

W) = W(A) = W(B)

Ay Az.q® v x

W) = W(A) = C(B) = C(A)
M AT ATy vy

W) = W(A) = C(B) = C(I)
AV AT AT, YT T

Need to show for all v : W(I'), z : W(A) and 7w : C(B):

/\%J_pl.pfyxﬂ — zlaptvyzm — plyxlpm

(2

which comes directly from hypothesis on q.

Pierre-Marie Pédrot (INRIA)
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Soundness (application)

q:THFA— B r:I'FA

Rule
p:TFB
p* W) = W(B)
p* = Mgty (r* )
pg : W(F) = (C(B) = (C(FZ)
Py = ATy (r* ) m) ©f (75 v (¢S y (r* ) )

Need to show for all v : W(T") and 7 : C(B):

Avile,piyr — pylpn

)

which implies a bit of work...
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Soundness (other cases)

Essentially,
o Nullary connectives are trivial
o The one atomic formula ¢ = u is pushed back in the meta

o The (—)*® translation is more or less identity on the underlying
proof-term

©

The (—)¢ translation merges all available counters
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Stepping back

We now see where the technical apparatus is needed.
o The "4, terms are used to implement weakening
o The @4 terms are used to implement contraction

o Linear logicians should be jumping on their seats by now
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Stepping back

We now see where the technical apparatus is needed.
o The "4, terms are used to implement weakening
o The @4 terms are used to implement contraction

o Linear logicians should be jumping on their seats by now

Note that this is not the standard presentation of Dialectica.

o Usually, realizers are not explicitly written

o Here, we can already get a rough idea of what is going on
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Stepping back

We now see where the technical apparatus is needed.
o The "4, terms are used to implement weakening
o The @4 terms are used to implement contraction

o Linear logicians should be jumping on their seats by now

Note that this is not the standard presentation of Dialectica.

o Usually, realizers are not explicitly written

o Here, we can already get a rough idea of what is going on

| ater!
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1) Overview

2) Godel’s Dialectica Translation

(3 Realizing more by Working more

4) Curry-Howard at the rescue
5

Enters Linear Logic
6

Intepretation of the A-calculus

7) Towards C'C¥
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We've proved the soudness theorem, therefore
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You are Here

We've proved the soudness theorem, therefore
Dialectica is a realizability interpretation of HA.
We preserve good properties...
Dialectica preserves positives.
Yet, as for Kreisel and Krivine realizability, we get more!
Dialectica interprets MP and IP.

i.e. there are term sequences MP |- MP and IP I IP.
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Constructivity

It is obvious to check that proofs of positive connectives are preserved!

o Ifb; My ; Ms - AV B then b tells you which realizer is the good one.

o If n; M IF3x. A then n is a correct witness and M realizes that.

(Remember:)

W(AV B) :=B; W(A); W(B)
W(3z. A) :=N; W(A)
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P—=dm.Qm
This is only true for irrelevant P!

dIm.P—Qm P
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Premises, what are they needed for?

P—3m.Qm
IJm.P—>Qm

P
This is only true for irrelevant P!
Luckily, we can define this through the Dialectica.

Definition (Irrelevance)

A formula A is irrelevant whenever both W(A) = () and C(A) = 0.
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Premises, what are they needed for?

P—dm.Qm
IJm.P—>Qm

P
This is only true for irrelevant P!
Luckily, we can define this through the Dialectica.

Definition (Irrelevance)

A formula A is irrelevant whenever both W(A) = () and C(A) = 0.

Theorem (Irrelevance)

The negative propositional fragment A~ is irrelevant.

A B u=L1|T|t=u|A"AB™|A~ — B~

= =) E E DA
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Address IP

Assume P irrelevant, we have

W((P — Im.Qm) — Im. (P — Qm))

W(P — 3Im.Qm) =N
W(P — dIm.Qm) = WP — Qm)
W(P — 3Im.Qm) = C(Im.P = Qm) = W(P)
WP — Im.Qm) = C(Im. P — Qm) = C(Im.Qm)
N=W@m)=N

= { N=W@m)=WQm)
N=W@m)= (N=C(Qm)) = N= C(Qm)

(

as W(P — A) = W(A)
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IP, at last

Therefore, just take

IPY : N=W@m)=N

IPY = An_.n

P, ., ¢+ N=W@Qm)=WQm)

IPS . = A_pop

IP* : N=W@m)= (N=C(Qm)) =N=C(Qm)
IP* = A__k.k
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IP, at last

Therefore, just take

IPY

IPX =
1P .
Py, =
IP* :
IP* =

N=WQ@m)=N

An_.n

A_pp

N=WQ@m)= N=C(@m)) = N=C(Qm)
A k. k

Proving that this is a proper realizer is trivial, this is mostly a projection.

IP*IF (P — 3dm.Qm) — Im.(P — Qm)

Pierre-Marie Pédrot (INRIA) Dialectica 22/07/2016 48 / 101



Reflexions on IP

Actually, IP is mostly an accident
o It works for about the same reasons as in usual realizability
o Namely, irrelevant stuff is erased by the translation

o The realizer does not take advantage of the added structure

“IP is merely a consequence of realizability.”
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Towards MP

=(Vn.—Pn)

MP dn.Pn

Let us try to realize this assuming P is decidable!

A quick introductory remark: our target language is strongly normalizing...
We can't write the naive loop algorithm from intuitionistic realizability!
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Towards MP

=(Vn.—Pn)

MP dn.Pn

Let us try to realize this assuming P is decidable!

A quick introductory remark: our target language is strongly normalizing...
We can't write the naive loop algorithm from intuitionistic realizability!

We'll do much better.
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First, let's scrutinize the interpretation of negation.
We have:

-“A=A— 1
and



Nein

First, let's scrutinize the interpretation of negation.
—“A=A— 1
We have:

W(-A) = W(A) = C(A)
C(~4) = W(A)

and

M fa® M
d1l 4 M

Negation highly asymmetrical, not degenerate!
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Unfolding...

We have then:

W(=Vn.=P n — 3In. P n)
W(=V) =N

{ W(=¥) = W(P n)
W(=¥) = C(3n.Pn
(W(¥) = N) = (W

{ (W(¥) = N) = (
(W(¥) = N) = (

where U :=Vn. =P n.

~—
—

j@ﬁ‘l’)
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Simplifying things drastically

But P is decidable, so wlog we can assume it is irrelevant, thus:

W(P n)
W(-Vn.~-Pn) = 0

|
=

and then

W(=VYn.-P n — In. P n)
(W(\I/) = N) (W(¥) =W
{ V) = W(P n)) = C(3In. P n) = W(D)
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Markov's principle

It's pretty clear how to provide a term of the expected type:

MP* : W(=Vn.-Pn— 3n.Pn)
MP* = JAn.n
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Markov's principle

It's pretty clear how to provide a term of the expected type:

MP* : W(=Vn.-Pn— 3n.Pn)
MP* = JAn.n

The realizibility condition amounts to prove for all n : N:

wr‘(—Vn.ﬁPnn — nJ—EIn.Pn(D

_‘_‘(DJ—PYL(D — wJ—PnQ

This is true intuitionistically thanks to decidability...
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Markov's principle?

Something fishy going on here.
o The realizer is suspiciously simple...
o The realizability condition makes appear classical-looking stuff

o The integer is provided by the reverse part of the negation

“MP is using the Dialectica translation in-depth."
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End of Part |



Part |

A Functional Functional Interpretation
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Can | haz Curry-Howard?

Let us forget the 50's, and rather jump directly to the 90's.
o Take seriously the computational content
o Dialectica as a typed object
o Works of De Paiva, Hyland, etc.

Get rid of Godel's hacks:
o Proper datatypes
o No more sequences!

o Stop ugly encodings
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A systematic approach
“Realizability interpretations tend to hide a programming translation.”

Logic Programming

Kreisel modified realizability Identity translation

Krivine classical realizability | Lafont-Reus-Streicher CPS

Godel Dialectica realizability ?
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A systematic approach
“Realizability interpretations tend to hide a programming translation.”

Logic Programming

Kreisel modified realizability Identity translation

Krivine classical realizability | Lafont-Reus-Streicher CPS

Godel Dialectica realizability A fancy one!
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A systematic approach
“Realizability interpretations tend to hide a programming translation.”

Logic Programming

Kreisel modified realizability Identity translation
Krivine classical realizability | Lafont-Reus-Streicher CPS

Godel Dialectica realizability A fancy one!

o Gives first-class status to stacks
o Features a computationally relevant substitution

o Mix of LRS with delimited continuations

(+]

Requires computational (finite) multisets 9t
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Target programming language

Instead of System T, we take a simply-typed A-calculus with datatypes.

o,Ti=...loxTt|o+7|0]1

and add the proper pattern-matchings and constructors.

We interpret everything directly into System T (no sequences!).
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The same, with types

If we wish to put more types in there:

A C

T 1 1

1 1 1
ANB W(A) x W(B) C(A) x C(B)
AV B W(A) + W(B) C(A) x C(B)

W(A) = W(B)
A— B X W(A) x C(B)
( W(A) = C(B) = C(A) )
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The same, with types

If we wish to put more types in there:

A C

T 1 1

1 1 1
ANB W(A) x W(B) C(A) x C(B)
AV B W(A) + W(B) C(A) x C(B)

W(A) = W(B)
A— B X W(A) x C(B)
( W(A) = C(B) = C(A) )

o Orthogonality is adapted in a direct way (sequences — pairs).
o Observe how W(A) and C(A) are always inhabited
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o We could give a computational content right now
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Not too hastily

o We could give a computational content right now
o But it would be a special case, taking advantage of some encodings

o Let us use our our favorite tool: Linear Logic.

o It factorizes Dialectical
o A genuine exponential!
o With real chunks of sum types!
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Not too hastily

o We could give a computational content right now
o But it would be a special case, taking advantage of some encodings

o Let us use our our favorite tool: Linear Logic.

o It factorizes Dialectical
o A genuine exponential!
o With real chunks of sum types!

(Do not worry too much if you know nothing about LL, this is mainly for general
culture purposes.)
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1) Overview

2) Godel's Dialectica Translation

3) Realizing more by Working more

4) Curry-Howard at the rescue

(8 Enters Linear Logic
6

Intepretation of the A-calculus

7) Towards C'C¥

«O>» «Fr «=»r» «=>» DA



Linearized Dialectica

As forecasted on the previous slide, we essentially apply the following
modifications:

o Introduction of duality with sum types

o Call-by-name decomposition of the arrow:

A—-B = 'A—B
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Linearized Dialectica

As forecasted on the previous slide, we essentially apply the following
modifications:

o Introduction of duality with sum types

o Call-by-name decomposition of the arrow:

A—-B = 'A—B

Now we will be translating LL into LJ.
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Requirements

We will be interpreting the formulae of linear logic:
A B:=AQB|A®B|A®B|A&B|!A|7A

It is therefore sufficient to define W(A), C(A) and L 4 for each A.
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Requirements

We will be interpreting the formulae of linear logic:
AB:=AQB|A®B|A®B|A&B|!A|?7A
It is therefore sufficient to define W(A), C(A) and L 4 for each A.

Taking inspiration from the double-orthogonality models, we require:
o W(AL) = C(A) and conversely;
o thus 14 C W(A) x C(A) = W(A) x W(AL)
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Forget the dual

~ It is sufficient to define our structures on positive types

~ We will get them for dual connectives... by duality.

We define therefore:

ufax
Tzl u
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W C
A& B W(A) x W(B) C(A) + C(B)
A®B W(A) + W(B) C(A) x C(B)



A& B
A®B

W
W(A) x W(B)
W(A) + W(B)

C

v 1lg 2o

inrv Lagp (21, 22)

C(A) + C(B)
C(A) x C(B)

ulagz
inlu J_A@B (21,22)
«O>» «Fr «=)r « = = DA
~ Pierre-Marie Pédrot (INRIA)  Dialectica  22/07/2016 67 / 101
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W C
W(A) = W(B) e
A—B {W(A);»C(B);»C(A) W(A) x C(
W(A) = W(B) A) % C(B
A—B { (CEB):HC(A) W(A) x C(B)
1A W(4) W(A) = C(A)



w C

W(A) = W(B)
Ao { W(A) = C(B) = C(A) W(4) < C(B)
A—B { \‘ggg)) - ?‘()i’((f)) W(A) x C(B)
14 W(A) W(A) = C(A)
ulavy — pulpy ulgzu
(0, 9) Lap (u,y) u Liaz



Handwaving justification

o The interpretation of arrow forces its reversibility:

A—-oB>~BLt oAt

~~ Like the two-way proofnet wires
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Handwaving justification

o The interpretation of arrow forces its reversibility:
A—oB>~BLt oAt

~~ Like the two-way proofnet wires

o The bang connective is a shift :
~~ Opponent may wait for the player to play and inspect its answer

o Duality is réle swapping
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We're not linear by chance.

! Assuming we've defined 1.
2May contain nuts. <O> <Fr <= <> Ha o




About linearity

We're not linear by chance.

Indeed, in Dialectica, we do not realize the following morphisms:
FA—1!

FA—oARA

Hence we have true linear constraints!?

! Assuming we've defined 1.
2May contain nuts.
Pierre-Marie Pédrot (INRIA)
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1) Overview

2) Godel’s Dialectica Translation

3) Realizing more by Working more

4) Curry-Howard at the rescue
5

Enters Linear Logic

(© Intepretation of the A-calculus

7) Towards C'C¥
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Intepretation of the call-by-name A-calculus

Let us now try to translate the good old A-calculus through Dialectica.

cbn

Dialectica

o First through the call-by-name linear decomposition into LL;
o Then into LJ with the linear Dialectica.
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Intepretation of the call-by-name A-calculus

Let us now try to translate the good old A-calculus through Dialectica.

cbn

Dialectica

o First through the call-by-name linear decomposition into LL;
o Then into LJ with the linear Dialectica.

We already did that when translating HA. I'm just expliciting the proof

terms we were translating!
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Brief reminder

We recall here the call-by-name translation of the A-calculus into LL:
[A= B] =!A] — [B]

[TH Al =@ [A]

Indeed, we recover the same translation as before:

W(A=B) = (W(A)=W(B)) x (W(A) = C(B) = C(A))
C(A= B) = W(A)x C(A)

with the same orthogonality.

if ulgapum then fulpm
(f¢) Lasp (u,m)
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Say it again?

In order to interpret the A-calculus, we need the same structure as in the
intepretation of HA.

Dummy term
For all type A, there exists 4 : W(A).

Merge term

The L 4 relation is decidable. In particular, there exists some A-term
®4:C(A) = C(A) = W(A) = C(A4)

with the following behaviour:

T @Y mo = if x L 4 m then my else
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Did you solve the organization issue?

If we were to use the translation as is, we would bump up into an

unbearable bureaucracy. Instead, we are going to use the following
isomorphism.

W(A)
C(A) = C(I')
[e1 : D1, o xp : T Bt A2 W) = ¢ .

C(A) = C(I')
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Did you solve the organization issue?

If we were to use the translation as is, we would bump up into an
unbearable bureaucracy. Instead, we are going to use the following
isomorphism.

W(A)
C(A4) = C(I)
[e1:T1, .. : Tyt Al W) = :
C(4) = C(T)

Which results in the following translations:
(

Z:W() Ft*: W(A)

[Z:THt: A] = ?iw(f‘)l—t%:@(/})j@(rl)

8]

WD) F 12, 1 C(A) = C(Ty)
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For (—)* :

Az.t°,
Arm. oty

(fst t*) u®

«O> 4 F»r «=»



For t3, :
x5 = .7
C(A) —» C(A4)
v = w4,

C(A) — C(Iy)

Ay.t)o= My, ).t 7
W(A) x C(B) — C(Iy)

(tu)y = Aroug ((snd t°) mu®) OF, 3 (u®,7)
C(B) = C(I)

«O>» «Fr «=Hr « =

[
S
¥l
e



If=¢: A, then - ¢*: W(A), and in addition, for all 7 : C(A), t* L4 .

v

«O>» «Fr «=)r « = = DA



It just works... Does it?

Soundness

If =¢: A, then F¢*: W(A), and in addition, for all 7 : C(A), t* L4 7.

Sadness
The translation is not stable by S-reduction.
The Dialectica translation is not a program translation.

Pierre-Marie Pédrot (INRIA)
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Almost there

Using "X and @ is another hack by Gddel.

o They rely on typing
o They are non-canonical

o They have no algebraic properties
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Almost there

Using "X and @ is another hack by Gddel.

o They rely on typing
o They are non-canonical

o They have no algebraic properties

We need finite multisets 91!
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Minor revision

o We just change C(!A) = W(A) — 9 C(A)

o This gives:
WA= B) = (W(A) =W(B))x (W)= C(B)=2M7C(A4))
C(A=DB) := W(A) xC(A)

ifforallpepum, ulap then fulpm
(fs¢) Lasp (u, )

o Term interpretation is almost unchanged:
~~ ¥ is the empty multiset; @ is the union
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This variant is actually well-known.
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Minor revision (I1)

This variant is actually well-known.

The previous translation is essentially the Diller-Nahm translation.

o ... for totally different reasons
o It does not require the decidability of atoms

o Not at all motivated by proof-as-program considerations
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What about the computational content?

This gives us the following types for the translation:

;

Z: W) Ft*: W(A)
W) Ftg, : C(A) — M C(I'y)

8y

[Z:TkHt:A] =

Z: W) F 13, : C(A) — M C(T,)
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What about the computational content?

This gives us the following types for the translation:

;

Z: W) Ft*: W(A)
W) Ftg, : C(A) — M C(I'y)

8y

[Z:TkHt:A] =

:WI) Ftg - C(A) — M C(Iy)

S

o t* is clearly the lifting of ¢;
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What about the computational content?

This gives us the following types for the translation:

;

Z: W) Ft*: W(A)
W) Ftg, : C(A) — M C(I'y)

8y

[Z:TkHt:A] =

:WI) Ftg - C(A) — M C(Iy)

S

o t* is clearly the lifting of ¢;
o What on earth is ¢7 7
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A small interlude of advertisement definitions to reintroduce you to the
KAM.
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An unbearable suspense

A small interlude of advertisement definitions to reintroduce you to the

KAM.

Closures c == (t,0)

Environments o = 0|o+ (z:=¢)

Stacks T u= ¢ele-w

Processes p == {c]|m)
Push ((tu,o) | ) - {(t,0) | (u,0) 7)
Pop (Az.t, U) | c-m) - (t,oc+ (z:=0¢)) | 7)
Grab (04 (x:=0¢)[m) — (c[m)
Garbage ((z.0+(y =) |7 — ((®0)|m)

The Krivine Machine™

This variant has explicit substitutions...
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Duality, duality!

It is easy to observe the following similarity:

Dialectica realizability C(A = B) := W(A) x C(B)
Krivine realizability |A=B| = |4 - |[|B]|
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Duality, duality!

It is easy to observe the following similarity:

Dialectica realizability C(A = B) := W(A) x C(B)
Krivine realizability |A=B| = |4 - |[|B]|

Thus Dialectica gives a first-class status to Krivine stacks (like LRS).

In particular, the (—)® translation naturally extends to stacks.
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g

Let:

oatermZ:I'Ht: A

o a closure o T o : W(T
o astack F7: AL ~s

F:W() k2, : C(A) = M C(T)
7w : C(A)
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Let:
oatermZ:T"'F¢t: A
o a closure o T o : W(T
o astack F7: AL ~
Then

F:W(T) -2, : C(A) = M C(Ty)
7w : C(A)

(to 7 =0} m* M C(Iy)

(t;z{i’ =0} = [p1;
((t,0) | ™)

i
is made of the stacks encountered by z; while evaluating ((¢t,0) | 7), i.e
e Pm)]
=

Pierre-Marie Pédrot (INRIA)

—

{((zi,o1) | p1)

(@i, om) | pm)
[m] = = =
Dialectica
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AT, [7]

C(A) - M C(A)

. []

C(A) — M C(TIy)

My, 7). tom

W(A) x C(B) — M C(I')

Am. (((snd t®*) m u®) »=u2) & t3 (u®, )
C(B) —» Mm C(Iy)

«O>» «Fr «=» «E=)» = Q>



Look

xg = Am. 7]
( ) = M C(A4)
Ys = ar]

C(A) = M C(Ty)
Ay,

(Ay.t)e = ). tom
W(A) x C(B) — Mm C(TI;)
(tu); = Ar.(((snd t*) mu®) »=ul) @ t2 (u®,7)

C(B) — M C(I,)

(We can generalize to algebraic datatypes directly.)

Pierre-Marie Pédrot (INRIA) Dialectica 22/07/2016

86 / 101



For computer scientists:

the linearish nature...

This is the only effect | know of which is sensitive to substitution. Hence

«O» «Fr «E»r» « a

it
-



Dialectica Reloaded

o The standard Dialectica only returns one stack
~ the first non-dummy stack, dynamically tested
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Dialectica Reloaded

o The standard Dialectica only returns one stack
~ the first non-dummy stack, dynamically tested

o This is somehow a weak form of delimited control
~> Inspectable stacks: ~A vs. = A

~ First class access to those stacks with (—)2
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Dialectica Reloaded

o The standard Dialectica only returns one stack
~ the first non-dummy stack, dynamically tested

o This is somehow a weak form of delimited control
~> Inspectable stacks: ~A vs. = A
~ First class access to those stacks with (—)2

o We can do the same thing with other calling conventions

~~ The protohistoric Dialectica was call-by-name
~» Choose your favorite translation into LL!
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Actually, there is something wrong.
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Simulating the KAM simulation

Actually, there is something wrong.

o Produced stacks are the right ones...
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Simulating the KAM simulation

Actually, there is something wrong.

o Produced stacks are the right ones...

o They have the right multiplicity...
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Simulating the KAM simulation

Actually, there is something wrong.

©

Produced stacks are the right ones...

©

They have the right multiplicity...

©

But they are not respecting the KAM order!

This is because of finite multisets

©
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Simulating the KAM simulation

Actually, there is something wrong.

Produced stacks are the right ones...

©

They have the right multiplicity...

©

But they are not respecting the KAM order!

©

This is because of finite multisets

©

The faulty one is the application case (more generally duplication).

(tu)y = Am. (((snd t°) ™ u®) »=u;y) & t, (u®,7)
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o The KAM imposes us sequentiality

o We want to reflect it into the translation
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A deep issue

o The KAM imposes us sequentiality
o We want to reflect it into the translation
o Alas, no way to do that

o The % translation is far too symmetrical

~+ We want interleaving
~» Dialectica can't achieve it as is
~» Polarization? Tensorial logic? Dump Dialectica?
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What about realized principles?

We do not reach the historic Dialectica.

o IP comes from the realizability part (no IP)

o In our setting we only realize a weak version of MP
MP : ~ (Vz.~P z) = 3Jz. P x

where ~ is a weak negation:

~A=A= 1
akin to L from LL:

W) = 1

C(L) = 1

(no proof of orthogonality)

i.e. a type with paraproofs but no proofs!
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Exploiting weak negations

In particular,
W(~A) = WA =MCA)
C(~A) =~ WA
notforallpe fu, ulap
floau
so that

W(~ Vz. ~ P) 2 (N = W(P) = M C(P)) = M (N x W(P))

C(~Vz. ~P)=N=W(P) =M C(P)

and

th-~Ve. ~ P:=Vr.~(Y(z,u) et m.~(Vpemxuulpp))

Pierre-Marie Pédrot (INRIA) Dialectica 22/07/2016 92 / 101



Pfull

In the end, we're able to recover a witness from the fact that
o P is decidable

o the multisets are finite

tl-~Ve. ~P2Vr.I(z,u) et m.VpETxuuLpp

This requires crawling through the various multisets to do so.

Instantiate 7 by a function producing an empty multiset and you're done!
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Towards CC¥

o What about more expressive systems?

o We follow the computation intuition we presented

o ... and we apply Dialectica to dependent types
~~> subsuming first-order logic;
~> a proof-relevant V,
~ towards CC¥ and further!
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o We keep the CBN A-calculus

~ it can be lifted readily to dependent types
~» nothing special to do!
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Main lines

o We keep the CBN A-calculus
~ it can be lifted readily to dependent types
~~ nothing special to do!
o Design choice: types have no computational content (effect-free):
~ a bit disappointing;
~> but it works...
~> and the usual CC presentation does not help much!
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Idea: if Ais a type,

A® (W(A),C(A)) : Type x Type
Ay A ] (effect-free)

v
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Type translation

Idea: if A is a type,

A* = (W(A),C(A)) : Type x Type
A, = A ] (effect-free)
We get:
Type® = (Type x Type, 1)
Type, = Am ]
( (Iy : W(A). W(B)) )
(Ily : A.B)* = X , 2y : W(A).C(B)
(Iy : W(A).C(B) — M C(A))

(Ily: A.B), =  Ar.[]
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The translation is sound, but it's not really pure CIC.
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Soundness

The translation is sound, but it's not really pure CIC.

o We need finite multisets
o HITs, HITs, HITs!
o We need some commutative cut rules
o First class (read: negative) records may do the trick

o Or extensionality hammer
o Maybe Oury-like tricks
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Inductives, please

o We can obtain dependent destruction quite easily

o Just tweak the linear decomposition and there you go!
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o

o Actually, Dialectica is quite simple.

at least once we removed encoding artifacts
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Conclusion

o Actually, Dialectica is quite simple.
~» ... at least once we removed encoding artifacts

o It is an approximation of two side-effects:

~» A bit of delimited control (the (=), part)
~ A form of exceptions (with &)
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Conclusion

o Actually, Dialectica is quite simple.

~» ... at least once we removed encoding artifacts

o It is an approximation of two side-effects:

~» A bit of delimited control (the (=), part)
~ A form of exceptions (with &)

o But is is partially wrong:
~ it is oblivious of sequentiality
~ how can we fix it?

Pierre-Marie Pédrot (INRIA) Dialectica 22/07/2016

100 / 101



Conclusion

©

Actually, Dialectica is quite simple.
~» ... at least once we removed encoding artifacts

©

It is an approximation of two side-effects:
~» A bit of delimited control (the (=), part)
~ A form of exceptions (with &)

But is is partially wrong:
~ it is oblivious of sequentiality
~ how can we fix it?

©

The delimited control part can be lifted seamlessly to CC¥

~> as soon as we have a little bit more than CC
~» we need a more computation-relevant presentation of CC

©
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Scribitur ad narrandum, non ad probandum

Thanks for your attention.

Pierre-Marie Pédrot (INRIA) Dialectica 22/07/2016 101 / 101



	Overview
	Gödel's Dialectica Translation
	Realizing more by Working more
	Curry-Howard at the rescue
	Enters Linear Logic
	Intepretation of the -calculus
	Towards CC

