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The question of this talk

Specification of A:

Can we give a characterization of the realizers of A ?
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The question of this talk

Specification of A:

Can we give a characterization of the realizers of A ?

Subtitle:
Extract computational properties from a logical information

(and not the other way round).
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Introduction
oce

The question of this talk

Specification of A:

Can we give a characterization of the realizers of A ?

Subtitle:
Extract computational properties from a logical information

(and not the other way round).

Focus of this talk
Arithmetic formulae:

Iy Vyy...3xpVypf (X, ¥) = 0
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Classical realizability

(A quick reminder about)

[ Krivine classical realizability ]
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Classical realizability

@00000000

Ac-calculus

Terms, stacks, processes

B: stack constants
C: instructions (including ac), countable

Terms t,bu = x| Mxt|tu|ky |k keC
Stacks T = a | t-w (o € B,t closed)
Processes p,q = txmT (t closed)
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Classical realizability
©00000000

Ac-calculus

Terms, stacks, processes

B: stack constants
C: instructions (including ac), countable

Terms t,bu = x| Mxt|tu|ks |k keC
Stacks T = a | t-w (o € B,t closed)
Processes p,q = txm7 (t closed)
KAM

Pusn (uxm = tku-m

GRAB Ax.txu-m = t{x:=u}xm

SAVE cxt-m = txkr-w

RESTORE : kixt-p > t*xm
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Classical realizability
©00000000

Ac-calculus

Terms, stacks, processes

B: stack constants
C: instructions (including ac), countable

Terms tbu = x|Mx.t|tu|ks|k keC
Stacks T = a | t-w (o € B,t closed)
Processes p,q = txm7 (t closed)
KAM + C extended
SAVE : acxt-m = txk;-w
QUOTE : quotex¢@-t-m = tkNg-T
Fork Mxt-u-m = t*x7
FOorRK Mxt-u-m = UxT
PrRINT printxn-t-m > tx7
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Classical realizability
0®0000000

2nd_order arithmetic

Expressions e = x|f(e,...,ek)
Formulae AB = X(el,...,ex)| A= B|VxA|VXA
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Classical realizability
0®0000000

2nd_order arithmetic

Expressions e = x|f(e,...,ek)
Formulae AB = X(el,...,ex)| A= B|VxA|VXA
Shorthands :
1 =vzz
-A = A= 1
ANB = VZ(A=B=27)=Z)
AVB = VZ(A=2Z2)=(B=2)= 2)
AsB = (A= B)A(B=A)
IXA(x) = VZ(Vx(A(x) = Z) = 2)
IXAX) = VZ(YX(A(X) = Z) = 2)
e =6 = VZ(Z(a)= Z(e))
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Classical realizability
00®000000

Typing rules

oo A er T FY() € dom(r)
Ft:A=B rEt:A MNx:AFt:B
MN-tu:B N-Xxt:A=B
%X“ V(o rkr:; Z{\i’ffe}
Trovka XEVD e AE)';(;:,.V.).(;@) — B}

lNFac:(A=B)=A)=A

Etienne Miquey
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Classical realizability

[e]e]e] le]elele]e]

Semantics

o falsity value ||Al|: stacks
@ truth value |A| : terms

@ pole Il processes
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Classical realizability
000800000

Semantics

o falsity value ||A||: stacks, opponent to A
@ truth value |A| : terms, player of A

@ pole 1l: processes, referee
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Classical realizability
000800000

Semantics

o falsity value ||A||: stacks, opponent to A
@ truth value |A| : terms, player of A

@ pole 1l: processes, referee

tx
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Classical realizability
000800000

Semantics

o falsity value ||A||: stacks, opponent to A
@ truth value |A| : terms, player of A

@ pole 1l: processes, referee

ExT = po =+ > pPn
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Classical realizability
000800000

Semantics

o falsity value ||A||: stacks, opponent to A
@ truth value |A| : terms, player of A

@ pole 1l: processes, referee

tHhT = po == pp € L7
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Classical realizability
000800000

Semantics

o falsity value ||A||: stacks, opponent to A
@ truth value |A| : terms, player of A

@ pole 1l: processes, referee

tx = pg == pp€ 17

~ 1 C A¢ % I closed by anti-reduction
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Classical realizability
000800000

Semantics

o falsity value ||A||: stacks, opponent to A
@ truth value |A| : terms, player of A
@ pole 1l: processes, referee
ExT = pg == ppE L7
~ 1 C A¢ % I closed by anti-reduction

Truth value defined by orthogonality :
A= ||AI“ ={teAc:Vr e A, txme L}
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Classical realizability
0000@0000

Models (M, 1L)

Ground model M

1L C Ac + I closed by anti-reduction :
Vp,pl eNcxN: (p=-p)AN(PelL)=pe ll
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Classical realizability
0000@0000

Models (M, 1L)

Ground model M

1L C Ac + I closed by anti-reduction :
Vp,pl eNcxN: (p=-p)AN(PelL)=pe ll

Truth value (player):

A=Al ={teNc:Vre|Al|,txme 1}
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Classical realizability
0000@0000

Models (M, 1L)

Ground model M

1L C Ac + I closed by anti-reduction :
Vp,pl eNcxN: (p=-p)AN(PelL)=pe ll

Truth value (player):
A=Al ={teNc:Vre|Al|,txme 1}

Falsity value (opponent):
o |[A=B||={t-m:te|AlATe€|B]}
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Classical realizability
0000@0000

Models (M, 1L)

Ground model M

1L C Ac + I closed by anti-reduction :
Vp,pl eNcxN: (p=-p)AN(PelL)=pe ll

Truth value (player):
A=Al ={teNc:Vre|Al|,txme 1}

Falsity value (opponent):
o |[A=B||={t-m:te|AlATe€|B]}
o [[VXA|l = Upen [IA{x := n}|
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Classical realizability
0000@0000

Models (M, 1L)

Ground model M

1L C Ac + I closed by anti-reduction :
Vp,pl eNcxN: (p=-p)AN(PelL)=pe ll

Truth value (player):
A=A ={teAc:Vre||A|,txme 1L}
Falsity value (opponent):
o |[A=B||={t-m:te|AAmc|B|}
o VXAl = Unen [A{x := nj|
o |VXA|l = Upnkpny [A{X = F}]
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Classical realizability
0000@0000

Models (M, 1L)

Ground model M

1L C Ac + I closed by anti-reduction :
Vp,pl eNcxN: (p=-p)AN(PelL)=pe ll

Truth value (player):
Al = ||A|* ={teAc:Vre|A|,txme 1L}
Falsity value (opponent):
o |[A=B||={t-m:te|AlATe€|B]}
o XAl = Upes [Afx = n} |
o [[VXA| = UF:Nk—ﬂD(I'I) [A{X = F}
o ||F(e1, ceny ek)H = F([[el]], ey [[ek]])
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Classical realizability
0000@0000

Models (M, 1L)

Ground model M
Truth value (player):

Al = [|A|" ={t e A :Vr € ||A|l,txm € 1L}
Falsity value (opponent):
o |[A=B||={t-7m:te|AATe]|B|}
o VXAl = Upen IA{x = n}|
o VXA = Up sy I ALX = F}|
o ||Fer,....ex)ll = F([ea], - -, [e])

tFA  iff te A= AL
tIFA  iff tIFA forall AL
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Classical realizability
000008000

RENEILS

Case Il = () (degenerated model)

@ Truth as in the standard model:

IAI—{Q i:wil
if [A]=0

@ Realizable < True in the standard model
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Classical realizability

[e]e]e]e]e] lele]e]

RENEILS

Case Il = () (degenerated model)

@ Truth as in the standard model:

IAI—{Q i:wil
if [A]=0

@ Realizable < True in the standard model

@ txm € 1l = forall A, k,tIFA

@ Restriction to proof-like
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Classical realizability
000000800

Properties

Adequacy

{Xl:Al,...,xk:Akl—t:A

= tlt1/x1, ., /x| IF A
Vi€ [1, K](t IF A;) [t/ /%]

Realizing Peano axioms

If PA2™ = A, then there is a closed proof-like term t s.t. t lI- A.

Witness extraction

If £ IF INx A(x) and A(x) is atomic or decidable, then we can
build a term u s.t. that Vr € IN:

txu-m > stopxn-T A A(n) holds

Etienne Miquey Realizability games for the specification problem



Classical realizability
000000000

Relativization

Nat(x) = vZ(2(0) = vy (Z(y) = Z(s(y))) = Z(x))

There is no t € Ac such that t lIF Vn.Nat(n)
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Classical realizability
000000000

Relativization

Nat(x) = vZ(2(0) = vy (Z(y) = Z(s(y))) = Z(x))

Proposition
There is no t € Ac such that t lIF Vn.Nat(n)

Fix:
Vatx A = Vx(Nat(x) = A)
Obviously, Ax.x Il V" x Nat(x)
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Classical realizability
000000000

Relativization

Nat(x) = vZ(2(0) = vy (Z(y) = Z(s(y))) = Z(x))

Proposition
There is no t € Ac such that t lIF Vn.Nat(n)

Better :

AB:= ...|{e}=A
e} = All = {f-7:[e] = nAmelAl}
WxA(x) = Vx({x} = A(x))

Let T be a storage operator. The following holds for any formula
A(x):

O \x.xIIF V"tx A(x) = VNx A(x)

@ M. Tx lIF WNx A(x) = ¥"tx A(x)
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Classical realizability
00000000e

Our problem

Specification of A

Can we give a characterization of {t € A, : tIIF A} 7

Absoluteness

Are arithmetical formulae absolute for realizability models (M, 1L)?
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Specification

[ The specification problem ]
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Specification
©00000

Our leverage: the pole

Two ways of building poles from any set P of processes.
@ goal-oriented :

WU:={peA+xN:3p P, p~p}

@ thread-oriented :

Thread of p: thy ={p' € A\exM:p>p'}

A= (| tho)e = () ths

peP peP

Etienne Miquey Realizability games for the specification problem



Specification
©00000

Our leverage: the pole

Two ways of building poles from any set P of processes.
@ goal-oriented :

WU:={peA+xN:3p P, p~p}

Proof:
Let pg € A% 1 and

Uo:={pehcxM: p>po}.
Let p1, p» € A %I be such that:

pr>=p2 and  pp€ lo=p > po.
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Specification
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Our leverage: the pole

Two ways of building poles from any set P of processes.
@ goal-oriented :

WU:={peA+xN:3p P, p~p}

Proof:
Let pg € A% 1 and

Uo:={pehcxM: p>po}.
Let p1, p» € A %I be such that:
pr=p2 and  pr € llg = p2 = po.

Then
p1 = p2 = Po,

thus p; € 1. v
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Specification
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Our leverage: the pole

@ thread-oriented :

Thread of p: thy={p € N\exM:p>p'}

1= (| tho)e = () ths

peP peP
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Specification
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Our leverage: the pole

@ thread-oriented :
Thread of p: thy={p € N\exM:p>p'}
1= (| tho)e = () ths
peP peP

Proof:
Let pg € A% 1 and

Lo :=thy ={peNcxN: po ¥ p}.

Let p1, po € A %I be such that:

pr>=p2 and  p; € g =po ¥ pa.
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Specification
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Our leverage: the pole

@ thread-oriented :
Thread of p: thy={p € N\exM:p>p'}
1= (| tho)e = () ths
peP peP

Proof:
Let pg € A% 1 and

Lo :=thy ={peNcxN: po ¥ p}.
Let p1, po € A %I be such that:
pr>=p2 and  p; € g =po ¥ pa.

Assume pg > p1, then
po > p1=p2 ¢ Lo Absurd v/

Etienne Miquey Realizability games for the specification problem



Specification
000000

Example: ldentity-like

tlIFVX.(X = X) iff ?
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Specification
000000

Example: ldentity-like

tIFVX.(X = X) iff ?
By definition: _ .
VXX = X)I| = Usepm IS = Sl

= Usepm{u-7: “€|$| A me Sl
=Usepmtiv-m: ul-S A 7€ S}
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Specification
000000

Example: ldentity-like

tIFVX.(X=X) iff txu-m>uxm
By definition: _ .
VXX = X = Usepm IS = SI |
=Usepmfu-m: wels] A me|S]}
=Usepmtiv-m: ul-S A 7€ S}

Proof:
(«=) Obvious.

Etienne Miquey Realizability games for the specification problem



Specification
000000

Example: ldentity-like

tIFYX.(X = X) iff txu-m-uxm

By definition: )
[vX.(X = X)| = Usepy{u-m: ul-S A meS}

Proof:
(=) Assume tlIF VX(X < X) and fix u € A and 7 € 1.

@ goal-oriented :
U :={p:p=uxm}
Amounts to: u -7 € ||[VX.(X = X)| ?

Etienne Miquey Realizability games for the specification problem



Specification
000000

Example: ldentity-like

tIFYX.(X = X) iff txu-m-uxm

By definition: )
[vX.(X = X)| = Usepy{u-m: ul-S A meS}

Proof:
(=) Assume tlIF VX(X < X) and fix u € A and 7 € 1.

@ goal-oriented :

U :={p:p=uxm}

Amounts to: u -7 € ||[VX.(X = X)| ?
Define S := {n}. We check that:

emES
oultkS & VpeSuxpel < uxmell
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Specification
000000

Example: ldentity-like

tIFYX.(X = X) iff txu-m-uxm

By definition: )
[vX.(X = X)| = Usepy{u-m: ul-S A meS}

Proof:
(=) Assume tlIF VX(X < X) and fix u € A and 7 € 1.

@ goal-oriented :

U :={p:p=uxm}

Amounts to: u -7 € ||[VX.(X = X)| ?
Define S := {n}. We check that:

emES
oultkS & VpeSuxpel < uxmell

Thus txu-m€ 1l and txu -7 > uxm. v

Etienne Miquey Realizability games for the specification problem



Specification
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Example: ldentity-like

tIFVX.(X=X) iff txu-m>uxm
By definition: )
[vX.(X = X)| = Usepy{u-m: ul-S A meS}

Proof:
(=) Assume tlIF VX(X < X) and fix u € A and 7 € 1.

@ thread-oriented :

U =thf,, . ={pEN*MN: txu-m# p}
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Example: ldentity-like

tIFYX.(X = X) iff txu-m-uxm

By definition: )
[vX.(X = X)| = Usepy{u-m: ul-S A meS}

Proof:
(=) Assume tlIF VX(X < X) and fix u € A and 7 € 1.

@ thread-oriented :

U o=thf,,, ={peEN+M: txu-7¥ p}.
Obviously, txu -7 ¢ 1L. Thus

u-md [VX.(X = X)|-
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Example: ldentity-like

tIFYX.(X = X) iff txu-m-uxm

By definition: )
[vX.(X = X)| = Usepy{u-m: ul-S A meS}

Proof:
(=) Assume tlIF VX(X < X) and fix u € A and 7 € 1.

@ thread-oriented :
U =thf,, . ={pEN*MN: txu-m# p}
Obviously, txu -7 ¢ 1L. Thus
u-mé& [[VX.(X = X)|.
Defining S := {7}, we deduce that :

uH‘S@EIpES,u*pgéJ_L(:)u*ﬂ'géJ_L(:)t*u~7r>—u*7r v

Etienne Miquey Realizability games for the specification problem



Specification
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to - VX.(X = X) = X = X iff 772

toxKRs Ky T >
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Specification
00000

to - VX.(X = X) = X = X iff 772

toxKs Kz T = Kgxty-T

t1 %7 = Kskxtr T
ti x = Rsxtiy1 -
ts x ~ Ky % T
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to - VX.(X = X) = X = X iff 772

toxKs Kz T = Kgxty-T

t1 %7 = Kskxtr T
ti x = Rsxtiy1 -
ts x T ~ Ky % T

@ Define pg := to* ks - k- m,1Lo := (th(po))¢ and || X|| = {n}:
G Ky Wo X implies pg = Kk * T

Etienne Miquey Realizability games for the specification problem
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to - VX.(X = X) = X = X iff 772

toxKs Kz T = Kgxty-T

t1 %7 = Kskxtr T
ti x = Rsxtiy1 -
ts x T ~ Ky % T

@ Define pg := to* ks - k- m,1Lo := (th(po))¢ and || X|| = {n}:
G Ky Wo X implies pg = Kk * T
Y Ky kg X implies ks o X = X and pg = ks x t1 -

Etienne Miquey Realizability games for the specification problem



Specification
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to - VX.(X = X) = X = X iff 772

toxKs Kz T = Kgxty-T

t1 %7 = Kskxtr T
ti x = Rsxtiy1 -
ts x T ~ Ky % T

O Define p; := tixm, LLj := ;g0 4(th(p;)) and [|X]| = {7}

G kK, Wi X implies p; = K, 7
% Ky IF; X implies ks ¥, X = X and p; = ks x tiy1 -7
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Specification
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to - VX.(X = X) = X = X iff 772

toxKs Kz T = Kgxty-T

t1 %7 = Kskxtr T
ti x = Rsxtiy1 -
ts x T ~ Ky % T

O Define p; := tixm, LLj := ;g0 4(th(p;)) and [|X]| = {7}
G kK, Wi X implies p; = K, 7
% Ky IF; X implies ks ¥, X = X and p; = ks x tiy1 -7
Termination:
If Vi € N(kz W; X), define Ll := ;en(th(pi))©, get a
contradiction.
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Specification
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to - VXY (X = Y) = X = Y iff 772

to*x Kf - Kx * T >
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Specification
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to - VXY (X = Y) = X = Y iff 772

toxKf-Kx T = Kfexty-m

t1*7r’ = Kfxb-m
t,'*7rl = Kfxtiyg-m
tex 7 = Ry kT

(Same proof)
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Specification
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Arithmetical formulzae by hand

Depth  Player Game

(1) - e*k”-“\

N \

&) LRI ke * i Sy * T
I I
i |
| i
' ¥
3) Sy * Py - k) - m Ekey * Prey  Kiy Ty
A
(%) (Eﬁ \ \< G @
kiay * Ty €y - 72y
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Specification
0oo00e

Advertisement

You want to specify A.

Methodology:
3 requirement: some intuition...

@ direct-style: define the good poles,
@ indirect-style: try the thread method,
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Specification
0oo00e

Advertisement

You want to specify A.

Methodology:
3 requirement: some intuition...

@ direct-style: define the good poles,
@ indirect-style: try the thread method,

O induction-style: define a game

Etienne Miquey Realizability games for the specification problem



G! : afirst game

A first notion of game
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G! : afirst game
©000000

Coquand'’s game

Arithmetical formula

Do IxaVyi ... IxpVynf (Xn, ) =0

Rules:
o Players : Eloise(3) and Abelard (V) .
@ Moves : - at his turn, each player instantiates his variable
- Eloise allowed to backtrack
e Final position : evaluation of f(rip, My) =0 :
e true : Eloise wins
o false : game continues
@ Abelard wins if the game never ends

Etienne Miquey Realizability games for the specification problem



G! : afirst game
©000000

Coquand'’s game

Arithmetical formula

®op 0 I Vyr .. IxpVyYRf (X, i) = 0

Rules:
o Players : Eloise(3) and Abelard (V) .
@ Moves : - at his turn, each player instantiates his variable
- Eloise allowed to backtrack
e Final position : evaluation of f(rip, My) =0 :
e true : Eloise wins
o false : game continues

@ Abelard wins if the game never ends

Winning strategy

Way of playing that ensures the victory, independently of the
opponent moves.

Etienne Miquey Realizability games for the specification problem



G! : afirst game

O®@00000

The need of backtrack

f(m,n,p) =0 := (n>0AHalt(m,n))V (n=0A-Halt(m,p))
Halt(m,n) := the m' Turing machine stops before n steps

Formula

Vm3nYp(f(m, n, p) = 0)

Winning strategy ?

Etienne Miquey Realizability games for the specification problem



G! : afirst game

O®@00000

The need of backtrack

f(m,n,p) =0 := (n>0AHalt(m,n))V (n=0A-Halt(m,p))
Halt(m,n) := the m' Turing machine stops before n steps

Formula

Vm3nYp(f(m, n, p) = 0)

Winning strategy :
@ Abelard plays the code m of a Turing machine ./Z .
e Eloise chooses to play n =0 (".# never stops”)
@ Abelard answers a given number of steps p

o Eloise checks whether .# stops before p steps:

e either .# is still running after p steps :
% Eloise wins.

e either ./ stops before p steps :
% Eloise backtracks and plays p instead of 0 (“.# stops
before p steps")

Etienne Mique Realizability games for the specification problem
y



G! : afirst game
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Example

Formula

IxVy3Iz(x -y =2 2)

Player ‘ Action ‘ Position
Start ‘ Po=(-")

Etienne Miquey Realizability games for the specification problem



G! : afirst game
00®0000

Example

Formula

Vydz(1-y =2-2)

Player ‘ Action ‘ Position
Start | Po=(-,-,")

@ x:=1| PL=(1,-")

Etienne Miquey Realizability games for the specification problem



G! : afirst game

[e]e] le]e]ele)

Example
dz(1=2-2)
Player ‘ Action ‘ Position

Start | Po=(:,-,")
@ x:=1| PL=(1,-,)
@ y:]' P2:(1)17')

Etienne Miquey Realizability games for the specification problem



G! : afirst game
00®0000

Example

Formula

Vydz(2-y =2-z2)

Player Action Position
Start Po=("")
@ x:=1 P =(1,-")
W) y:=1 P, =(1,1,")
@ backtrack to Py + x:=2 | P3 =(2,,)

Realizability games for the specification problem
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G! : afirst game

Example
dz(2=2-2)
Player Action Position
Start Po=(s--
x:=1 P =(1,-,

backtrack to Py + x:=2 | P3 =(2,-,-

)
(L)
y:=1 P, =(1,1,)
(2,-,°)
y:=1 Py =(2,1,)

QLW
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G! : afirst game

Example
2=2

Player Action Position

Start Po=("")
@ x:=1 P =(1,-)
) y =1 P, =(1,1,-)
(3 | backtrack to Py 4+ x:=2 | P3=(2,-,)
) y:=1 Py =(2,1,)
€ z:=1 Ps = (2,1,1)

Etienne Miquey Realizability games for the specification problem



G! : afirst game
00®0000

Example

Formula

2=2

Player Action Position
Start Po =(")
€) x:=1 =(1,-)
W) y=1 =(1,1,")
(3 | backtrack to Py 4 x :=2 P3 =(2,-,")
W) yi=1 P4_(2,1,)
€ z:=1 =(2,1,1)

evaluation @ wins

Etienne Miquey Realizability games for the specification problem




G! : afirst game

Example
2 =2

Player Action Position
Start Po=(-,")
€) x:=1 P =(1,-)
Q) y =1 P =(1,1,)
(3 | backtrack to Py 4+ x:=2 | P3=(2,-,)
Q) y =1 Py =(2,1,)
€ z:=1 Ps = (2,1,1)

evaluation (3 wins

H:=U,Px

Etienne Miquey Realizability games for the specification problem



G! : afirst game
000000

GP: deductive system

Rules:
o If there exists (mip, M) € H such that M E f(nip, ) = O:

Hewo Wwo WIN
e Forall i < h, (mj;, n;) € Hand m e N:

HU{(m;-m, i -n)} € WS VneN
He WY

PrAy

Etienne Miquey Realizability games for the specification problem



G! : afirst game
000000

G1: playing with realizability

& = FVaqWyr . NG VyR(F (R, 7h) = 0)
= VXl(Vle(VNy1¢1 = X1) = X1)

Etienne Miquey Realizability games for the specification problem



G! : afirst game
000000

G1: playing with realizability

& = MWWy . IV VYR (F(Xh, vh) = 0)
®g = VX1 (Vo (VWy1®1 = Xp) = X1)
d;i_1 = VX(Wxi(Wyid; = X;) = X))
& = YW(W(F(Xh, ¥n)) = W(0))

Etienne Miquey Realizability games for the specification problem



G! : afirst game

[e]e]ele] lele)

G1: playing with realizability

Formulae structure

®p = VX1 (Wxr (WNy1 01 = X1) = X))
®; 1 = VX(WNx(Wyi0 = Xi) = X))
®p = VW (W(F(Xh, 7h)) = W(0))

Realizability

|A= Bl ={u-7:u€l|AAme|B|}
I"ACI = Unen{n - 7 : 7 € [ A(n)II}

Etienne Miquey Realizability games for the specification problem



G! : afirst game
000000

G1: playing with realizability

Formulae structure

®o = VX (VN (WNy 01 = X1)= X1)

Start :
o Eloise proposes ty to defend dg
@ Abelard proposes wug - mg to attack &g

move ‘ pi (3-position) ‘ history
0 ‘ to % Up - o ‘ HO = {(07 ®7 o, 7TO)}

Etienne Miquey Realizability games for the specification problem



G! : afirst game
000000

G1: playing with realizability

Formulae structure

®o = VX (VN (WNy 01 = X1)= X1)

move ‘ pi (3-position) ‘ history
0 ‘ to * Ug - 7o ‘ Hy := {(@,@, Uo,ﬂ'o)}

Eloise reduces pg until
@ po > Upxmy -ty -7
% she can decide to play (mq, t1) and ask for Abelard’s answer
% Abelard must give 7y - v’ - 7.

Etienne Miquey Realizability games for the specification problem



G! : afirst game
000000

G1: playing with realizability

Formulae structure

®o = VX (VN (WNy 01 = X1)= X1)

move ‘ pi (3-position) ‘ history
HO = {(07 ®7 uo, WO)}
Hl = {(mla ni, ulaﬂ_l)} U HO

0 to % Ug - 7o
1 tyxny - up -1

Eloise reduces py until
@ po > Upkmy -ty -7
% she can decide to play (my, t;) and ask for Abelard's answer
% Abelard must give ny - u' - 7.

Etienne Miquey Realizability games for the specification problem



G! : afirst game
000000

G1: playing with realizability

Formulae structure

(D,',l = VX,'(VNX,'(VN)/,'CD,' = X,')j X,')

move ‘ pi (3-position) ‘ history
1 ti1xnp-u-m | Hy = {(ml,nl,ul,m)}UHo

i tixn;-uj- m H; .= {(m,-, nj, u,',7T,')} UH;_1

Eloise reduces p; until
® pi = uxm-t-m with (mj, nj, u,m) € H; where j < h.
% she can decide to play (mji1, tjt1)
% Abelard must give 7i; - v - 7.

Etienne Miquey Realizability games for the specification problem



G! : afirst game
000000

G1: playing with realizability

Formulae structure

S = VW(W(f(Xp, ¥h)) = W(0))

move ‘ pi (3-position) ‘ history
1 ti1xnp-u-m | Hy = {(ml,nl,ul,m)}UHo

i tixn;-uj- m H; .= {(m,-, nj, u,',7T,')} UH;_1

Eloise reduces p; until
® pi = uxm-t-m with (mj, nj, u,m) € H; where j < h.
% she can decide to play (mji1, tjt1)
% Abelard must give 7i; - v - 7.
@ pi = uxm with (rﬁh,ﬁh,u,w) S HJ'
% she wins iff M |= f(nip, o) = 0.

Etienne Miquey Realizability games for the specification problem



G! : afirst game
0000080

G!: formal definition

o if I(rip, Ap,u,m) € Hst. p=uxmand ME f(mip, np) =0

— WIN
(p,H) € W},

o for every (mj, mj,u,m) € H, meNst. p-u*xm-t-7:

(txn-u -7/, HU{(mW; - m, [ -n,d,7)}) € WY V(n,,7)
(p, H) € W§,

Pray

Etienne Miquey Realizability games for the specification problem



G! : afirst game
0000080

G!: formal definition

o if I(rip, Ap,u,m) € Hst. p=uxmand ME f(mip, np) =0

— WIN
(p,H) € W},

o for every (mj, mj,u,m) € H, meNst. p-u*xm-t-7:

(txn-u -7/, HU{(mW; - m, [ -n,d,7)}) € WY V(n,,7)
(p, H) € W§,

Winning strategy

t € Ac s.t. for any handle (u,7) € A x I :

Pray

(txu-m{(0,0,u,m)}) € W

Etienne Miquey Realizability games for the specification problem



G! : afirst game
000000e

Specification result

Adequacy

If t is a winning strategy for G, then t IIF &

Proof (sketch):
- play a match with stacks from falsity value,

- conclude by anti-reduction.

Realizability games for the specification problem
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G! : afirst game
000000e

Specification result

Adequacy

If t is a winning strategy for G, then t IIF &

Proof (sketch):
- play a match with stacks from falsity value,
- conclude by anti-reduction.

Completeness of G!
If the calculus is deterministic and substitutive, then if t IIF ® then
t is a winning strategy for the game G%,

Proof (sketch): by contradiction
- substitute Abelard’s winning answers along the thread scheme,

- reach a winning position anyway.

Etienne Miquey Realizability games for the specification problem



G! : afirst game
000000e

Specification result

Adequacy

If t is a winning strategy for G, then t IIF &

Proof (sketch):
- play a match with stacks from falsity value,
- conclude by anti-reduction.

Completeness of G!
If the calculus is deterministic and substitutive, then if t IIF ® then
t is a winning strategy for the game G%,

Proof (sketch): by contradiction
- substitute Abelard’s winning answers along the thread scheme,

- reach a winning position anyway.

Etienne Miquey Realizability games for the specification problem



The general case
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: general case

Loosing the substition

quotex @ -t -m > txnN, T

@ the calculus is no longer substitutive
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G-: general case
®0

Loosing the substition

quotex -t -m > txn, T

@ the calculus is no longer substitutive
@ there are some wild realizers which are not winning strategies!

Consider < = FNx¥Ny(x < y) and t< sit. :
texu-m>= Toxm=ux0-Ty 7
and :

B«7 fv=Toandn' =n
u' x 7' otherwise

Tl*n'u'-7r'>{
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n2,
G-: general case
®0

Loosing the substition

quotex -t -m>txnN, T

@ the calculus is no longer substitutive
@ there are some wild realizers which are not winning strategies!

Consider < = FNx¥Ny(x < y) and t< sit. :
texu-m>= Toxm=ux0-Ty 7
and :

B«7 fv=Toandn' =n
u' x 7' otherwise

Tl*n'u'-7r'>{

~> ldea : I've already been there...
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n2,
G-: general case
oce

(G2: non-substitutive case

~> |dea : I've already been there...

o if I(Mip, Nh,u,m) € Hst. p>u*mand ME f(mip, ) =0
—— WIN
(p, H) € W5

o for every (m;, mj,u,mr) € H, meNst. p=uxm-t-m:

(txn-u -7/ HU{(m; - m, [ -nd,7)}) € WY V(n,,7)
(p, H) € W§,

Pray

Etienne Miquey Realizability games for the specification problem



n2,
G-: general case
oce

(G2: non-substitutive case

~> |dea : I've already been there...

o if I(mip, Ap,u,m) € H, Ip € P sit. p> u*7 and
ME f(mp, i) =0:
(P.H ews "
e for every (mj, nj,u,m) € H, me Nst. dp € P,
p=uxm-t-m:

{txn-u -7 YUP), HU{(@;-m, @ -n, ' 7)€ W3 V(' u,7)

(P,H) e W3

Realizability games for the specification problem
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n2,
G-: general case
°

Specification result

Adequacy

If t is a winning strategy for G2, then t I ®

Proof (sketch):
- play a match with stacks from falsity value,

- conclude by anti-reduction.

Realizability games for the specification problem
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n2,
G-: general case
°

Specification result

Adequacy

If t is a winning strategy for G2, then t I ®

Proof (sketch):
- play a match with stacks from falsity value,
- conclude by anti-reduction.

Completeness of G2
If t - ® then t is a winning strategy for the game G%

Proof (sketch): by contradiction,
- build an increasing sequence (P;, H;) using @ winning answers,

- define L := (Upep,, th(p))<,
- reach a contradiction.

Etienne Miquey Realizability games for the specification problem



n2,
G-: general case
°

Consequences

Proposition: Uniform winning strategy

There exists a term T such that if:

- M = 3x1Vy1...f(>?,)7) =0

- Of computes f

then T0y is a winning strategy for Ix;Vy;...f(X,y) = 0.

Proof: Enumeration of N¥, using 0r to check whether we reached a winning
position.

Etienne Miquey Realizability games for the specification problem




n2,
G-: general case
°

Consequences

Proposition: Uniform winning strategy

There exists a term T such that if:

- M = 3x1Vy1...f(>?,)7) =0

- Of computes f

then T0y is a winning strategy for Ix;Vy;...f(X,y) = 0.

Proof: Enumeration of N¥, using 0r to check whether we reached a winning
position.
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n2,
G-: general case
°

Consequences

Proposition: Uniform winning strategy

There exists a term T such that if:

- M = EIxNyl...f()?,}?) =0

- Of computes f

then T0y is a winning strategy for Ix;Vy;...f(X,y) = 0.

Proof: Enumeration of N¥, using 0r to check whether we reached a winning
position.

Theorem: Absoluteness

If ® is an arithmetical formula, then
dt € A, tlIEd iff ME®

Etienne Miquey Realizability games for the specification problem




Conclusion
€000

Comments & conclusion
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About equality

Dop 0 IxaVyr ... IxpVynf (Xn, ¥ )#0

1f(x) =0l | [f(x)#0]
ME f(x) =0 | [[VX.X — X|| M
MEF(x)#0|  Acxn 0

Conclusion
0®00

Etienne Miquey
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Conclusion
0®00

About equality

Dop 0 IxaVyr ... IxpVynf (Xn, ¥ )#0

[f(x) =0l | [[f(x) #0]
ME f(x) =0 | [[VX.X — X|| M
MEF(x)#0|  AcxT 0

Uniform realizer

Vn € N, there exists t, € A¢ s.t. Vf : N?" — N,
ME IxiVy ... f()_(,y) 75 0 = t,lk E|NX1VNy1 e f()_{,y) 75 0.

%t does not necessarily play according to the formula...
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Combining strategies

Forall n, there exists a term T, s.t. if f computes f, then
T.0¢ I &7 = o=

(TOF) % - uft -7

defender of ®7

e

‘@pmposes Py and tk

@ proposes my @ proposes p,

ifF=0 iff=0 ———
- )
@ plays B, and wins @ plays and wins

‘@chooses ub and proposes - ‘@chooses uR and proposes i,

(@ proposes p,

‘@proposes T, and R

Conclusion
fole] Y]
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Conclusion
oooe

About absoluteness

@ it was already known
@ it extends to realizability algebras

@ we now know even more :

Shoenfield barrier

Every ¥3/M3-relation is absolute for all inner models M of ZF.
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Conclusion
oooe

About absoluteness

@ it was already known

@ it extends to realizability algebras

@ we now know even more :

Shoenfield barrier

Every ¥3/M3-relation is absolute for all inner models M of ZF.
There exists an ultrafilter on 12

Corollary

For any realizability algebra A, M- contains a proper class M’
which is an inner model of ZF.

Etienne Miquey
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Conclusion
°

Conclusion

What we did :

o We defined two games for substitutive and non-substitutive
cases

@ We proved equivalence between universal realizers and
winning strategies

@ It solved both specification and absoluteness problems
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Conclusion
°

Conclusion

What we did :

o We defined two games for substitutive and non-substitutive
cases

@ We proved equivalence between universal realizers and
winning strategies
@ It solved both specification and absoluteness problems

Further work :

o classes of formulae compatible with games ?

e transformation G! ~» G2 generic ?
+ some kind of loss of innocence ?

@ combination of strategies 7
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Thank you for your attention.
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