Realizability games for the specification problem

Mauricio Guillermo², Étienne Miquey^{1,2}

¹Team πr² (INRIA), PPS, Université Paris-Diderot ²Fac. de Ingeniería. Universidad de la República. Uruguav

Realizability in Piriápolis

Starting picture

Starting picture

Classical realizability

Starting picture

The question of this talk

Specification of *A*:

Can we give a **characterization** of the realizers of A?

$$\exists x_1 \forall y_1 ... \exists x_h \forall y_h f(\vec{x}, \vec{y}) = 0$$

The question of this talk

Specification of A:

Can we give a **characterization** of the realizers of A?

Subtitle:

Introduction

Extract *computational* properties from a *logical* information (and not the other way round).

Focus of this talk

Arithmetic formulæ:

$$\exists x_1 \forall y_1 ... \exists x_h \forall y_h f(\vec{x}, \vec{y}) = 0$$

The question of this talk

Specification of A:

Can we give a **characterization** of the realizers of A?

Subtitle:

Introduction

Extract computational properties from a logical information (and not the other way round).

Focus of this talk

Arithmetic formulæ:

$$\exists x_1 \forall y_1 ... \exists x_h \forall y_h f(\vec{x}, \vec{y}) = 0$$

 \mathbb{G}^1 : a first game

(A quick reminder about)

Krivine classical realizability

Introduction

Terms, stacks, processes

 \mathcal{B} : stack constants

C: instructions (including \mathbf{c}), countable

KAN

Conclusion

Introduction

Terms, stacks, processes

 \mathcal{B} : stack constants

C: instructions (including \mathbf{c}), countable

KAM

Push : $(t)u \star \pi \succ_{1} t \star u \cdot \pi$ Grab : $\lambda x.t \star u \cdot \pi \succ_{1} t\{x := u\} \star \pi$ Save : $\mathbf{c} \star t \cdot \pi \succ_{1} t \star \mathbf{k}_{\pi} \cdot \pi$ Restore : $\mathbf{k}_{\pi} \star t \cdot \rho \succ_{1} t \star \pi$

Introduction

Terms, stacks, processes

 \mathcal{B} : stack constants

C: instructions (including \mathbf{c}), countable

KAM

Push : $(t)u \star \pi \succ_{1} t \star u \cdot \pi$ Grab : $\lambda x.t \star u \cdot \pi \succ_{1} t\{x := u\} \star \pi$ Save : $\mathbf{c} \star t \cdot \pi \succ_{1} t \star \mathbf{k}_{\pi} \cdot \pi$ Restore : $\mathbf{k}_{\pi} \star t \cdot \rho \succ_{1} t \star \pi$

Introduction

Terms, stacks, processes

 \mathcal{B} : stack constants

C: instructions (including \mathbf{c}), countable

Terms
$$t, u ::= x \mid \lambda x.t \mid tu \mid \mathbf{k}_{\pi} \mid \kappa$$
 $\kappa \in \mathcal{C}$
Stacks $\pi ::= \alpha \mid t \cdot \pi$ $(\alpha \in \mathcal{B}, t \text{ closed})$
Processes $p, q ::= t \star \pi$ $(t \text{ closed})$

KAM + C extended

```
SAVE : \mathbf{cc} \star t \cdot \pi \succ_{1} t \star \mathbf{k}_{\pi} \cdot \pi
QUOTE : \text{quote} \star \phi \cdot t \cdot \pi \succ_{1} t \star \overline{n_{\phi}} \cdot \pi
FORK : \text{figure} \star t \cdot u \cdot \pi \succ_{1} t \star \pi
FORK : \text{figure} \star t \cdot u \cdot \pi \succ_{1} u \star \pi
PRINT : \text{print} \star \overline{n} \cdot t \cdot \pi \succ_{1} t \star \pi
```

2nd-order arithmetic

00000000

Language

Introduction

Expressions $e ::= x \mid f(e_1, \ldots, e_k)$

 $A, B ::= X(e_1, \ldots, e_k) \mid A \Rightarrow B \mid \forall x A \mid \forall X A$ **Formulæ**

$$\bot \equiv \forall Z.Z
\neg A \equiv A \Rightarrow \bot
A \land B \equiv \forall Z((A \Rightarrow B \Rightarrow Z) \Rightarrow Z)
A \lor B \equiv \forall Z((A \Rightarrow Z) \Rightarrow (B \Rightarrow Z) \Rightarrow Z)
A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)
\exists xA(x) \equiv \forall Z(\forall x(A(x) \Rightarrow Z) \Rightarrow Z)
\exists XA(X) \equiv \forall Z(Z(e_1) \Rightarrow Z(e_2))$$

2nd-order arithmetic

Language

Introduction

Expressions
$$e$$
 ::= $x \mid f(e_1, ..., e_k)$
Formulæ A, B ::= $X(e_1, ..., e_k) \mid A \Rightarrow B \mid \forall x A \mid \forall X A$

Shorthands:

$$\downarrow \equiv \forall Z.Z
\neg A \equiv A \Rightarrow \bot
A \land B \equiv \forall Z((A \Rightarrow B \Rightarrow Z) \Rightarrow Z)
A \lor B \equiv \forall Z((A \Rightarrow Z) \Rightarrow (B \Rightarrow Z) \Rightarrow Z)
A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)
\exists xA(x) \equiv \forall Z(\forall x(A(x) \Rightarrow Z) \Rightarrow Z)
\exists XA(X) \equiv \forall Z(\forall X(A(X) \Rightarrow Z) \Rightarrow Z)
e_1 = e_2 \equiv \forall Z(Z(e_1) \Rightarrow Z(e_2))$$

Typing rules

$$\frac{\Gamma \vdash x : A}{\Gamma \vdash t : A} (x : A) \in \Gamma$$

$$\frac{\Gamma \vdash t : A \Rightarrow B}{\Gamma \vdash t : B} \qquad \frac{\Gamma \vdash t : A}{\Gamma \vdash t : A \Rightarrow B}$$

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash t : \forall x . A} x \notin FV(\Gamma)$$

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash t : \forall x . A} X \notin FV(\Gamma)$$

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash t : \forall x . A} X \notin FV(\Gamma)$$

$$\frac{\Gamma \vdash t : \forall x . A}{\Gamma \vdash t : \forall x . A} X \notin FV(\Gamma)$$

$$\frac{\Gamma \vdash t : \forall x . A}{\Gamma \vdash t : A\{X(x_1, \dots, x_k) := B\}}$$

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash t : \forall x . A} X \notin FV(\Gamma)$$

Intuition

- falsity value ||A||: stacks, opponent to A
- truth value |A|: terms, player of A
- pole ⊥: processes, referee

$$t \star \pi \succ p_0 \succ \cdots \succ p_n \in \bot\!\!\!\bot?$$

 $\rightsquigarrow \bot \bot \subset \Lambda_c \star \Pi$ closed by anti-reduction

Truth value defined by orthogonality:

$$|A| = ||A||^{\perp \perp} = \{t \in \Lambda_c : \forall \pi \in ||A||, t \star \pi \in \perp \perp\}$$

Introduction

Intuition

- falsity value ||A||: stacks, opponent to A
- truth value |A|: terms, player of A
- pole ⊥: processes, referee

$$t \star \pi \succ p_0 \succ \cdots \succ p_n \in \bot$$
?

$$|A| = ||A||^{\perp \perp} = \{ t \in \Lambda_c : \forall \pi \in ||A||, t \star \pi \in \perp \perp \}$$

Introduction

Intuition

- falsity value ||A||: stacks, opponent to A
- truth value |A|: terms, player of A
- pole ⊥: processes, referee

Classical realizability

000000000

$$t \star \pi \succ p_0 \succ \cdots \succ p_n \in \bot\!\!\!\bot?$$

Introduction

Intuition

- falsity value ||A||: stacks, opponent to A
- truth value |A|: terms, player of A
- pole ⊥: processes, referee

$$t \star \pi \succ p_0 \succ \cdots \succ p_n \in \bot$$
?

Introduction

Intuition

- falsity value ||A||: stacks, opponent to A
- truth value |A|: terms, player of A
- pole ⊥: processes, referee

$$t \star \pi \succ p_0 \succ \cdots \succ p_n \in \bot$$
?

Truth value defined by **orthogonality** :
$$|A| = ||A||^{\perp \perp} = \{t \in \Lambda_c : \forall \pi \in ||A||, t \star \pi \in \perp \perp \}$$

Intuition

- falsity value ||A||: stacks, opponent to A
- truth value |A|: terms, player of A
- pole ⊥: processes, referee

$$t \star \pi \succ p_0 \succ \cdots \succ p_n \in \bot$$
?

 $\rightsquigarrow \bot \!\!\! \bot \subset \Lambda_c \star \Pi$ closed by anti-reduction

Truth value defined by **orthogonality**:
$$|A| = ||A||^{\perp \perp} = \{t \in \Lambda_c : \forall \pi \in ||A||, t \star \pi \in \perp \perp\}$$

Introduction

Intuition

- falsity value ||A||: stacks, opponent to A
- truth value |A|: terms, player of A
- pole ⊥: processes, referee

$$t \star \pi \succ p_0 \succ \cdots \succ p_n \in \bot$$
?

 $\rightsquigarrow \bot \!\!\! \bot \subset \Lambda_c \star \Pi$ closed by anti-reduction

Truth value defined by **orthogonality**:

$$|A| = ||A||^{\perp \perp} = \{t \in \Lambda_c : \forall \pi \in ||A||, t \star \pi \in \perp \perp\}$$

Models $(\mathcal{M}, \perp \!\!\!\perp)$

Ground model \mathcal{M}

Classical realizability

000000000

Pole

 $\bot\!\!\!\bot\subset\Lambda_c\star\Pi$ closed by anti-reduction :

$$\forall p, p' \in \Lambda_c \star \Pi : (p \succ p') \land (p' \in \bot\!\!\!\bot) \Rightarrow p \in \bot\!\!\!\bot$$

$$|A| = ||A||^{\perp \perp} = \{t \in \Lambda_c : \forall \pi \in ||A||, t \star \pi \in \perp \perp\}$$

Models $(\mathcal{M}, \perp \!\!\!\perp)$

Ground model \mathcal{M}

000000000

Pole

Introduction

 $\bot\!\!\!\bot\subset\Lambda_c\star\Pi$ closed by anti-reduction :

$$\forall p, p' \in \Lambda_c \star \Pi : \quad (p \succ p') \land (p' \in \bot\!\!\!\bot) \Rightarrow p \in \bot\!\!\!\bot$$

Truth value (player):

$$|A| = ||A||^{\perp \perp} = \{t \in \Lambda_c : \forall \pi \in ||A||, t \star \pi \in \perp \perp\}$$

Models $(\mathcal{M}, \perp\!\!\!\perp)$

Ground model ${\cal M}$

Classical realizability

000000000

Pole

Introduction

 $\bot\!\!\!\bot\subset\Lambda_c\star\Pi$ closed by anti-reduction :

$$\forall p, p' \in \Lambda_c \star \Pi : (p \succ p') \land (p' \in \bot\!\!\!\bot) \Rightarrow p \in \bot\!\!\!\bot$$

Truth value (player):

$$|A| = ||A||^{\perp \perp} = \{t \in \Lambda_c : \forall \pi \in ||A||, t \star \pi \in \perp \perp\}$$

- $\bullet \ \|A \Rightarrow B\| = \{t \cdot \pi : t \in |A| \land \pi \in \|B\|\}$
- $\|\forall x A\| = \bigcup_{n \in \mathbb{N}} \|A\{x := n\}\|$
- $\|\forall XA\| = \bigcup_{F:\mathbb{N}^k \to \mathcal{P}(\Pi)} \|A\{X := \dot{F}\}\|$
- $\|\dot{F}(e_1,...,e_k)\| = F(\llbracket e_1 \rrbracket,...,\llbracket e_k \rrbracket)$

Models $(\mathcal{M}, \perp \!\!\!\perp)$

Ground model ${\cal M}$

Classical realizability

000000000

Pole

Introduction

 $\bot\!\!\!\bot\subset \Lambda_c\star\Pi$ closed by anti-reduction :

$$\forall p, p' \in \Lambda_c \star \Pi : (p \succ p') \land (p' \in \bot\!\!\!\bot) \Rightarrow p \in \bot\!\!\!\bot$$

Truth value (player):

$$|A| = ||A||^{\perp \perp} = \{t \in \Lambda_c : \forall \pi \in ||A||, t \star \pi \in \perp \perp\}$$

- $||A \Rightarrow B|| = \{t \cdot \pi : t \in |A| \land \pi \in ||B||\}$
- $\|\forall xA\| = \bigcup_{n \in \mathbb{N}} \|A\{x := n\}\|$
- $\|\forall XA\| = \bigcup_{F:\mathbb{N}^k \to \mathcal{P}(\Pi)} \|A\{X := \dot{F}\}\|$
- $\|\dot{F}(e_1,...,e_k)\| = F([e_1],...,[e_k])$

Models $(\mathcal{M}, \perp \!\!\!\perp)$

Ground model \mathcal{M}

000000000

Pole

Introduction

 $\bot\!\!\!\bot\subset\Lambda_c\star\Pi$ closed by anti-reduction :

$$\forall p, p' \in \Lambda_c \star \Pi : \quad (p \succ p') \land (p' \in \bot\!\!\!\bot) \Rightarrow p \in \bot\!\!\!\bot$$

Truth value (player):

$$|A| = ||A||^{\perp \perp} = \{t \in \Lambda_c : \forall \pi \in ||A||, t \star \pi \in \perp \perp\}$$

- $||A \Rightarrow B|| = \{t \cdot \pi : t \in |A| \land \pi \in ||B||\}$
- $\bullet \|\forall xA\| = \bigcup_{n \in \mathbb{N}} \|A\{x := n\}\|$
- $\|\forall XA\| = \bigcup_{F:\mathbb{N}^k \to \mathcal{P}(\Pi)} \|A\{X := \dot{F}\}\|$
- $\|\dot{F}(e_1, \dots, e_{\nu})\| = F([e_1], \dots, [e_{\nu}])$

Models $(\mathcal{M}, \perp\!\!\!\perp)$

Ground model ${\cal M}$

Classical realizability

000000000

Pole

Introduction

 \bot \subset Λ_c \star Π closed by anti-reduction :

$$\forall p, p' \in \Lambda_c \star \Pi : (p \succ p') \land (p' \in \bot\!\!\!\bot) \Rightarrow p \in \bot\!\!\!\bot$$

Truth value (player):

$$|A| = ||A||^{\perp \perp} = \{t \in \Lambda_c : \forall \pi \in ||A||, t \star \pi \in \perp \perp\}$$

- $||A \Rightarrow B|| = \{t \cdot \pi : t \in |A| \land \pi \in ||B||\}$
- $\|\forall xA\| = \bigcup_{n \in \mathbb{N}} \|A\{x := n\}\|$
- $\|\forall XA\| = \bigcup_{F:\mathbb{N}^k \to \mathcal{P}(\Pi)} \|A\{X := \dot{F}\}\|$
- $\|\dot{F}(e_1,...,e_k)\| = F([e_1],...,[e_k])$

Models $(\mathcal{M}, \perp \!\!\!\perp)$

Introduction

Ground model \mathcal{M} Truth value (player):

000000000

$$|A| = ||A||^{\perp \perp} = \{t \in \Lambda_c : \forall \pi \in ||A||, t \star \pi \in \perp \perp\}$$

Falsity value (opponent):

- $||A \Rightarrow B|| = \{t \cdot \pi : t \in |A| \land \pi \in ||B||\}$
- $\bullet \|\forall xA\| = \bigcup_{n \in \mathbb{N}} \|A\{x := n\}\|$
- $\|\forall XA\| = \bigcup_{F:\mathbb{N}^k \to \mathcal{P}(\Pi)} \|A\{X := \dot{F}\}\|$
- $\|F(e_1,...,e_k)\| = F([e_1],...,[e_k])$

Notation

$$t \Vdash A$$
 iff $t \in |A| = ||A||^{\perp \perp}$
 $t \Vdash A$ iff $t \Vdash A$ for all $\perp \perp$

Remarks

Introduction

Case $\perp \!\!\! \perp = \emptyset$ (degenerated model)

• Truth as in the standard model:

$$|A| = \begin{cases} \Lambda & \text{if } \llbracket A \rrbracket = 1\\ \emptyset & \text{if } \llbracket A \rrbracket = 0 \end{cases}$$

Realizable

 ⇔ True in the standard model

- $t \star \pi \in \bot \Rightarrow$ forall $A, \mathbf{k}_{\pi}t \Vdash A$
- Restriction to proof-like

Remarks

Introduction

Case $\perp \!\!\! \perp = \emptyset$ (degenerated model)

• Truth as in the standard model:

$$|A| = \begin{cases} \Lambda & \text{if } \llbracket A \rrbracket = 1\\ \emptyset & \text{if } \llbracket A \rrbracket = 0 \end{cases}$$

Realizable ⇔ True in the standard model

Case $\bot\!\!\!\bot \neq \emptyset$

- $t \star \pi \in \bot \bot \Rightarrow$ forall $A, \mathbf{k}_{\pi} t \Vdash A$
- Restriction to proof-like

Properties

Adequacy

$$\begin{cases} x_1: A_1, \dots, x_k: A_k \vdash t: A \\ \forall i \in [1, k] (t_i \Vdash A_i) \end{cases} \Rightarrow t[t_1/x_1, \dots, t_k/x_k] \Vdash A$$

Realizing Peano axioms

Classical realizability

00000000

If $PA2^- \vdash A$, then there is a closed proof-like term t s.t. $t \Vdash A$.

Witness extraction

If $t \Vdash \exists^{N} x A(x)$ and A(x) is atomic or decidable, then we can build a term u s.t. that $\forall \pi \in \Pi$:

$$t \star u \cdot \pi \succ \operatorname{stop} \star \overline{n} \cdot \pi \wedge A(n) \text{ holds}$$

Introduction

$$\mathsf{Nat}(x) \; \equiv \; \forall Z \, (Z(0) \Rightarrow \forall y \, (Z(y) \Rightarrow Z(s(y))) \Rightarrow Z(x))$$

Proposition

There is no $t \in \Lambda_c$ such that $t \Vdash \forall n.Nat(n)$

Relativization

Introduction

$$Nat(x) \equiv \forall Z(Z(0) \Rightarrow \forall y(Z(y) \Rightarrow Z(s(y))) \Rightarrow Z(x))$$

Proposition

There is no $t \in \Lambda_c$ such that $t \Vdash \forall n.Nat(n)$

Fix:

$$\forall^{nat} x \, A := \forall x (\mathsf{Nat}(x) \Rightarrow A)$$

Obviously, $\lambda x.x \Vdash \forall^{nat} x \operatorname{Nat}(x)$

Relativization

Introduction

$$Nat(x) \equiv \forall Z(Z(0) \Rightarrow \forall y(Z(y) \Rightarrow Z(s(y))) \Rightarrow Z(x))$$

Proposition

There is no $t \in \Lambda_c$ such that $t \Vdash \forall n.Nat(n)$

Better:

$$A, B ::= \dots | \{e\} \Rightarrow A$$

$$\|\{e\} \Rightarrow A\| = \{\bar{n} \cdot \pi : [\![e]\!] = n \land \pi \in \|A\|\}$$

$$\forall^{\mathsf{N}} x \, A(x) \equiv \forall x \, (\{x\} \Rightarrow A(x))$$

Let T be a storage operator. The following holds for any formula A(x):

Our problem

Introduction

Specification of A

Can we give a characterization of $\{t \in \Lambda_c : t \Vdash A\}$?

Absoluteness

Are arithmetical formulæ absolute for realizability models $(\mathcal{M}, \perp\!\!\!\perp)$?

The specification problem

 \mathbb{G}^1 : a first game

Our leverage: the pole

Introduction

Two ways of building poles from any set P of processes.

goal-oriented :

$$\bot\!\!\!\bot := \{ p \in \Lambda_c \star \Pi : \exists p' \in P, \ p \succ p' \}$$

thread-oriented :

Thread of
$$p$$
: $th_p = \{p' \in \Lambda_c \star \Pi : p \succ p'\}$

$$\perp \!\!\! \perp := (\bigcup_{p \in P} th_p)^c \equiv \bigcap_{p \in P} th_p^c$$

Our leverage: the pole

Two ways of building poles from any set P of processes.

goal-oriented :

$$\bot\!\!\!\bot := \{ p \in \Lambda_c \star \Pi : \exists p' \in P, \ p \succ p' \}$$

Proof:

Introduction

Let $p_0 \in \Lambda \star \Pi$ and

$$\perp \!\!\! \perp_0 := \{ p \in \Lambda_c \star \Pi : p \succ p_0 \}.$$

Let $p_1, p_2 \in \Lambda \star \Pi$ be such that:

$$p_1 \succ p_2$$
 and $p_2 \in \perp \!\!\!\perp_0 \equiv p_2 \succ p_0$.

Then

$$p_1 \succ p_2 \succ p_0$$

thus $p_1 \in \mathbb{N}_0$

G2: general case

Conclusion

Two ways of building poles from any set P of processes.

goal-oriented :

$$\bot\!\!\!\bot := \{ p \in \Lambda_c \star \Pi : \exists p' \in P, \ p \succ p' \}$$

Proof:

Introduction

Let $p_0 \in \Lambda \star \Pi$ and

$$\perp \!\!\! \perp_0 := \{ p \in \Lambda_c \star \Pi : p \succ p_0 \}.$$

Let $p_1, p_2 \in \Lambda \star \Pi$ be such that:

$$p_1 \succ p_2$$
 and $p_2 \in \perp \!\!\!\perp_0 \equiv p_2 \succ p_0$.

Then

$$p_1 \succ p_2 \succ p_0$$

thus $p_1 \in \perp \!\!\! \perp_0$.

Introduction

thread-oriented :

Thread of
$$p$$
: $th_p = \{p' \in \Lambda_c \star \Pi : p \succ p'\}$

$$\perp \!\!\! \perp := (\bigcup_{p \in P} th_p)^c \equiv \bigcap_{p \in P} th_p^c$$

 \mathbb{G}^1 : a first game

Our leverage: the pole

thread-oriented :

Thread of p: $th_p = \{p' \in \Lambda_c \star \Pi : p \succ p'\}$

$$\perp \!\!\! \perp := (\bigcup_{p \in P} th_p)^c \equiv \bigcap_{p \in P} th_p^c$$

Proof:

Introduction

Let $p_0 \in \Lambda \star \Pi$ and

$$\perp\!\!\!\perp_0 := th^c_{p_0} \equiv \{p \in \Lambda_c \star \Pi: \ p_0 \not\succ p\}.$$

Let $p_1, p_2 \in \Lambda \star \Pi$ be such that:

$$p_1 \succ p_2$$
 and $p_2 \in \perp \!\!\!\perp_0 \equiv p_0 \not\succ p_2$.

Assume $p_0 > p_1$, then

$$p_0 \succ p_1 \succ p_2 \notin \perp \downarrow_0$$

Absurd !√

Our leverage: the pole

thread-oriented :

Thread of p:

Introduction

$$th_p = \{p' \in \Lambda_c \star \Pi : p \succ p'\}$$

$$\perp \!\!\! \perp := (\bigcup_{p \in P} th_p)^c \equiv \bigcap_{p \in P} th_p^c$$

Proof:

Let $p_0 \in \Lambda \star \Pi$ and

$$\perp\!\!\!\perp_0 := th^c_{p_0} \equiv \{p \in \Lambda_c \star \Pi: \ p_0 \not\succ p\}.$$

Let $p_1, p_2 \in \Lambda \star \Pi$ be such that:

$$p_1 \succ p_2$$
 and $p_2 \in \perp \!\!\!\perp_0 \equiv p_0 \not\succ p_2$.

Assume $p_0 > p_1$, then

$$p_0 \succ p_1 \succ p_2 \notin \perp \downarrow_0$$

Absurd !√

$$t \Vdash \forall X.(X \Rightarrow X)$$
 iff ?

$$\|\forall X.(X \Rightarrow X)\| = \bigcup_{S \in \mathcal{P}(\Pi)} \{u \cdot \pi : u \Vdash \dot{S} \land \pi \in S\}$$

$$t \Vdash \forall X.(X \Rightarrow X)$$
 iff ?

By definition:

$$\begin{aligned} \|\forall X.(X \Rightarrow X)\| &= \bigcup_{S \in \mathcal{P}(\Pi)} \|\dot{S} \Rightarrow \dot{S}\| \\ &= \bigcup_{S \in \mathcal{P}(\Pi)} \{u \cdot \pi : u \in |\dot{S}| \land \pi \in \|\dot{S}\|\} \\ &= \bigcup_{S \in \mathcal{P}(\Pi)} \{u \cdot \pi : u \Vdash \dot{S} \land \pi \in S\} \end{aligned}$$

Proof

$$t \Vdash \forall X.(X \Rightarrow X) \quad \text{iff} \quad t \star u \cdot \pi \succ u \star \pi$$

By definition:

$$\begin{aligned} \|\forall X.(X \Rightarrow X)\| &= \bigcup_{S \in \mathcal{P}(\Pi)} \|\dot{S} \Rightarrow \dot{S}\| \\ &= \bigcup_{S \in \mathcal{P}(\Pi)} \{u \cdot \pi : u \in |\dot{S}| \land \pi \in \|\dot{S}\|\} \\ &= \bigcup_{S \in \mathcal{P}(\Pi)} \{u \cdot \pi : u \Vdash \dot{S} \land \pi \in S\} \end{aligned}$$

Proof:

Introduction

(⇐) Obvious.

$$t \Vdash \forall X.(X \Rightarrow X)$$
 iff $t \star u \cdot \pi \succ u \star \pi$

By definition:

$$||\forall X.(X \Rightarrow X)|| = \bigcup_{S \in \mathcal{P}(\Pi)} \{u \cdot \pi : u \Vdash \dot{S} \land \pi \in S\}$$

Proof:

Introduction

(⇒) Assume $t \Vdash ∀X(X \Leftarrow X)$ and fix u ∈ Λ and π ∈ Π.

goal-oriented :

$$\perp \!\!\! \perp := \{p : p \succ u \star \pi\}$$

Amounts to: $u \cdot \pi \in \|\forall X.(X \Rightarrow X)\|$?

 \bullet $\pi \in S$

• $u \Vdash \dot{S} \Leftrightarrow \forall \rho \in S, u \star \rho \in \bot \iff u \star \pi \in \bot$

$$t \Vdash \forall X.(X \Rightarrow X) \quad \text{iff} \quad t \star u \cdot \pi \succ u \star \pi$$

By definition:

$$\|\forall X.(X\Rightarrow X)\| = \bigcup_{S\in\mathcal{P}(\Pi)} \{u\cdot \pi: u\Vdash \dot{S} \land \pi\in S\}$$

Proof:

Introduction

(⇒) Assume $t \Vdash \forall X(X \Leftarrow X)$ and fix $u \in \Lambda$ and $\pi \in \Pi$.

goal-oriented :

$$\perp \!\!\! \perp := \{p : p \succ u \star \pi\}$$

Amounts to: $u \cdot \pi \in \|\forall X.(X \Rightarrow X)\|$?

Define $S := \{\pi\}$. We check that:

- π ∈ S
- $u \Vdash \dot{S} \Leftrightarrow \forall \rho \in S, u \star \rho \in \bot \iff u \star \pi \in \bot$

Thus $t \star u \cdot \pi \in \mathbb{N}$ and $t \star u \cdot \pi \succ u \star \pi$

$$t \Vdash \forall X.(X \Rightarrow X)$$
 iff $t \star u \cdot \pi \succ u \star \pi$

By definition:

$$\|\forall X.(X \Rightarrow X)\| = \bigcup_{S \in \mathcal{P}(\Pi)} \{u \cdot \pi : u \Vdash \dot{S} \land \pi \in S\}$$

Proof:

Introduction

(⇒) Assume $t \Vdash \forall X(X \Leftarrow X)$ and fix $u \in \Lambda$ and $\pi \in \Pi$.

goal-oriented :

$$\perp \!\!\! \perp := \{p : p \succ u \star \pi\}$$

Amounts to: $u \cdot \pi \in \|\forall X.(X \Rightarrow X)\|$?

Define $S := \{\pi\}$. We check that:

- π ∈ S
- $u \Vdash \dot{S} \Leftrightarrow \forall \rho \in S, u \star \rho \in \bot L \Leftrightarrow u \star \pi \in \bot L$

Thus $t \star u \cdot \pi \in \bot$ and $t \star u \cdot \pi \succ u \star \pi$.

./

$$t \Vdash \forall X.(X \Rightarrow X)$$
 iff $t \star u \cdot \pi \succ u \star \pi$

By definition:

$$\|\forall X.(X\Rightarrow X)\| = \bigcup_{S\in\mathcal{P}(\Pi)} \{u\cdot \pi: u\Vdash \dot{S} \land \pi\in S\}$$

Proof:

Introduction

(⇒) Assume $t \Vdash ∀X(X \Leftarrow X)$ and fix u ∈ Λ and π ∈ Π.

thread-oriented :

$$\bot\!\!\!\bot := th^c_{t \star u \cdot \pi} \equiv \{ p \in \Lambda_c \star \Pi : \ t \star u \cdot \pi \not\succ p \}.$$

$$u \cdot \pi \notin \|\forall X.(X \Rightarrow X)\|.$$

$$u \not\vdash \dot{S} \Leftrightarrow \exists \rho \in S, u \star \rho \notin \bot \bot \Leftrightarrow u \star \pi \notin \bot \bot \Leftrightarrow t \star u \cdot \pi \succ u \star \pi$$

$$t \Vdash \forall X.(X \Rightarrow X)$$
 iff $t \star u \cdot \pi \succ u \star \pi$

By definition:

$$\|\forall X.(X \Rightarrow X)\| = \bigcup_{S \in \mathcal{P}(\Pi)} \{u \cdot \pi : u \Vdash \dot{S} \land \pi \in S\}$$

Proof:

Introduction

(⇒) Assume $t \Vdash ∀X(X \Leftarrow X)$ and fix u ∈ Λ and π ∈ Π.

thread-oriented :

$$\bot\!\!\!\bot := th^c_{t \star u \cdot \pi} \equiv \{ p \in \Lambda_c \star \Pi : \ t \star u \cdot \pi \not\succ p \}.$$

Obviously, $t \star u \cdot \pi \notin \bot$. Thus

$$u \cdot \pi \notin \|\forall X.(X \Rightarrow X)\|.$$

$$t \Vdash \forall X.(X \Rightarrow X)$$
 iff $t \star u \cdot \pi \succ u \star \pi$

By definition:

$$\|\forall X.(X\Rightarrow X)\| = \bigcup_{S\in\mathcal{P}(\Pi)} \{u\cdot\pi: u\Vdash \dot{S} \land \pi\in S\}$$

Proof:

Introduction

(⇒) Assume $t \Vdash ∀X(X \Leftarrow X)$ and fix u ∈ Λ and π ∈ Π.

thread-oriented :

$$\bot\!\!\!\bot := th^c_{t\star u\cdot \pi} \equiv \{p \in \Lambda_c \star \Pi : t\star u\cdot \pi \not\succ p\}.$$

Obviously, $t \star u \cdot \pi \notin \bot$. Thus

$$u \cdot \pi \notin \|\forall X.(X \Rightarrow X)\|.$$

Defining $S := \{\pi\}$, we deduce that :

$$u \nvDash \dot{S} \Leftrightarrow \exists \rho \in S, u \star \rho \notin \bot L \Leftrightarrow u \star \pi \notin \bot L \Leftrightarrow t \star u \cdot \pi \succ u \star \pi$$

$$t_0 \Vdash \forall X.(X \Rightarrow X) \Rightarrow X \Rightarrow X \text{ iff } ???$$

$$t_{0} \star \kappa_{s} \cdot \kappa_{z} \cdot \pi \succ \kappa_{s} \star t_{1} \cdot \pi$$

$$t_{1} \star \pi \qquad \succ \kappa_{s} \star t_{2} \cdot \pi$$

$$\vdots$$

$$t_{i} \star \pi \qquad \succ \kappa_{s} \star t_{i+1} \cdot \pi$$

$$\vdots$$

$$\vdots$$

$$t_{s} \star \pi \qquad \succ \kappa_{s} \star \pi$$

$$\mathbb{G}^1$$
: a first game \mathbb{G}^2

$$t_0 \Vdash \forall X.(X \Rightarrow X) \Rightarrow X \Rightarrow X \text{ iff } ???$$

$$t_{0} \star \kappa_{s} \cdot \kappa_{z} \cdot \pi \succ \kappa_{s} \star t_{1} \cdot \pi$$

$$t_{1} \star \pi \qquad \succ \kappa_{s} \star t_{2} \cdot \pi$$

$$\vdots$$

$$t_{i} \star \pi \qquad \succ \kappa_{s} \star t_{i+1} \cdot \pi$$

$$\vdots$$

$$t_{s} \star \pi \qquad \succ \kappa_{z} \star \pi$$

$$t_{0} \star \kappa_{s} \cdot \kappa_{z} \cdot \pi \succ \kappa_{s} \star t_{1} \cdot \pi$$

$$t_{1} \star \pi \qquad \succ \kappa_{s} \star t_{2} \cdot \pi$$

$$\vdots$$

$$t_{i} \star \pi \qquad \succ \kappa_{s} \star t_{i+1} \cdot \pi$$

$$\vdots$$

$$t_{s} \star \pi \qquad \succ \kappa_{z} \star \pi$$

 \mathbb{G}^1 : a first game

① Define $p_0 := t_0 \star \kappa_s \cdot \kappa_z \cdot \pi, \perp \downarrow_0 := (th(p_0))^c$ and $||X|| = \{\pi\}: \Leftrightarrow \kappa_z \not\models_0 X \text{ implies } p_0 \succ \kappa_z \star \pi$

$$t_{1} \star \pi \qquad \succ \quad \kappa_{s} \star t_{2} \cdot \pi$$

$$\vdots$$

$$t_{i} \star \pi \qquad \succ \quad \kappa_{s} \star t_{i+1} \cdot \pi$$

$$\vdots$$

$$t_{s} \star \pi \qquad \succ \quad \kappa_{z} \star \pi$$

① Define $p_0 := t_0 \star \kappa_s \cdot \kappa_z \cdot \pi, \perp \downarrow_0 := (th(p_0))^c$ and $||X|| = \{\pi\}: \Leftrightarrow \kappa_z \not\Vdash_0 X \text{ implies } p_0 \succ \kappa_z \star \pi \Leftrightarrow \kappa_z \Vdash_0 X \text{ implies } \kappa_s \not\Vdash_0 X \Rightarrow X \text{ and } p_0 \succ \kappa_s \star t_1 \cdot \pi$

 $t_0 \star \kappa_s \cdot \kappa_z \cdot \pi \succ \kappa_s \star t_1 \cdot \pi$

$t_0 \Vdash \forall X.(X \Rightarrow X) \Rightarrow X \Rightarrow X \text{ iff ???}$

$$t_{1} \star \pi \qquad \succ \quad \kappa_{s} \star t_{2} \cdot \pi$$

$$\vdots$$

$$t_{i} \star \pi \qquad \succ \quad \kappa_{s} \star t_{i+1} \cdot \pi$$

$$\vdots$$

$$t_{s} \star \pi \qquad \succ \quad \kappa_{z} \star \pi$$

1 Define $p_i := t_i \star \pi$, $\perp \!\!\! \perp_i := \bigcap_{i \in [0,i]} (th(p_i))^c$ and $||X|| = \{\pi\}$:

 $t_0 \star \kappa_s \cdot \kappa_z \cdot \pi \succ \kappa_s \star t_1 \cdot \pi$

- $\hookrightarrow \kappa_z \not\Vdash_i X \text{ implies } p_i \succ \kappa_z \star \pi$
- $\hookrightarrow \kappa_z \Vdash_i X \text{ implies } \kappa_s \not\Vdash_i X \Rightarrow X \text{ and } p_i \succ \kappa_s \star t_{i+1} \cdot \pi$

$$t_{0} \star \kappa_{s} \cdot \kappa_{z} \cdot \pi \succ \kappa_{s} \star t_{1} \cdot \pi$$

$$t_{1} \star \pi \qquad \succ \kappa_{s} \star t_{2} \cdot \pi$$

$$\vdots$$

$$t_{i} \star \pi \qquad \succ \kappa_{s} \star t_{i+1} \cdot \pi$$

$$\vdots$$

$$\vdots$$

$$t_{s} \star \pi \qquad \succ \kappa_{z} \star \pi$$

- **1** Define $p_i := t_i \star \pi$, $\perp \!\!\! \perp_i := \bigcap_{j \in [0,i]} (th(p_j))^c$ and $||X|| = \{\pi\}$:
 - $\hookrightarrow \kappa_z \not\Vdash_i X \text{ implies } p_i \succ \kappa_z \star \pi$
 - \hookrightarrow $\kappa_z \Vdash_i X$ implies $\kappa_s \nvDash_i X \Rightarrow X$ and $p_i \succ \kappa_s \star t_{i+1} \cdot \pi$

Termination:

If $\forall i \in \mathbb{N}(\kappa_z \not \Vdash_i X)$, define $\perp \!\!\! \perp_{\infty} := \bigcap_{i \in \mathbb{N}} (th(p_i))^c$, get a contradiction.

$$t_{0} \star \kappa_{f} \cdot \kappa_{x} \cdot \pi \succ \kappa_{f} \star t_{1} \cdot \pi$$

$$t_{1} \star \pi' \succ \kappa_{f} \star t_{2} \cdot \pi$$

$$\vdots$$

$$t_{i} \star \pi' \succ \kappa_{f} \star t_{i+1} \cdot \pi$$

$$\vdots$$

$$t_{s} \star \pi' \succ \kappa_{x} \star \pi'$$

(Same proof)

$$t_{0} \star \kappa_{f} \cdot \kappa_{x} \cdot \pi \succ \kappa_{f} \star t_{1} \cdot \pi$$

$$t_{1} \star \pi' \succ \kappa_{f} \star t_{2} \cdot \pi$$

$$\vdots$$

$$t_{i} \star \pi' \succ \kappa_{f} \star t_{i+1} \cdot \pi$$

$$\vdots$$

$$t_{s} \star \pi' \succ \kappa_{x} \star \pi'$$

(Same proof)

Advertisement

Introduction

Problem

You want to specify A.

Methodology:

→ requirement: some intuition...

- **1 direct-style**: define the good poles,
- 2 indirect-style: try the thread method,
- induction-style: define a game

Conclusion

Advertisement

Introduction

Problem

You want to specify A.

Methodology:

→ requirement: some intuition...

- **1 direct-style**: define the good poles,
- 2 indirect-style: try the thread method,
- induction-style: define a game

Conclusion

A first notion of game

Coquand's game

Arithmetical formula

$$\Phi_{2h}: \exists x_1 \forall y_1 \dots \exists x_h \forall y_h f(\vec{x}_h, \vec{y}_h) = 0$$

Rules:

- Players : Eloise (\exists) and Abelard (\forall) .
- Moves: at his turn, each player instantiates his variable
 - Eloise allowed to backtrack
- Final position : evaluation of $f(\vec{m}_h, \vec{n}_h) = 0$:
 - true : Floise wins
 - false : game continues
- Abelard wins if the game never ends

Coquand's game

Arithmetical formula

$$\Phi_{2h}: \exists x_1 \forall y_1 \dots \exists x_h \forall y_h f(\vec{x}_h, \vec{y}_h) = 0$$

Rules:

Introduction

- **Players**: Eloise (\exists) and Abelard (\forall) .
- Moves: at his turn, each player instantiates his variable
 - Eloise allowed to backtrack
- Final position : evaluation of $f(\vec{m}_h, \vec{n}_h) = 0$:
 - true : Floise wins
 - false : game continues
- Abelard wins if the game never ends

Winning strategy

Way of playing that ensures the victory, independently of the opponent moves.

$$f(m, n, p) = 0 := (n > 0 \land \operatorname{Halt}(m, n)) \lor (n = 0 \land \neg \operatorname{Halt}(m, p))$$

 $\operatorname{Halt}(m, n) := \operatorname{the} m^{\operatorname{th}} \operatorname{Turing} \operatorname{machine} \operatorname{stops} \operatorname{before} n \operatorname{steps}$

Formula

Introduction

$$\forall m \exists n \forall p (f(m, n, p) = 0)$$

Winning strategy?

- Abelard plays the code m of a Turing machine \mathcal{M} .
- Eloise chooses to play n = 0 (" \mathcal{M} never stops")
- Abelard answers a given number of steps p
- Eloise checks whether \mathcal{M} stops before p steps:
 - either *M* is still running after *p* steps :
 ⇔ Floise wins
 - either ℳ stops before p steps:
 → Eloise backtracks and plays p instead of 0 ("ℳ stops before p steps")

$f(m, n, p) = 0 := (n > 0 \land \operatorname{Halt}(m, n)) \lor (n = 0 \land \neg \operatorname{Halt}(m, p))$ $\operatorname{Halt}(m, n) := \operatorname{the} m^{\operatorname{th}} \operatorname{Turing} \operatorname{machine} \operatorname{stops} \operatorname{before} n \operatorname{steps}$

Formula

Introduction

$$\forall m \exists n \forall p (f(m, n, p) = 0)$$

Winning strategy:

- Abelard plays the code m of a Turing machine \mathcal{M} .
- Eloise chooses to play n = 0 (" \mathcal{M} never stops")
- Abelard answers a given number of steps p
- Eloise checks whether *M* stops before *p* steps:
 - either *M* is still running after *p* steps :
 → Eloise wins.
 - either *M* stops before *p* steps:

 ⊕ Eloise backtracks and plays *p* instead of 0 ("*M* stops before *p* steps")

Example

Introduction

Formula

$$\exists x \forall y \exists z (x \cdot y = 2 \cdot z)$$

$$\begin{array}{c|cccc} \textbf{Player} & \textbf{Action} & \textbf{Position} \\ \hline & \textbf{Start} & P_0 = (\cdot, \cdot, \cdot) \\ \hline \end{array}$$

Conclusion

Example

Introduction

Formula

$$\forall y \exists z (1 \cdot y = 2 \cdot z)$$

Player	Action	Position
	Start	$P_0=(\cdot,\cdot,\cdot)$
\bigcirc	x := 1	$P_1=(1,\cdot,\cdot)$

Example

Introduction

Formula

$$\exists z (1 = 2 \cdot z)$$

Player	Action	Position
	Start	$P_0=(\cdot,\cdot,\cdot)$
\exists	x := 1	$P_1=(1,\cdot,\cdot)$
\bigcirc	y := 1	$P_2=(1,1,\cdot)$

Introduction

Formula

$$\forall y \exists z (2 \cdot y = 2 \cdot z)$$

Player	Action	Position
	Start	$P_0=(\cdot,\cdot,\cdot)$
\bigcirc	x := 1	$egin{aligned} P_0 = (\cdot, \cdot, \cdot) \ P_1 = (1, \cdot, \cdot) \end{aligned}$
\bigcirc	<i>y</i> := 1	$P_2=(1,1,\cdot)$
\bigcirc	$y := 1$ backtrack to $P_0 + x := 2$	$P_3=(2,\cdot,\cdot)$
		•

Introduction

Formula

$$\exists z (2 = 2 \cdot z)$$

Player	Action	Position
	Start	$P_0=(\cdot,\cdot,\cdot)$
\bigcirc	x := 1	$P_1=(1,\cdot,\cdot)$
\bigcirc	y := 1	$P_2=(1,1,\cdot)$
\bigcirc	backtrack to $P_0 + x := 2$	$P_3=(2,\cdot,\cdot)$
\bigcirc	y := 1	$P_4=(2,1,\cdot)$

Introduction

Formula

$$2 = 2$$

Player	Action	Position
	Start	$P_0=(\cdot,\cdot,\cdot)$
\bigcirc	x := 1	$P_1=(1,\cdot,\cdot)$
\bigcirc	y := 1	$P_2=(1,1,\cdot)$
\bigcirc	backtrack to $P_0 + x := 2$	$P_3=(2,\cdot,\cdot)$
\bigcirc	y := 1	$P_4=(2,1,\cdot)$
\Box	z := 1	$P_5 = (2,1,1)$

Introduction

Formula

$$2 = 2$$

Player	Action	Position
	Start	$P_0=(\cdot,\cdot,\cdot)$
\bigcirc	x := 1	$P_1=(1,\cdot,\cdot)$
\bigcirc	<i>y</i> := 1	$P_2=(1,1,\cdot)$
\bigcirc	backtrack to $P_0 + x := 2$	$P_3=(2,\cdot,\cdot)$
\bigcirc	y := 1	$P_4=(2,1,\cdot)$
\bigcirc	z := 1	$P_5 = (2,1,1)$
	evaluation	\exists wins

Introduction

Formula

$$2 = 2$$

Player	Action	Position
	Start	$P_0=(\cdot,\cdot,\cdot)$
\bigcirc	x := 1	$P_1=(1,\cdot,\cdot)$
\bigcirc	<i>y</i> := 1	$P_2=(1,1,\cdot)$
\bigcirc	backtrack to $P_0 + x := 2$	$P_3=(2,\cdot,\cdot)$
\bigcirc	<i>y</i> := 1	$P_4=(2,1,\cdot)$
\Box	z := 1	$P_5 = (2,1,1)$
	evaluation	wins

History

$$H := \bigcup_n P_n$$

Conclusion

G⁰: deductive system

Rules:

Introduction

• If there exists $(\vec{m}_h, \vec{n}_h) \in H$ such that $\mathcal{M} \models f(\vec{m}_h, \vec{n}_h) = 0$:

$$\overline{H \in \mathbb{W}^0_\Phi}$$
 Win

• For all i < h, $(\vec{m_i}, \vec{n_i}) \in H$ and $m \in \mathbb{N}$:

$$\frac{H \cup \{(\vec{m}_i \cdot m, \vec{n}_i \cdot n)\} \in \mathbb{W}_{\Phi}^0 \quad \forall n \in \mathbb{N}}{H \in \mathbb{W}_{\Phi}^0} \text{ PLAY}$$

\mathbb{G}^1 : playing with realizability

Formulæ structure

$$\Phi \equiv \exists^{\mathsf{N}} x_1 \forall^{\mathsf{N}} y_1 \dots \exists^{\mathsf{N}} x_h \forall y_h (f(\vec{x}_h, \vec{y}_h) = 0)$$
$$\equiv \forall X_1 (\forall^{\mathsf{N}} x_1 (\forall^{\mathsf{N}} y_1 \Phi_1 \Rightarrow X_1) \Rightarrow X_1)$$

Introduction

Introduction

Formulæ structure

$$\Phi \equiv \exists^{\mathsf{N}} x_1 \forall^{\mathsf{N}} y_1 \dots \exists^{\mathsf{N}} x_h \forall y_h (f(\vec{x}_h, \vec{y}_h) = 0)
\Phi_0 \equiv \forall X_1 (\forall^{\mathsf{N}} x_1 (\forall^{\mathsf{N}} y_1 \Phi_1 \Rightarrow X_1) \Rightarrow X_1)
\Phi_{i-1} \equiv \forall X_i (\forall^{\mathsf{N}} x_i (\forall^{\mathsf{N}} y_i \Phi_i \Rightarrow X_i) \Rightarrow X_i)
\Phi_h \equiv \forall W (W (f(\vec{x}_h, \vec{y}_h)) \Rightarrow W(0))$$

Formulæ structure

Introduction

$$\Phi_0 \equiv \forall X_1 (\forall^N x_1 (\forall^N y_1 \Phi_1 \Rightarrow X_1) \Rightarrow X_1)
\Phi_{i-1} \equiv \forall X_i (\forall^N x_i (\forall^N y_i \Phi_i \Rightarrow X_i) \Rightarrow X_i)
\Phi_h \equiv \forall W (W(f(\vec{x}_h, \vec{y}_h)) \Rightarrow W(0))$$

Realizability

$$||A \Rightarrow B|| = \{u \cdot \pi : u \in |A| \land \pi \in ||B||\}$$

$$||\forall^{\mathsf{N}} \times A(x)|| = \bigcup_{n \in \mathbb{N}} \{\overline{n} \cdot \pi : \pi \in ||A(n)||\}$$

Formulæ structure

$$\Phi_0 \equiv \forall X_1 (\forall^N x_1 (\forall^N y_1 \Phi_1 \Rightarrow X_1) \Rightarrow X_1)$$

Start:

Introduction

- Eloise proposes t_0 to defend Φ_0
- Abelard proposes $u_0 \cdot \pi_0$ to attack Φ_0

move	p_i (\exists -position)	history
0	$t_0\star u_0\cdot \pi_0$	$H_0 := \{(\emptyset, \emptyset, u_0, \pi_0)\}$

Formulæ structure

Introduction

$$\Phi_0 \equiv \forall X_1 (\forall^N x_1 (\forall^N y_1 \Phi_1 \Rightarrow X_1) \Rightarrow X_1)$$

Eloise reduces p_0 until

- $p_0 \succ u_0 \star \overline{m_1} \cdot t_1 \cdot \pi_0$
 - \hookrightarrow she can decide to play (m_1, t_1) and ask for Abelard's answer
 - \rightarrow Abelard must give $\overline{n_1} \cdot u' \cdot \pi'$.

Formulæ structure

Introduction

$$\Phi_0 \equiv \forall X_1 (\forall^N x_1 (\forall^N y_1 \Phi_1 \Rightarrow X_1) \Rightarrow X_1)$$

move	p_i (\exists -position)	history
0	$t_0\star u_0\cdot \pi_0$	$H_0 := \{(\emptyset, \emptyset, u_0, \pi_0)\}$
1	$t_1 \star \overline{n}_1 \cdot u_1 \cdot \pi_1$	$H_1 := \{(m_1, n_1, u_1, \pi_1)\} \cup H_0$

Eloise reduces p_0 until

- $p_0 \succ u_0 \star \overline{m_1} \cdot t_1 \cdot \pi_0$
 - \hookrightarrow she *can* decide to play (m_1, t_1) and ask for Abelard's answer
 - \hookrightarrow Abelard must give $\overline{n_1} \cdot u' \cdot \pi'$.

Formulæ structure

$$\Phi_{i-1} \equiv \forall X_i (\forall^{\mathbb{N}} x_i (\forall^{\mathbb{N}} y_i \Phi_i \Rightarrow X_i) \Rightarrow X_i)$$

move	p_i (\exists -position)	history
1	$t_1 \star \overline{n}_1 \cdot u_1 \cdot \pi_1$	$H_1 := \{(m_1, n_1, u_1, \pi_1)\} \cup H_0$
:	:	<u>:</u>
i	$t_i \star \overline{n}_i \cdot u_i \cdot \pi_i$	$H_i := \{(m_i, n_i, u_i, \pi_i)\} \cup H_{i-1}$

Eloise reduces p_i until

- $p_j \succ u \star \overline{m} \cdot t \cdot \pi$ with $(\vec{m_i}, \vec{n_i}, u, \pi) \in H_i$ where j < h.
 - \rightarrow she *can* decide to play (m_{i+1}, t_{i+1})
 - \hookrightarrow Abelard must give $\overline{n_i} \cdot u' \cdot \pi'$.

Formulæ structure

Introduction

$$\Phi_h \equiv \forall W(W(f(\vec{x}_h, \vec{y}_h)) \Rightarrow W(0))$$

move	p_i (\exists -position)	history
1	$t_1 \star \overline{n}_1 \cdot u_1 \cdot \pi_1$	$H_1 := \{(m_1, n_1, u_1, \pi_1)\} \cup H_0$
:	<u>:</u>	<u>:</u>
i	$t_i \star \overline{n}_i \cdot u_i \cdot \pi_i$	$H_i := \{(m_i, n_i, u_i, \pi_i)\} \cup H_{i-1}$

Eloise reduces p_i until

- $p_i \succ u \star \overline{m} \cdot t \cdot \pi$ with $(\vec{m_i}, \vec{n_i}, u, \pi) \in H_i$ where j < h.
 - \hookrightarrow she *can* decide to play (m_{i+1}, t_{i+1})
 - \hookrightarrow Abelard *must* give $\overline{n_i} \cdot u' \cdot \pi'$.
- $p_i \succ u \star \pi$ with $(\vec{m}_h, \vec{n}_h, u, \pi) \in H_j$ \rightarrow she wins iff $\mathcal{M} \models f(\vec{m}_h, \vec{n}_h) = 0$.

\mathbb{G}^1 : formal definition

• if $\exists (\vec{m}_h, \vec{n}_h, u, \pi) \in H \text{ s.t. } p \succ u \star \pi \text{ and } \mathcal{M} \vDash f(\vec{m}_h, \vec{n}_h) = 0$:

$$\overline{\langle p,H\rangle\in\mathbb{W}_\Phi^1}\ \mathrm{Win}$$

• for every $(\vec{m}_i, \vec{n}_i, u, \pi) \in H$, $m \in \mathbb{N}$ s.t. $p \succ u \star \overline{m} \cdot t \cdot \pi$:

$$\frac{\langle t\star \overline{n}\cdot u'\cdot \pi', H\cup \{(\vec{m}_i\cdot m, \vec{n}_i\cdot n, u', \pi')\}\rangle \in \mathbb{W}^1_{\Phi} \quad \forall (n', u', \pi')}{\langle p, H\rangle \in \mathbb{W}^1_{\Phi}} \quad \mathrm{Play}$$

Winning strategy

 $t \in \Lambda_c$ s.t. for any handle $(u, \pi) \in \Lambda \times \Pi$

$$\langle t \star u \cdot \pi, \{(\emptyset, \emptyset, u, \pi)\} \rangle \in \mathbb{W}_{\mathfrak{c}}^{1}$$

\mathbb{G}^1 : formal definition

Classical realizability

Introduction

• if $\exists (\vec{m}_h, \vec{n}_h, u, \pi) \in H$ s.t. $p \succ u \star \pi$ and $\mathcal{M} \models f(\vec{m}_h, \vec{n}_h) = 0$:

$$\overline{\langle p, H \rangle \in \mathbb{W}^1_\Phi}$$
 Win

• for every $(\vec{m}_i, \vec{n}_i, u, \pi) \in H$, $m \in \mathbb{N}$ s.t. $p \succ u \star \overline{m} \cdot t \cdot \pi$:

$$\frac{\langle t\star \overline{n}\cdot u'\cdot \pi', H\cup \{(\vec{m}_i\cdot m, \vec{n}_i\cdot n, u', \pi')\}\rangle \in \mathbb{W}^1_{\Phi} \quad \forall (n', u', \pi')}{\langle p, H\rangle \in \mathbb{W}^1_{\Phi}} \quad \mathrm{Play}$$

Winning strategy

 $t \in \Lambda_c$ s.t. for any handle $(u, \pi) \in \Lambda \times \Pi$:

$$\langle t \star u \cdot \pi, \{(\emptyset, \emptyset, u, \pi)\} \rangle \in \mathbb{W}^1_{\Phi}$$

Specification result

Adequacy

Introduction

If t is a winning strategy for \mathbb{G}^1_{Φ} , then $t \Vdash \Phi$

Proof (sketch):

- play a match with stacks from falsity value,
- conclude by anti-reduction.

Adequacy

Introduction

If t is a winning strategy for \mathbb{G}^1_{Φ} , then $t \Vdash \Phi$

Proof (sketch):

- play a match with stacks from falsity value,
- conclude by anti-reduction.

Completeness of \mathbb{G}^1

If the calculus is deterministic and substitutive, then if $t \Vdash \Phi$ then t is a winning strategy for the game \mathbb{G}^1_{Φ}

Proof (sketch): by contradiction

- substitute Abelard's winning answers along the thread scheme,
- reach a winning position anyway.

Specification result

Adequacy

Introduction

If t is a winning strategy for \mathbb{G}^1_{Φ} , then $t \Vdash \Phi$

Proof (sketch):

- play a match with stacks from falsity value,
- conclude by anti-reduction.

Completeness of \mathbb{G}^1

If the calculus is deterministic and substitutive, then if $t \Vdash \Phi$ then t is a winning strategy for the game \mathbb{G}^1_{Φ}

Proof (sketch): by contradiction

- substitute Abelard's winning answers along the thread scheme,
- reach a winning position anyway.

The general case

Introduction

Loosing the substition

quote

Introduction

$$\mathtt{quote} \star \varphi \cdot t \cdot \pi \succ t \star \overline{\textit{\textbf{n}}_{\varphi}} \cdot \pi$$

- the calculus is no longer substitutive
- there are some wild realizers which are not winning strategies!

Consider
$$\Phi_{\leq} \equiv \exists^{N} x \forall^{N} y (x \leq y)$$
 and t_{\leq} s.t.

$$t \leq \star u \cdot \pi \succ T_0 \star \pi \succ u \star \overline{0} \cdot T_1 \cdot \pi$$

$$T_1 \star \overline{n} \cdot u' \cdot \pi' \succ \left\{ \begin{array}{ll} \blacksquare \star \pi' & \text{if } u' \equiv T_0 \text{ and } \pi' \equiv \pi \\ u' \star \pi' & \text{otherwise} \end{array} \right.$$

Loosing the substition

quote

Introduction

$$\mathtt{quote} \star \varphi \cdot t \cdot \pi \succ t \star \overline{\textit{\textbf{n}}_{\varphi}} \cdot \pi$$

- the calculus is no longer substitutive
- there are some wild realizers which are not winning strategies!

Consider
$$\Phi_{\leq} \equiv \exists^{N} x \forall^{N} y (x \leq y)$$
 and t_{\leq} s.t. :

$$t \leq \star u \cdot \pi \succ T_0 \star \pi \succ u \star \overline{0} \cdot T_1 \cdot \pi$$

and:

$$T_1 \star \overline{n} \cdot u' \cdot \pi' \succ \begin{cases} \blacksquare \star \pi' & \text{if } u' \equiv T_0 \text{ and } \pi' \equiv \pi \\ u' \star \pi' & \text{otherwise} \end{cases}$$

Loosing the substition

quote

Introduction

$$\mathtt{quote} \star \varphi \cdot t \cdot \pi \succ t \star \overline{\textit{\textbf{n}}_{\varphi}} \cdot \pi$$

- the calculus is no longer substitutive
- there are some wild realizers which are not winning strategies!

Consider
$$\Phi_{\leq} \equiv \exists^{N} x \forall^{N} y (x \leq y)$$
 and t_{\leq} s.t. :

$$t \leq \star u \cdot \pi \succ T_0 \star \pi \succ u \star \overline{0} \cdot T_1 \cdot \pi$$

and:

$$T_1 \star \overline{n} \cdot u' \cdot \pi' \succ \begin{cases} \blacksquare \star \pi' & \text{if } u' \equiv T_0 \text{ and } \pi' \equiv \pi \\ u' \star \pi' & \text{otherwise} \end{cases}$$

→ Idea: I've already been there...

\mathbb{G}^2 : non-substitutive case

- → Idea: I've already been there...
 - if $\exists (\vec{m}_h, \vec{n}_h, u, \pi) \in H$ s.t. $p \succ u \star \pi$ and $\mathcal{M} \vDash f(\vec{m}_h, \vec{n}_h) = 0$:

$$\overline{\langle \rho, H \rangle \in \mathbb{W}^1_\Phi} \ \mathrm{Win}$$

• for every $(\vec{m}_i, \vec{n}_i, u, \pi) \in H$, $m \in \mathbb{N}$ s.t. $p \succ u \star \overline{m} \cdot t \cdot \pi$:

$$\frac{\langle t \star \overline{n} \cdot u' \cdot \pi', H \cup \{(\overrightarrow{m_i} \cdot m, \overrightarrow{n_i} \cdot n, u', \pi')\} \rangle \in \mathbb{W}^1_{\Phi} \quad \forall (n', u', \pi')}{\langle p, H \rangle \in \mathbb{W}^1_{\Phi}} \text{ Play}$$

Introduction

G²: non-substitutive case

Classical realizability

- → Idea: I've already been there...
 - if $\exists (\vec{m}_h, \vec{n}_h, u, \pi) \in H, \exists p \in P$ s.t. $p \succ u \star \pi$ and $\mathcal{M} \models f(\vec{m}_h, \vec{n}_h) = 0$:

$$\overline{\langle \mathbf{P}, H \rangle \in \mathbb{W}_{\Phi}^2}$$
 Win

• for every $(\vec{m}_i, \vec{n}_i, u, \pi) \in H$, $m \in \mathbb{N}$ s.t. $\exists p \in P$, $p \succ u \star \overline{m} \cdot t \cdot \pi$:

$$\frac{\langle \{t \star \overline{n} \cdot u' \cdot \pi'\} \cup \mathbf{P} \rangle, H \cup \{(\overrightarrow{m}_i \cdot m, \overrightarrow{n}_i \cdot n, u', \pi')\} \in \mathbb{W}_{\Phi}^2 \quad \forall (n', u', \pi')}{\langle \mathbf{P}, H \rangle \in \mathbb{W}_{\Phi}^2} \quad P$$

Introduction

Adequacy

Introduction

If t is a winning strategy for \mathbb{G}^2_{Φ} , then $t \Vdash \Phi$

Proof (sketch):

- play a match with stacks from falsity value,
- conclude by anti-reduction.

Specification result

Adequacy

Introduction

If t is a winning strategy for \mathbb{G}_{Φ}^2 , then $t \Vdash \Phi$

Proof (sketch):

- play a match with stacks from falsity value,
- conclude by anti-reduction.

Completeness of \mathbb{G}^2

If $t \Vdash \Phi$ then t is a winning strategy for the game \mathbb{G}_{Φ}^2

Proof (sketch): by contradiction,

- build an increasing sequence $\langle P_i, H_i \rangle$ using (\forall) winning answers,
- define $\bot\!\!\!\bot := (\bigcup_{p \in P_{\infty}} \mathbf{th}(p))^c$,
- reach a contradiction.

Consequences

Introduction

Proposition: Uniform winning strategy

There exists a term T such that if:

- $\mathcal{M} \vDash \exists x_1 \forall y_1 ... f(\vec{x}, \vec{y}) = 0$
- θ_f computes f

then $T\theta_f$ is a winning strategy for $\exists x_1 \forall y_1...f(\vec{x},\vec{y}) = 0$.

Proof: Enumeration of \mathbb{N}^k , using θ_f to check whether we reached a winning position.

Theorem: Absoluteness

If Φ is an arithmetical formula, then

$$\exists t \in \Lambda_c, t \Vdash \Phi \quad \text{iff} \quad \mathcal{M} \models \Phi$$

Consequences

Introduction

Proposition: Uniform winning strategy

There exists a term T such that if:

- $\mathcal{M} \vDash \exists x_1 \forall y_1 ... f(\vec{x}, \vec{y}) = 0$
- θ_f computes f

then $T\theta_f$ is a winning strategy for $\exists x_1 \forall y_1...f(\vec{x},\vec{y}) = 0$.

Proof: Enumeration of \mathbb{N}^k , using θ_f to check whether we reached a winning position.

Theorem: Absoluteness

If Φ is an arithmetical formula, then

$$\exists t \in \Lambda_c, t \Vdash \Phi \quad \text{iff} \quad \mathcal{M} \models \Phi$$

Consequences

Proposition: Uniform winning strategy

There exists a term T such that if:

- $\mathcal{M} \models \exists x_1 \forall y_1 ... f(\vec{x}, \vec{y}) = 0$
- θ_f computes f

then $T\theta_f$ is a winning strategy for $\exists x_1 \forall y_1...f(\vec{x}, \vec{y}) = 0$.

Proof: Enumeration of \mathbb{N}^k , using θ_f to check whether we reached a winning position.

Theorem: Absoluteness

If Φ is an arithmetical formula, then

$$\exists t \in \Lambda_C, t \Vdash \Phi \quad \text{iff} \quad \mathcal{M} \models \Phi$$

Comments & conclusion

Introduction

About equality

Introduction

$$\Phi_{2h}: \exists x_1 \forall y_1 \dots \exists x_h \forall y_h f(\vec{x}_h, \vec{y}_h) \neq 0$$

	f(x)=0	$ f(x)\neq 0 $
$\mathcal{M} \vDash f(x) = 0$	$\ \forall X.X \to X\ $	П
$\mathcal{M} \vDash f(x) \neq 0$	$\Lambda_c imes \Pi$	Ø

Uniform realizer

$$\forall n \in \mathbb{N}, \text{ there exists } t_n \in \Lambda_c \text{ s.t. } \forall f : \mathbb{N}^{2n} \to \mathbb{N},$$

$$\mathcal{M} \vDash \exists x_1 \forall y_1 \dots f(\vec{x}, \vec{y}) \neq 0 \quad \Rightarrow \quad t_n \Vdash \exists^{\mathbb{N}} x_1 \forall^{\mathbb{N}} y_1 \dots f(\vec{x}, \vec{y}) \neq 0.$$

 \hookrightarrow t does not necessarily play according to the formula..

About equality

Introduction

$$\Phi_{2h}: \exists x_1 \forall y_1 \dots \exists x_h \forall y_h f(\vec{x}_h, \vec{y}_h) \neq 0$$

	f(x)=0	$ f(x)\neq 0 $
$\mathcal{M} \vDash f(x) = 0$	$\ \forall X.X \to X\ $	П
$\mathcal{M} \vDash f(x) \neq 0$	$\Lambda_c imes \Pi$	Ø

Uniform realizer

$$\forall n \in \mathbb{N}$$
, there exists $t_n \in \Lambda_c$ s.t. $\forall f : \mathbb{N}^{2n} \to \mathbb{N}$, $\mathcal{M} \models \exists x_1 \forall y_1 \dots f(\vec{x}, \vec{y}) \neq 0 \implies t_n \Vdash \exists^{N} x_1 \forall^{N} y_1 \dots f(\vec{x}, \vec{y}) \neq 0$.

t does not necessarily play according to the formula...

Combining strategies

Introduction

Forall n, there exists a term T_n s.t. if θ_f computes f, then $T_n\theta_f \Vdash \Phi_n^{\neq} \Rightarrow \Phi_n^{=}$

Introduction

- it was already known
- it extends to realizability algebras
- we now know even more :

Shoenfield barrier

Every Σ_2^1/Π_2^1 -relation is absolute for all *inner models* $\mathcal M$ of ZF.

Krivine'14

There exists an ultrafilter on 12

Corollary

For any realizability algebra A, M^A contains a proper class M^A which is an *inner model* of 7E.

About absoluteness

Introduction

- it was already known
- it extends to realizability algebras
- we now know even more :

Shoenfield barrier

Every Σ_2^1/Π_2^1 -relation is absolute for all *inner models* $\mathcal M$ of ZF.

Krivine'14

There exists an ultrafilter on 12

Corollary

For any realizability algebra \mathcal{A} , $\mathcal{M}^{\mathcal{A}}$ contains a proper class \mathcal{M}' which is an *inner model* of 7E.

Conclusion

Introduction

What we did:

- We defined two games for substitutive and non-substitutive cases
- We proved equivalence between universal realizers and winning strategies
- It solved both specification and absoluteness problems

Further work:

- classes of formulæ compatible with games?
- transformation $\mathbb{G}^1 \rightsquigarrow \mathbb{G}^2$ generic ?
- combination of strategies ?

Conclusion

Introduction

What we did:

- We defined two games for substitutive and non-substitutive cases
- We proved equivalence between universal realizers and winning strategies
- It solved both specification and absoluteness problems

Further work:

- classes of formulæ compatible with games ?
- transformation $\mathbb{G}^1 \rightsquigarrow \mathbb{G}^2$ generic ?
 - + some kind of loss of innocence?
- combination of strategies ?

Thank you for your attention.

Conclusion