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Introduction: In this exposition, the notion of linear hyperdoc-
trine is revisited through the study of categories of comodules
indexed by coalgebras (Paré - Grunenfelder).



Linear Hyperdoctrines



A C-indexed category ® is by definition a pseudo-functor

®d : C? — Cat

The category C is referred as the base of the C-indexed category
&d and for each C € C the category ®©(C) is called the fibre of &
at C.

Notation: ®(—) = (—)*



T herefore it consists of:
e categories ®(C) for each C € C,
e functors ®(f) for each morphism f:J — I of C,

e natural isomorphism a, ¢ @ ®(g)P(f) = P(fg) for every mor-
phism f:J—1,g: K—JinC

e natural isomorphism 3 : ®(idy) — idg oy for every C € C.

These natural isomorphisms need to satisfy some obvious coher-
ence conditions.



if f:J—1,g: K—Jand h: M — K then

S(R)P()D(F) o (h)d(f4)

P(gh)P(f) —ag; P (fgh)

where a, ¢ P(g)P(f) = P(fg) is a natural isomorphism.



And if f:J — I then

afig=1pB8: D(f)P(id) — D(f)idg(c)

where 8 : ®(idp) = idg () IS @ natural isomorphism.



Definition 1. A C-indexed functor F . & — W of C-indexed cate-
gories consists of functors: F(C) : ®(C) — W(C) for every C € C,
such that for each f: D — C, V(/)F(C) = F(D)®P(f) i.e., there
is a natural isomorphism ~; : W(f)F(C) = F(D)®(f) for each f.

o () _w(c)

& (f) o w(f)

V(D)

d(D) (D)

subject to some coherence condition.



Also there is the notion of indexed natural transformation.



Two basic examples. Given a category C:

e & : Set®? — Cat, ®(I) = ¢! for a : J — I define ®(a) as
follows: if {A;}icr € C' then ®(a)({Ai}ticr) = {An) }ies

e a functor F : C — D between categories define an indexed
functor: F(I): ®(I) — W) by F(I)({Ai}ier) = {F (A }ier-



Given a category C:

e &(I)=C/I and ®(«) : C/I — C/J is given by the pullback:

P——A
P (a)(a)
J—a—1

a
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Definition 2. A linear hyperdoctrine is specified by the following
data:

- a category B with binary product and terminal object (also a
C.C.C.) where there is an object U which generates all other
objects by finite products, i.e., for every object B € B there
isaneNwith B=U" (object=Types, morphism=terms)

- A B-indexed category, ® : B°? — L, where L is the category of
intuitionistic linear categories. (object ¢ € ®(A)=attributes
of type A, morphisms f € ®(A)= deductions).
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- For each object I € B we have functors 3;,V; : (I x U) —
&d(I) which are left, right adjoint to the functor ®(xj) :
d(I) - (I x U), i.e.,, Iy 4 ®(xry) 4 V7. Moreover, given
any morphism f:J — I in B the following diagram

Vi

d(I x U) (1)

P(fx1y) ®(f)

®(J X V)~ D(J)

conmutes. This last requirement is called Beck-Chevalley
condition.
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Linear Categories

14



Definition 3. A monoidal category, also often called tensor cate-
gory, is a category V with an identity object I € V together wiﬁth a
bifunctor ® : V x V — V and natural isomorphisms p: AR I — A,

AIQRAS A a: A9 (BRC) S (A® B) ® C, satisfying the
following coherence commutativity axioms:

A® (I® B) = (AR I)® B

1@ p&1
AR B

and
AQR(BR(CRD))*“(AB)(C®D)*(A®B)®RC)® D

« «

(A ((B®C)® D) & (AR (B®C))®D




Definition 4. A symmetric monoidal category consists of a monoidal
category (V,®, I, o, p,A) with a choosen natural isomorphism o :

A® B % B ® A, called symmetry, which satisfies the following
coherence axioms:

AR B g B® A AQI-7-T® A
PN \JA
A® B A

and
AQ(BR(C)%(ARB)(C-Z“C® (A® B)

1Ro o

A®(C®B)%“(A0C) B Co A)® B

commute.
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Definition 5. A closed monoidal category is a monoidal category
VY for which each functor — ® B : V — V has a right adjoint
[B,—]:V —V:

V(A B,C) =V(A,[B,C])
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Definition 6. A monoidal functor (F,m4 g, my) between monoidal
categories (V,®,I,a,p,\) and W, ", I',a/,p', \') is a functor F :
Y — W equipped with:

- morphisms my p : F(A)® F(B) - F(A® B) natural in A and
B,

- for the units morphism my: I' — F(I)
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which satisfy the following coherence axioms:

FA® (FB® FOP™FA® F(B®C) ™ F(A® (B® C))

/

o Fo

(FAQ' FB) ® F@@F(A ®B)® FC™F((A® B) ® C)

o N
FARQ I FA I'®'FA FA
1®’ml Fp |m®’1 F(X)

FARQ FI7=F(AR®I) FIRQIFA7=F(I® A)
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A monoidal functor is strong when mj; and for every A and B
m 4 g are isomorphisms. It is said to be strict when all the my4 g
and mj are identities.

Definition 7.If V and VW are symmetric monoidal categories
with natural maps ¢ and ¢/, a symmetric monoidal functor is a
monoidal functor (F,my4 g, m;) such that satisfies the following
axiom:

/

FAQR'FB—%——~FBQ' FA
m m

F(A® B) F(B® A)

F (o)
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Definition 8. A monoidal natural transformation 6 . (F,m) —
(G,n) between monoidal functors is a natural transformation 64 :
FA — GA such that the following axioms hold:

FA®R' FB m F(A@B) HF[
0
0405 OAaoB n\* l !

GA® GB n G(A® B)
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Definition 9. A monoidal adjunction

(Fym)
V,@,I) LW, 1"
(Gn)
between two monoidal functors (F,m) and (G,n) consists of an
adjunction (F,G,n,e) in which the unit n : Id = G o F' and the
counit € : F oG = Id are monoidal natural tranformations.
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Proposition 1 (Kelly). Let (F,m) : C — C’ be a monoidal functor.
Then F has a right adjoint G for which the adjunction (F,m) -
(G,n) is monoidal if and only if F' has a right adjoint FF 4 G and

F' is strong monoidal.

22



Since we have that C'(FA,B) £ C(A,GB) then there is a unique
n4 g and ny such that:

F(”A,B) F(nI)

F(GA® GB) FG(A Q' B) FI———FQGI
-1 €1/

MGA,GB €A®B mr 1 I

FGA®R FGB_ g, ~A® B I

Then using the adjunction we check that this candidates satisfy
the definition.
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Definition 10 (Benton). A linear-non-linear category consists of:

(1) a symmetric monoidal closed category (C,®, I, —o)

(2) a category (B, x,1) with finite product

(3) a symmetric monoidal adjunction:

(Fym)

(B7><71) L (Ca®71)
(G,n)
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Proposition 2. Every linear-non-linear category gives rise to a
linear category. Every linear category defines a linear-non-linear
category, where (B, x,1) is the category of coalgebras of the

comonad (l,&,6).
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Coalgebras and Comodules
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Definition 11. A coalgebra C over a field K is a vector space C
over a field K together with K-linear maps A : C —- C ® C' and
e . C — K satisfying the following axioms:

JAN 1A
ARA-22 A0 A0 A

and

A— DB Ax A

Al 6@\1 ll@e

AR A A
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Let (A,A4,e4) and (B,Apg,eg) be two coalgebras. A K-linear
map f : A — B is a morphism of coalgebras when the following
diagrams are commutative:

and
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In this talk we consider cocommutative coalgebras:

Cc—2.CxC
X
C®C

where o(a ® b) = b ® a is the twist map. Because we want to
consider a category with finite product.

o
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The terminal object is K and the unigue morphism is «.
The finite product is given by the tensor:

If (A,A4,e4) and (B, Ap,ep) are two coalgebras then:
(A, Ap,e4) X (B,Ap,eg) = (A® B, AsgB,€AgB)

where Augp=(1®0c®1)(A4® Ap) and eggp = €4 QD €p.
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Projection maps:

m (A, A, eq) X (B,Ag,eg) — (A, A4, €4)
given by:

™M =1QRep

7 (A, A g,eq) X (B,Apg,eg) — (A, Ap,ep)
given by:

T =€exa®1

and mediating arrow:

< f,g>=(f®qg)Acif f:C—Dand f:C — E.
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Also:
AR — 1Hom(A, —).

i.e.,CoCoalg is a cartesian closed category.
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Let (D, A, ¢) be a coalgebra. A subspace S C D is a subcoalgebra
when A(S) C S®S.

If {S;}icr is a family of subcoalgebras of C then >}, S; is a
subcoalgebra.

Then Coalg has equalizers:

if f:C — D and g: C — D we consider the largest subcoalgebra
E C Ker(f —g) i.e.,

E =) scker(f—g)© Where 5 subcoalgebra, and the inclusion map
1 B — C.
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Therefore we have pull-backs.

If f:A— C and g: B — C then:

E
\pz
(&
p\ AQB#,—B
™
a—1 G
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Definition 12. Let (C, A, ¢) be a coalgebra. A right C-comodule
M over a field K is a vector space M over a field K together with
K-linear maps p: M — M ® C' satisfying the following axioms:

M p M C
ll@&
MeCc Pl vyecec

and




Let (M, pp;) and (N, pn) be two comodules. A K-linear map
f M — N is called a morphism of comodules if the following
diagram is commutative:

M / N
PM PN
Meoc—1% NeC

Notation: M¢

36



The cofree C-comodule:

If (C,A,¢) is a coalgebra and V a K—vector space then V. C
becomes a right C-comodule with

P=1RA:V(C=VRCKC
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Cosemisimple coalgebras, completely reducible comodules
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Definition 13. A coalgebra C'is called simple if C # 0 and it has
no proper subcoalgebras. A coalgebra C is called cosemisimple
if it is a direct sum of simple subcoalgebras.

A comodule C' is said to be irreducible if V % 0 and it has no
proper subcomodules. A comodule is called completely reducible
if V=0 or V is a direct sum of irreducible subcomodules.
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Proposition 3. e Every simple coalgebra is finite dimensional.

e Every coalgebra is sum of finite dimensional subcoalgebras.
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Proposition 4. For a given coalgebra C the following assertions
are equivalent:

a) C is cosemisimple
b) C is sum of simple subcoalgebras

c) If D is any subcoalgebra of C then there exists a subcoalgebra
E of CsuchthatC=D® FE

d) Every subcoalgebra of C' is cosemisimple

e) Every finite dimensional subcoalgebra of C is cosemisimple
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Proposition 5. e Every irreducible comodule is finite dimen-
sional.

e Every comodule is sum of finite dimensional subcomodules.
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Proposition 6. For a given comodule V the following assertions
are equivalent:

a) V is completely reducible

b) V is sum of irreducible subcomodules

c) If W is any subcomodule of V then there exists a subcomod-
ule Z of C'such that V =W ¢ Z

d) Every subcomodule of V is completely reducible

e) Every finite dimensional subcomodule of V is completely re-
ducible
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Theorem 1. Given a coalgebra C the following are equivalent:

e (' is cosemisimple

e every C comodule is completly reducible
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Indexed categories by coalgebras
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We consider an C-indexed category of comodules

® : Coalg®? — Cat

given by ®(C) =¢ M.

Notation: “M = Vect® the category of left C-comodules indexed
by the coalgebra C.

Finite products and equalizers exist in Vect® and are those of
vector spaces.
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Let ¢ : D — C be a morphism of coalgebras, we consider the
functor ¢* : VectC — Vect? determined by the following equalizer:

E— ¢ DoM-2°WMpopom

M

DCM

1p®e®R1

i.e., o*(M,p) = E on object and

by the universal property of equalizer on arrows, in which all
the coactions considered above come from the cofree comodule
structure except for E which has the restriction of the cofree

coaction of D &® M.
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So we define a pseudofunctor: & : Coalg®® — Cat given by
— C — : o~ o~
P(C) = Vectt, ®(¢) = ¢* i.e., (pp)* Z p*o*, 15 =2 1, .c.
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For each ¢ : C — D, ¢* : VectP? — Vect® has a left adjoint
Yo b ¢ Y4 Veetd — Vect given by 34 (V,v) = (V, (¢®idy )v).

d
v oev Y pev.
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Proposition 7. Let o : DQC — C, mp : DQC — D be projection
maps in the category Coalg. Then w*c - VectC — VectP®C and
% Vect? — VectP®C preserves coequalizers.

Also we have explicit formulas:

5 (M,p) = (D ® M, p')

where o’ is

DaM=8’DeDoCoMSDRCRD®M

and analogously mg.
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For every ¢ : C — D the functor ¢* : Vect? — Vect® preserves
coproducts, i.e.,

¢"(®ic1(Ci, pi)) = Bic1d” (Cy, pi)
for arbitrary I but in general do not preserve coequalizers.

The last proposition implies that

3k b3
TC 7D
preserves colimits and by special adjoint functor theorem has a
right adjoint.

51



Vectt symmetric monoidal closed category
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Lemma 1.If C is a cocommutative coalgebra, the category
Vect® is a symmetric monoidal category.

The tensor in Vect® is defined as follows:

take C-comodules (V,v), (W, w) and consider the following equal-
izer:
idv@’w

E C VW VRCQW (1)

TU@idW

i.e., E = (V,v)Q%(W,w) and the coaction is given by the universal
property where

(VW vidy) and (VR C R W,v® ido Q idyy).
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E

PV W

1do®e

CQF

VoWw

v®1

CRVIW

1dy @

T’l)@’idW

idc®idv®w

1doRTVRtdyy

VelCeW

v®1

CRIVRICRKW

since C' ® — preserves equalizers and the unit is given by

I=(C,Ap0).

54
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Lemma 2. If C is a cocommutative coalgebra, the monoidal
category (Vect®, ¢, C) is closed if and only if C is cosemisimple.
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Coalg® cartesian category
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The category Coalg® = Coalg/C (slice category) defined as fol-
lows:

e Objects are morphisms of coalgebras with cocommutative
codomain in C; we denote by (¢) the morphism of coalgebras
¢ . D — C when it is thought as an object in Coalgc,

o ifop: D — C and ¢ : E — C are morphisms of coalgebras,

morphisms f : (¢) — (1) correspond to coalgebra morphisms
f D — E such that ¢ o f = ¢;
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Lemma 3. If C is a cocommutative coalgebra, the category
(JoalgC IS a cartesian category.

Proof. The existence of finite products and equalizers in Coalg
guarantees the existence of pullbacks in this category, that in-
duce a cartesian structure on Coalg®.

We have that (¢1) X (¢2) = (@), where ¢ is defined by the fol-
lowing pullback in Coalg:

D2 @2

Moreover, the unit object is (id).
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Monoidal adjunction: (U%,m) -4 (R%,n)
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The functor UY : Coalg® — Vect® takes the object (¢), i.e.,
¢ . D — C to the comodule (D,d) where d : D — D ® C is the
coaction defined by d = (¢ ® idp) o Ap admits a right adjoint:
U¢ 4 RC.
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Lemma 4. The functor UY : Coalg® — Vect® is strong monoidal.

Proof. It is clear that U%((idn)) = (C,A), so U® preserves the
units.

We will prove now that

U ((¢) x (1)) = U (¢) @° U ()

Take ¢1 : (D1,A1,e1) — (C,A,¢e), and
¢o  (Dp, Ao, e5) — (C, A, ec) two morphisms of coalgebras.
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We recall the diagram defining the product (¢) = (¢1) X (¢2):

D>

®2



Note that UY(D,) = (D;,d;) for i = 1,2 and UY(D) = (D, d)
where d = (¢Qidp)oA, di = (qbl@ile)OA]_, do = (¢2®idD2)OA2.

We will prove that (D,d) = (D1,d1) ®° (D>,d>), in other words
that D-with a suitable morphism d- is the equalizer in Vect of
the following parallel pair and that d is effectively PD.2C D, (with
the notation of Lemma 2), i.e.,

’idD1®d1
D—%D1® D> D1 ®C® D> (3)
Td2®ZdD2
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Idea of the proof:

1-First observe that the parallel pair above can be though in
Coalg. We prove first that the coalgebra D-with the morphism
of coalgebras (u®uv)o A : D — D1 ® D> is the equalizer in Coalg.

2-Now, as U preserves equalizers of the coreflexive pairs, we
have that {D,(u ® v)A} is the equalizer in Vect of the parallel
pair above. (Note that the pair is coreflexive for idp, ® 5C’®z’dD2
is @ common retraction in Coalg.)

3-It is easy to prove that d is the desired coaction, i.e. that
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the following diagram commutes:

(u®v)o A

D D1 & Do
d d]_@idDQ

C®D z‘dc®((u®v)oAb®Dl ® Do




o* has left adjoint Z¢. But in general is not the case that ¢*
and — % A preserve coequalizers.

We want to study conditions to obtain right adjoints:

¢* 1My and — ®Y A 4 hom® (A, —)
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Definition 14. we said that a C-comodule (V, p) is coflat when
the functor

— ®C V : Vect® — Vect®

preserves epis.
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Proposition 8. Let (V, p) be a C-comodule. The following propo-
sitions are equivalent:

e (V,p) is coflat.

e V% — : Vectt — Vect’ has a right adjoint hom®(V,-) :
VectC — VectC.

67



Proposition 9. Let ¢ : V — W be a coalgebra map. The follow-
ing propositions are equivalent:

o (V,(id® ¢p)A) C-comodule is coflat.

o ¢*: Vect"W — VectV has a right adjoint My Vect — VectV.
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Beck condition. It turns out that since we have }_ - o My and
>_¢ Satisfies that condition then Iy also satisfies Beck condition
whenever it exists:

A v B
¢ )
C————D

IS a pullback then
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commutes.

VectB

Vect?

19*

*

VectA

VectC
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