An interpretation of system F
through bar recursion

Valentin Blot

University of Bath

research funded by the UK EPSRC



Realizability interpretations of PA2

» Second-order arithmetic (PA2):
» Quantification on N: Vn
» Quantification on P (N): ¥X
» Induction: VX (X (0) = Vn (X (n) = X (n+1)) = VnX(n))
» Comprehension: 3XVn(A[n] < X (n))

1/38



Realizability interpretations of PA2

» Second-order arithmetic (PA2):
» Quantification on N: Vn
Quantification on P (N): VX
Induction: VX (X (0) = Vn (X (n) = X (n+1)) = VnX(n))
Comprehension: 3XVn (A[n] < X (n))

v vy

» Realizability for PA2
> in polymorphic A-calculus:

> Krivine realizability
> (Ax.x, Ax.x) |- AXVn (A[n] & X (n))

1/38



Realizability interpretations of PA2

» Second-order arithmetic (PA2):
» Quantification on N: Vn
Quantification on P (N): VX
Induction: VX (X (0) = Vn (X (n) = X (n+1)) = VnX(n))
Comprehension: 3XVn (A[n] < X (n))

v vy

» Realizability for PA2
> in polymorphic A-calculus:
> Krivine realizability
> (Ax.x, Ax.x) |- AXVn (A[n] & X (n))
> in system T + bar recursion (simply-typed)

> Spector, Kohlenbach, Berger-Oliva, Berardi-Bezem-Coquand
> brecl-Vn3b(A[n] & b) = IXVn(A[n] & X (n))
> FVn3b(A[n] < b)

1/38



Weak head normalization of system F in PA2

Definition (Weak head reduction)

(ACM)NPy ... Po_y = M[N/x] Py ... Po_1

2/38



Weak head normalization of system F in PA2

Definition (Weak head reduction)
(AX.MYNPy ... Po_y = M[N/x] Py ... Po_y

Theorem (Weak head normalization of system F)

If M : T in system F then weak head reduction terminates on M

2/38



Weak head normalization of system F in PA2
Definition (Weak head reduction)
(AX.M)NPq ... Ppy = M[N/x] Po ... Po_y
Theorem (Weak head normalization of system F)

If M : T in system F then weak head reduction terminates on M

» Reducibility candidates (sets of A-terms with some properties)
» Not formalizable in PA2 (Gddel's incompleteness)

» But for each M : T there is a proof in PA2 that M normalizes
> Indeed, f provably total in PA2 iff f representable in F

2/38



Weak head normalization of system F in PA2

Definition (Weak head reduction)
(AX.M)NPq ... Ppy = M[N/x] Po ... Po_y

Theorem (Weak head normalization of system F)

If M : T in system F then weak head reduction terminates on M

» Reducibility candidates (sets of A-terms with some properties)
» Not formalizable in PA2 (Gddel's incompleteness)

» But for each M : T there is a proof in PA2 that M normalizes
> Indeed, f provably total in PA2 iff f representable in F

The translation of M : T is the bar recursive realizability
interpretation of its normalization proof

2/38



Outline

A logic for A-terms (bye bye Godelitis)

A simply-typed total programming language with bar recusion

A realizability model for our logic

The realizability interpretation of normalization of M : T

The translation of M : T

3/38



A logic for \-terms
(bye bye Godelitis)



Terms

Multi-sorted first-order logic
» Natural numbers: m
» A-terms (de Bruijn indices): M
» Applicative contexts (stacks of terms): Il
> Sets of A-terms: X

» Booleans: ¢

5/38



Terms

Multi-sorted first-order logic

» Natural numbers: m

» A-terms (de Bruijn indices): M

» Applicative contexts (stacks of terms): Il

> Sets of A-terms: X

» Booleans: ¢

m = i|0[Sm M = t|m|AM|MN|M[m~— ]
n == =] N,M) X ¢ = bltt|F|IMeX

i, t, m, X and b range over countable sets of sorted variables

5/38



Substitutions

Substitutions are part of the language because:

6/38



Substitutions
Substitutions are part of the language because:

» A condition for X to be a reducibility candidate is:

VtVuVr (t[0— u]l m € X = (A\.t) um € X)

6/38



Substitutions
Substitutions are part of the language because:

» A condition for X to be a reducibility candidate is:

VtVuVr (t[0— u]l m € X = (A\.t) um € X)

» The induction hypothesis of the normalization theorem is:

Tn_l,...,Tol—Mi U
= Vt; € [T;]],M[0 — (to,...,ta-1)] € [U]

6/38



Substitutions
Substitutions are part of the language because:

» A condition for X to be a reducibility candidate is:

VtVuVr (t[0— u]l m € X = (A\.t) um € X)

» The induction hypothesis of the normalization theorem is:

Tn_l,...,Tol—Mi U
= Vt; € [T;]],M[0 — (to,...,ta-1)] € [U]

M[m — (M, ..., Mp_1)] replaces variables:

0, ..., m—1 m ..., m+n—1 m+n,
with terms:

Qa R m_17 M07 R Mn—la m,

6/38



Atomic predicates

P == o | ML™| (m)]|(M)](N)

7/38



Atomic predicates

Pou= oM™ (m) [ (M) [ (M)

» ® means “¢ = tt"

» M|™ means that weak head reduction terminates on M in at
most m steps

7/38



Atomic predicates

Pou= oM™ (m) [ (M) [ (M)

v

® means ‘¢ = tt"

» M|™ means that weak head reduction terminates on M in at
most m steps

v

(-) are relativization predicates: their unique realizer is their
value (I will come back to this)

v

no (X)) or (®): sets and booleans never need to be relativized

7/38



Formulas

AB = P|A=B|AAB|ViA|VtA|VrA|VXA|VbA

8/38



Formulas

AB = P|A=B|AAB|ViA|VtA|VrA|VXA|VbA

> Negation defined as: —A A= F

» Existentials encoded as: 3i A 2 —Vi—-A, same for t, w, X, b

8/38



Formulas

AB = P|A=B|AAB|ViA|VtA|VrA|VXA|VbA

v

Negation defined as: —A A= F

v

Existentials encoded as: 3/ A a —Vi—A, same for t, w, X, b
Relativized quantifications defined as: /i A 2 Vi ((i) = A)
and 37 AL —i—A, same for t, 7

A realizer of V'i A can depend on i, a realizer of Vi A cannot

v

v

8/38



Formulas

AB = P|A=B|AAB|ViA|VtA|VrA|VXA|VbA

v

Negation defined as: —A A= F

v

Existentials encoded as: Ji A 2 —Vi —A, same for t, m, X, b
Relativized quantifications defined as: /i A 2 Vi ((i) = A)
and I/ A2 i -A same for t, &

A realizer of V'i A can depend on i, a realizer of Vi A cannot

Normalization defined as: M| = 3riM|

v

v

v

8/38



Weak head normalization, formally (1)

If A(t) is a formula with free variable t, define:

RedCand (A) 2 (V7 A(OT) AV E(A(t) = t]))
AV EY UV (A(E[0 = (u)] 7) = A((M\.1) (u) 7))

9/38



Weak head normalization, formally (1)

If A(t) is a formula with free variable t, define:

RedCand (A) 2 (V7 A(0m) AV t(A(t) = t]))
AV EY U T (A(E[0 > (u)] 7) = A((\1) (u) 7))

If T type of system F built from variables X of the logic, define
RCy (t) with free variables X and t:

RCx () 2teX  RCr_uy(t) 2V u(RCr(u) = RCy(tu))
RCyx 7 (t) 2 VX (RedCand (X) = RCr (1))

where X (t) 2 t € X. RCy (t) is what we wrote t € [T] earlier

9/38



Weak head normalization, formally (2)

The proof goes in three steps:

10/38



Weak head normalization, formally (2)

The proof goes in three steps:

> RedCand ({}) where | () £ t]

10/38



Weak head normalization, formally (2)

The proof goes in three steps:

> RedCand ({}) where | () £ t]
» If T type of F with FV(T) = {Xy, ..., Xp—1} then:

VXo(RedCand (70) = ... = VX,_1(RedCand (X,,_l)
= RedCand (RCT))...)

10/38



Weak head normalization, formally (2)

The proof goes in three steps:

> RedCand ({}) where | () £ t]
» If T type of F with FV(T) = {Xy, ..., Xp—1} then:

VXo(RedCand (70) = ... = VX,_1(RedCand (X,,_l)
= RedCand (RCT))...)

> |f FV(TQ, ey Tm_]_, U) - {Xo, . ,Xn_l} and
Tm-1,-.., To = M : U typing derivation in F then:

VXo(RedCand (70) = ... = VX,_1(RedCand (X,,_l)
= Vrt'm_l(RCT”H1 (tm—l) = ...= Vrto(RCTO (1.'0)
= RCy(M[0+ (tos .- tm-1)]))--.))..)

10/38



Weak head normalization, formally (3)

In particular if M is a closed term of closed type T in F then:

RCt (M) and RedCand (RC7)

11/38



Weak head normalization, formally (3)

In particular if M is a closed term of closed type T in F then:
RCt (M) and RedCand (RC7)
therefore by definition of RedCand () we obtain:

M| ie FiM|

11/38



Weak head normalization, formally (3)

In particular if M is a closed term of closed type T in F then:
RCt (M) and RedCand (RC7)
therefore by definition of RedCand () we obtain:
M| ie FiM|

Which is a 9 formula

11/38



Weak head normalization, formally (3)

In particular if M is a closed term of closed type T in F then:
RCt (M) and RedCand (RC7)
therefore by definition of RedCand () we obtain:
M| ie FiM|
Which is a 9 formula

~ classical extraction will give some n € N such that M reaches a
weak head normal form in at most n steps!

11/38



Weak head normalization, formally (3)

In particular if M is a closed term of closed type T in F then:
RCt (M) and RedCand (RC7)
therefore by definition of RedCand () we obtain:
M| ie. 3iM}
Which is a 9 formula

~ classical extraction will give some n € N such that M reaches a
weak head normal form in at most n steps!

Then it is straightforward to compute this normal form with
primitive recursion

11/38



A simply-typed total
programming language with
bar recusion



Simply-typed A-calculus with products
Simple types:
oT = K| T|lo=71|oxT

where k ranges over a set of base types

13/38



Simply-typed A-calculus with products

Simple types:

oT = K| T|lo=71|oxT

where k ranges over a set of base types

Typing rules:
x:obFx:0 FI—C:G(C:U)ECSt
x:cFM:T [FM:og—71 [FN:o
NXxM:o—7 -MN:7
M-M:o r-N:7 I —
M= (MN):oxT Fh*:T
[FM:oxT EFM:oxT
=p;M:o MEpyM:T

where Cst is a set of typed constants

13/38



System AT

> 3 base types:
> ¢ type of natural numbers
> )\ type of \-terms
> \° type of finite lists of A-terms

14/38



System AT

> 3 base types:
> ¢ type of natural numbers
> )\ type of \-terms
> \° type of finite lists of A-terms

» (st consists of constructors and iterators on these:
» for ¢: zZ:L St it,ro—=(c—20)=>1—>0
» for \: var::— A abs: A — A app:A—= A — A

itx:(t—o0o)=2(c=0)2(c=20—20)=2A—0

» for \°: nil:\° cons: A° = A —= \°

ityo:o=3 (02 A=0)2 X >0

14/38



System AT

> 3 base types:
> ¢ type of natural numbers
> )\ type of \-terms
> \° type of finite lists of A-terms
» (st consists of constructors and iterators on these:
» for ¢: zZ:L St it,ro—=(c—20)=>1—>0
» for \: var::— A abs: A — A app:A—= A — A
itx:(t—o0o)=2(c=0)2(c=20—20)=2A—0
» for \°: nil:\° cons: A° = A —= \°
ityo:o=3 (02 A=0)2 X >0
» Easy to define:
> app® s.t.:

app’M (Ng ... N,—1) ~* app(...(appMPo)...)Pp_1

where (Ng ... N,_1) 2 cons (...(consnilNp)...)N,_3
and N,' s P,'
» M[N— P] for M: A\, N:¢, P: X implementing substitution
» eqs.t. eqMN ~»* z iff M ~»* P and N ~»* P for some P

14/38



Preliminaries for bar recursion: observable partial functions

» Type of observable partial functions on A:

A
o ENsixo

> p; (MN) ~* z iff M: o defined in N: \ with value p, (MN)

15/38



Preliminaries for bar recursion: observable partial functions

» Type of observable partial functions on A:

A
o ENsixo

> p; (MN) ~* z iff M: o defined in N: \ with value p, (MN)
» Empty partial function {} : of s.t. {} M~~* (sz, can,)
» can, : o is an inductively defined canonical term

15/38



Preliminaries for bar recursion: observable partial functions

» Type of observable partial functions on A:

A
o ENsixo

> p; (MN) ~* z iff M: o defined in N: \ with value p, (MN)
» Empty partial function {} : of s.t. {} M~~* (sz, can,)
» can, : o is an inductively defined canonical term

> M| N completes M: o with N: X\ — o, i.e:

M| N o P2 (Mp) if P1 (MP) ~" z
NP otherwise

15/38



Preliminaries for bar recursion: observable partial functions

» Type of observable partial functions on A:

A
o ENsixo

> p; (MN) ~* z iff M: o defined in N: \ with value p, (MN)
» Empty partial function {} : of s.t. {} M~~* (sz, can,)
» can, : o is an inductively defined canonical term

> M| N completes M: o with N: X\ — o, i.e:

M| N o P2 (Mp) if P1 (MP) ~" z
NP otherwise

» MU{N > P} extends M: o with P: o at N: )\, ie.

(z,P) ifeqNQ~~"z

MQ otherwise

(MU{N'—)P})QW*{

15/38



System ATy,

New constant:

brec: ((0 = 1) = 0) = (A= 0) = 1) ol =1

16/38



System ATy,
New constant:
brec: ((0 = 1) = 0) = (A= 0) = 1) ol =1
Reduction:

brec MNP ~» N (P | Ax.M (Ay.brecMN (P U {x — y})))

16/38



System ATy,
New constant:
brec: ((0 = 1) = 0) = (A= 0) = 1) ol =1
Reduction:
brec MNP ~» N (P | Ax.M (Ay.brecMN (P U {x — y})))
N continuous = looks at only finitely many values of:

P| AxM(Ay.brecMN (PU {x — y}))

16/38



System ATy,
New constant:
brec: ((0 = 1) = 0) = (A= 0) = 1) ol =1
Reduction:
brec MNP ~» N (P | Ax.M (Ay.brecMN (P U {x — y})))
N continuous = looks at only finitely many values of:

P| AxM(Ay.brecMN (PU {x — y}))

» if P defined at all these values: same result as N (P | cany_,,)

» if N needs value at Q : A and p; (PQ) »* z, then call
recursively brecMN (P U {Q — y}) where y is provided by M

» |t terminates because N is continuous

16/38



Domain semantics of system ATy,

» For each type o define domain [o]:

[MEN. DIEAL 12, [T12 (),
[0 — 7] 2 {¢: [0] = [7]] ¢ continuous}  [o x 7] 2 [o] x []

where:
» B is EU{L} withp<viffo=_Lorp=1¢
» [o — 7] is ordered pointwise
» [o x 7] is ordered componentwise

17/38



Domain semantics of system ATy,

» For each type o define domain [o]:

[MEN. DIEAL 12, [T12 (),
[0 — 7] 2 {¢: [0] = [7]] ¢ continuous}  [o x 7] 2 [o] x []

where:
» B is EU{L} withp<viffo=_Lorp=1¢
» [o — 7] is ordered pointwise
» [o x 7] is ordered componentwise

» For each term M : o define [M] € [o]

17/38



Domain semantics of system ATy,

» For each type o define domain [o]:

PIEN. DISA IS, [TI= ),
[0 — 7] 2 {¢: [0] = [7]] ¢ continuous}  [o x 7] 2 [o] x []

where:
» B is EU{L} withp<viffo=_Lorp=1¢
» [o — 7] is ordered pointwise
» [o x 7] is ordered componentwise

» For each term M : o define [M] € [o]

We have soundness:

M N = ] = ]

17/38



Domain semantics of system ATy,

» For each type o define domain [o]:

PIEN.  DPISAL PTI2(), [T1= {3,
[0 — 7] 2 {¢: [0] = [7]] ¢ continuous}  [o x 7] 2 [o] x []

where:
» B is EU{L} withp<viffo=_Lorp=1¢
» [o — 7] is ordered pointwise
» [o x 7] is ordered componentwise

» For each term M : o define [M] € [o]

We have soundness:
M~ N = [M] = [N]
and computational adequacy:
MiuAM=n=M~"s"z

and similarly on A and A\°
17/38



A realizability model for our
logic



Mapping logic to system ATy,
We map terms m, M, I to programs m* : ¢, M* : X\, [1* : X\°

» variables i, t, w are variables of system ATy, of type ¢, A, \°®
» _*is such that FV (-*) = FV ())

> =i 0=z (Sm)*=sm"

t"=t m"=varm® (A.M)* = abs M*
(MT)* = app® M* N* (M[m— N))* = M*[m* — 7]
™= ()* =nil (N, M)* = cons M* M*
» No X*, b* because no (X)), (b): X,  are not computational

19/38



Mapping logic to system ATy,
We map terms m, M, I to programs m* : ¢, M* : X\, [1* : X\°
» variables i, t, w are variables of system ATy, of type ¢, A, \°®
» _*is such that FV (-*) = FV ())
> =i 0=z (Sm)*=sm"
t"=t m"=varm® (A.M)* = abs M*
(MN)* = app® M** (M[m— 0O))* = M* [m* — "]
™= ()* =nil (N, M)* = cons M* M*
» No X*, b* because no (X)), (b): X,  are not computational
We map formulas A to types A* of system ATy,
> P =, (M{™*=T (V_A)* = A*
(m)*=c (M)"=X (O)"=A°
(A= B)" = A* - B* (AN B)" = A* x B*
» (M]™)* =T: M{™ is computationally irrelevant
» ®* = we extract nat. numbers (bounds on reduction steps)
> V erased: quantifications are uniform by default

19/38



Formulas with parameters

» Closed formulas/terms with parameters: formulas/terms
where free variables are replaced by real-world elements:

i are replaced with n € N t with M € A m with I € A*
X with X € P (N\) b with b € {t; ff}

20/38



Formulas with parameters

» Closed formulas/terms with parameters: formulas/terms
where free variables are replaced by real-world elements:

i are replaced with n € N t with M € A m with I € A*
X with X € P (N\) b with b € {t; ff}

> Since NC N, AC Ay and A* C (AY),:

if m, M, T1 closed terms with parameters
then [m*] €[], [M*] € [AD. [°] € [X°]

20/38



Formulas with parameters

» Closed formulas/terms with parameters: formulas/terms
where free variables are replaced by real-world elements:

i are replaced with n € N t with M € A m with I € A*
X with X € P (N\) b with b € {t; ff}

> Since NC N, AC Ay and A* C (AY),:

if m, M, T1 closed terms with parameters
then [m*] €[], [M*] € [AD. [°] € [X°]

» Closed formula A with parameters gets a realizability value:

Al € [A7]

20/38



Formulas with parameters

>

Closed formulas/terms with parameters: formulas/terms
where free variables are replaced by real-world elements:

i are replaced with n € N t with M € A m with I € A*
X with X € P (N\) b with b € {t; ff}

Since NC N, ACA; and A* C (A¥):
if m, M, T1 closed terms with parameters
then [m*] € [t], [M*] € [A], [M*] € [X°]
Closed formula A with parameters gets a realizability value:
Al < [AT]
The model is parameterized by a pole:
1L CN

we extract natural numbers (bounds on reduction steps)

20/38



Realizability values: atomic predicates

[l = [ff] = 1L AL if [M] ¢ X
> these atomic predicates are computationally relevant
~~ their realizability values depend on L

] = [tt] = N Me%’_{m if [M*]€x

21/38



Realizability values: atomic predicates

[l = [ff] = 1L AL if [M] ¢ X
> these atomic predicates are computationally relevant
~~ their realizability values depend on L

. M| = {{*}L if [M*] normalizes in at most [m*] steps

] = [tt] = N Me%’_{m if [M*]€x

0 otherwise

> these are computationally irrelevant
~~ their realizability values are independent from L

21/38



Realizability values: atomic predicates

[l = [ff] = 1L AL if [M] ¢ X
> these atomic predicates are computationally relevant
~~ their realizability values depend on L

. M| = {{*}L if [M*] normalizes in at most [m*] steps

] = [tt] = N Me%’_{m if [M*]€x

0 otherwise

> these are computationally irrelevant
~~ their realizability values are independent from L

> (m) =AIm"1} (M =ATM ] (D) = {1}
> these are relativizations
~~ only one realizer: the value of the enclosed term

21/38



Realizability values: connectives
> A= Bl={p e [A" = B]| VY € |Al,¢(¢) € |B[}

AN Bl = {(p,9) e [A" x B'][ v € [A| A9 € |B]}

» standard definitions

22/38



Realizability values: connectives

> A= Bl={pc A" = BlIvy e|Al,¢(¥) € |Bl}
AN Bl = {(p,9) e [A" x B'][ v € [A| A9 € |B]}

» standard definitions

> ViAl= () IAl/i]l [veAl= (1) |A[D/1]

neN MeN
v A= (1) |A[N/7]]
Mnen*
VXAl= () IA[X/X]  [VbAl= () |A[b/b]|
XeP(N) be{t;f}

» quantified formulas are instantiated with real-world elements

22/38



A restricted double-negation elimination

double-negation elimination on A is -——A = A

23/38



A restricted double-negation elimination

double-negation elimination on A is -——A = A

> unrealizable for computationally irrelevant formula M|™:
» if 1L # 0
» and if [M*] doesn't normalize after [m*] steps
» then |[==M]™| # 0 and |M{™| = 0, so |-=M]™= M]™| =

23/38



A restricted double-negation elimination

double-negation elimination on A is -——A = A

> unrealizable for computationally irrelevant formula M|™:
» if 1L A0
» and if [M*] doesn't normalize after [m*] steps
» then |[==M]™| # 0 and |M{™| = 0, so |-=M]™= M]™| =

> but realizable for negative formulas:

A" B~ = O|A=B |AAB |V.A"

23/38



A restricted double-negation elimination

double-negation elimination on A is -——A = A

> unrealizable for computationally irrelevant formula M|™:
» if 1L A0
» and if [M*] doesn't normalize after [m*] steps
» then |[==M|™| # () and [M|{™| = (), so |=-=M|™= M]}™| = ()

> but realizable for negative formulas:

A" B~ = O|A=B |AAB |V.A"

> [dney-] € =A™ = A7| where:
dnee = Ax.x (Ay.y) dney. 4~ = dney-
dnes_.g- = Axy.dneg- (Az.x (Au.z(uy)))
dnep-pg- = Ax. (dnes- (Ay.x (Az.y (py 2))) . dneg- (Ay-x (Az.y (P2 2))))

23/38



A restricted double-negation elimination

double-negation elimination on A is -——A = A

> unrealizable for computationally irrelevant formula M|™:
» if 1L A0
» and if [M*] doesn't normalize after [m*] steps
» then |[==M|™| # () and [M|{™| = (), so |=-=M|™= M]}™| = ()

> but realizable for negative formulas:

A" B~ = O|A=B |AAB |V.A"

> [dney-] € =A™ = A7| where:
dnee = Ax.x (Ay.y) dney, o- = dney-
dnes_g- = Axy.dneg- (Az.x (Au.z(uy)))
dnep-pg- = Ax. (dnes- (Ay-x (Az.y (p1 2))) , dneg- (Ay-x (Az.y (p2 2))))
> [dneo] € |-~ = P| by disjunction of cases

23/38



Interpreting second-order elimination

> In Krivine's realizability, Ax.x I[F VX A(X) = A(B)

» proof terms are polymorphic

24/38



Interpreting second-order elimination

> In Krivine's realizability, Ax.x I[F VX A(X) = A(B)

» proof terms are polymorphic

» here, proof terms (and realizers) are simply-typed

24/38



Interpreting second-order elimination

> In Krivine's realizability, Ax.x I[F VX A(X) = A(B)

» proof terms are polymorphic

» here, proof terms (and realizers) are simply-typed
» VX A(X) = A(B) interpreted in two steps:

24/38



Interpreting second-order elimination

> In Krivine's realizability, Ax.x I[F VX A(X) = A(B)

» proof terms are polymorphic

» here, proof terms (and realizers) are simply-typed
» VX A(X) = A(B) interpreted in two steps:
» comprehension: IXV't(t € X & B~ (t))
> B negative
> relativized quantification on t
> using bar recursion

24/38



Interpreting second-order elimination

> In Krivine's realizability, Ax.x I[F VX A(X) = A(B)

» proof terms are polymorphic

» here, proof terms (and realizers) are simply-typed
» VX A(X) = A(B) interpreted in two steps:
» comprehension: IXV't(t € X & B~ (t))
» B7 negative
> relativized quantification on t
> using bar recursion

» vt (B(t) & C(t) = (A" (B) & A" (C))

> A’ relativized:

A B" = P|A =B |AAB
|V iAT [V EA |V AT [ VXA | VbA |

> realizer defined by induction on A

24/38



Interpreting second-order elimination

> In Krivine's realizability, Ax.x I[F VX A(X) = A(B)

» proof terms are polymorphic

» here, proof terms (and realizers) are simply-typed
» VX A(X) = A(B) interpreted in two steps:
» comprehension: IXV't(t € X & B~ (t))
» B7 negative
> relativized quantification on t
> using bar recursion

» V't (B(t) & C(t) = (A" (B) < A (0))
> A’ relativized:
A B" = P|A =B |AAB
[VIiA" [V EA |V A" VXA | VBA" |
> realizer defined by induction on A

> finally, we will get VX A" (X) = A" (B™)~

24/38



Comprehension: IX V't (t € X < B~ (t))

Two steps:

25/38



Comprehension: IX V't (t € X < B~ (t))

Two steps:
» [Axy.brec(Az.exfa- (x2z))y{}]
€ [Vt3bA™ (b, t) = IXV'tA™ (t € X, 1)|

» quite technical, uses Zorn's lemma

25/38



Comprehension: IX V't (t € X < B~ (t))

Two steps:
» [Axy.brec(Az.exfa- (x2z))y{}]
€ [Vt3bA™ (b, t) = IXV'tA™ (t € X, 1)|
» quite technical, uses Zorn's lemma
> [Mxx (exfp—, Ay x (A_y, A_z))] € VtIb(b <= A~ (t))]

> quite straightforward:

25/38



Comprehension: IX V't (t € X < B~ (t))

Two steps:
» [Axy.brec(Az.exfa- (xz))y {}]
€ [Vt3bA™ (b, t) = IXV'tA™ (t € X, 1)|
» quite technical, uses Zorn's lemma
> [Mxx (exfp—, Ay x (A_y, A_z))] € VtIb(b <= A~ (t))]
> quite straightforward:
Let M e Aand p € [Vb—(b< A (IM))]. We prove:

[ (exta, Ay (Ay, A_z))] € |fF]

25/38



Comprehension: IX V't (t € X < B~ (t))

Two steps:

» [Axy.brec(Az.exfa- (xz))y {}]
€ [Vt3bA™ (b, t) = IXV'tA™ (t € X, 1)|
» quite technical, uses Zorn's lemma
> [Mxx (exfp—, Ay x (A_y, A_z))] € VtIb(b <= A~ (t))]
> quite straightforward:
Let M e Aand p € [Vb—(b< A (IM))]. We prove:

[ (exfa-, Ay.o (Ay, A-z))] € ||
p €| (fF & A ()| so we need to prove:

[exta-] € |F = A" (M)| and [Ay.o (Ay,A_z)] € |A~ (M) = F|

25/38



Comprehension: IX V't (t € X < B~ (t))

Two steps:
» [Axy.brec(Az.exfa- (xz))y {}]
€ [Vt3bA™ (b, t) = IXV'tA™ (t € X, 1)|
» quite technical, uses Zorn's lemma
> [Mxx (exfp—, Ay x (A_y, A_z))] € VtIb(b <= A~ (t))]
> quite straightforward:
Let M e Aand p € [Vb—(b< A (IM))]. We prove:

[ (exta, Ay (Ay, A_z))] € |fF]

p €| (fF & A ()| so we need to prove:

[exta-] € |F = A" (M)| and [Ay.o (Ay,A_z)] € |A~ (M) = F|

Let o € |[A~ (9N)], p € |~ (tt & A~ (9N))| so we prove:

[A-v] € |tt = A~ ()| and [A_z] € |A~ (M) = tt]

25/38



A weak form of bar recursion

» Our bar recursion:
brec: ((0 = 1) = 0) = (A=0) =) —=ol =0

brec MNP ~~ N(P | Ax.M (Ay.brecMN (P U {x — y})))
realizes Vt 3bA™ (b, t) = IXVtA™ (t € X, t)

26/38



A weak form of bar recursion
» Our bar recursion:
brec: ((0 = 1) = 0) = (A=0) =) —=ol =0

brec MNP ~~ N(P | Ax.M (Ay.brecMN (P U {x — y})))
realizes Vt 3bA™ (b, t) = IXVtA™ (t € X, t)

» Usual bar recursion:
brec’ :(A = (0 —=1) = o) = (A=0)—=1) =0l =0

brec’ MNP ~» N (P | Ax.Mx (Ay.brec’ MN (P U {x — y})))
realizes V't 3bA™ (b, t) = IXVtA™ (t € X, t)

stronger

26/38



A weak form of bar recursion
» Our bar recursion:
brec: ((0 = 1) = 0) = (A=0) =) —=ol =0

brec MNP ~~ N(P | Ax.M (Ay.brecMN (P U {x — y})))
realizes Vt 3bA™ (b, t) = IXVtA™ (t € X, t)

» Usual bar recursion:
brec’ :(A = (0 —=1) = o) = (A=0)—=1) =0l =0

brec’ MNP ~» N (P | Ax.Mx (Ay.brec’ MN (P U {x — y})))
realizes V't 3bA™ (b, t) = IXVtA™ (t € X, t)
stronger

Countable choice stronger than comprehension?

26/38



vt (B(t) & C(t) = (A (B) & A (C))

Ifie N, O e A, A e A* then:

[[replA [n// fm/t ﬂ/ﬂ]ﬂ
e|(e(B(0) & (1) = (A (B) & A (C)) [f/7. B/E /7]

27/38



vt (B(t) & C(t) = (A (B) & A (C))

- =

If e N, 9t e A, [ € A* then:

[[replA, [n// fm/t ﬂ/ﬂ]ﬂ
e|(e(B(0) & (1) = (A (B) & A (C)) [f/7. B/E /7]

A
where repl 5, = Ax.repl/;, and:

repll =xM* reply, = {yy,\y.y) if P#EMeX

XsMeX XsP
reply . = <Ay2-p1 replly (y (Pz repliy Z)) s Ayz.pyreplyy (y (Pl repliy Z) )>
replyna; = <)\)’~ <P1 replyy (1Y), P1reply; (P2 }’)> s A <P2 reply (p1y),PaTeply; (P2 )’)>>

replir, ar = (Ayn.pyreplis (¥ 1), Ayn.pyreplir (yn))  Teplyx ar = replypa = replyy

27/38



Second-order elimination

. A
elimyr g- =
Ay.brec (Az.exfg- (z (exfp—, Au.z (A_.u,A\_.z))))
Ax.dne (g )- (Az.y (py (replyr 2) x))

{

28/38



Second-order elimination

. A
elimyr g- =
Ay.brec (Az.exfg- (z (exfp—, Au.z (A_.u,A\_.z))))
Ax.dne (g )- (Az.y (py (replyr 2) x))

{

elimg - € [VX A" (X) = A" (B7)"|

28/38



Second-order elimination

. A
elimyr g- =
Ay.brec (Az.exfg- (z (exfp—, Au.z (A_.u,A\_.z))))
Ax.dne (g )- (Az.y (py (replyr 2) x))

{

elimg - € [VX A" (X) = A" (B7)"|

Believe mel

28/38



The realizability interpretation
of normalization of M : T



Normalization of system F: reminder

Three steps:

30/38



Normalization of system F: reminder

Three steps:
> RedCand ({}) where | () £ t]

30/38



Normalization of system F: reminder

Three steps:

> RedCand ({}) where | () £ t]
» If T type of F with FV(T) = {Xy, ..., Xp—1} then:

VXo(RedCand (70) = ... = VX,_1(RedCand (X,,_l)
= RedCand (RCT))...)

30/38



Normalization of system F: reminder

Three steps:

> RedCand ({}) where | () £ t]
» If T type of F with FV(T) = {Xy, ..., Xp—1} then:

VXo(RedCand (70) = ... = VX,_1(RedCand (X,,_l)
= RedCand (RCT))...)

> |f FV(TQ, ey Tm_]_, U) - {Xo, . ,Xn_l} and
Tm-1,-.., To = M : U typing derivation in F then:

VXo(RedCand (70) = ... = VX,_1(RedCand (X,,_l)
= Vrt'm_l(RCT”H1 (tm—l) = ...= Vrto(RCTO (1.'0)
= RCy(M[0+ (tos .- tm-1)]))--.))..)

30/38



RedCand ()

normrc = ((Amx.x z %, A\tx.x) , Atumxy.x (Ai.y (s1)))
[normrc] € |RedCand ({})

31/38



RedCand (RCt)

For T type of system F built from variables X of the logic we
define:
isrcr = <<1src(.r), 1src(T)> , isrc(-?)>

such that FV (isrct) = {xx| X € FV(T)}

32/38



RedCand (RCy)

For T type of system F built from variables X of the logic we
define:
isrct = <<1src(.r), 1src(T)> , isrc(-,?)>

such that FV (isrct) = {xx| X € FV(T)}

(1) (2) (3) _ (1) (1)

isrcy’ = p; (py Xx) isrcy’ = p, (py Xx) isrcy’ = p3xx isrcy!,, = Artx.isrcy’ (consmt)
isrc(1gLU = )\tx.isrcg) (app t (varz)) (x (varz) (isrcp nll)) 1src<TLU = Atufrxvy.isrc(s) tu(consmv)(xvy)
1src§,)g = )\ﬂxx.isrc(Tl)ﬂ 1srcf13)} = Atuwyxx.isrc(?) (v xx)

isrc® i (2) .
1SICyx 1 = >‘tx'elleHRedc.and(Y):»vrr(RcT(r):»u),u (AXXlsrCT ) normrc t (elle»—»RedCand(Y)éRCT(t).lj Xn°rmrc)

32/38



RedCand (RCt)

For T type of system F built from variables X of the logic we
define:
isrct = <<1src(.r), 1src(T)> , isrc(-?)>

such that FV (isrct) = {xx| X € FV(T)}

(1) (2) (3) _ (1) (1)

isrcy’ = p; (py Xx) isrcy’ = p, (py Xx) isrcy’ = p3xx isrcy!,, = Artx.isrcy’ (consmt)
isrc(TLU = Atx. 1src< ) (app t (varz)) (x (varz) (isrc< )nll)) 1src<TLU = Atu'rxvy.lsrc(u) tu(consmv)(xvy)
1src§,)2 = )\rxx.isrc(Tl)ﬂ 1srcf13)} = Atuwyxx.isrc(?) (v xx)

isrc® ; (2) .
1SICyx 1 = >‘tx‘ellmXHRedCand(X):>V't(RCT(t):nL),U (AXXlsrCT ) normrc t (elle»—»RedCand(?)éRCT(t).lj Xn"rmrc)

If X € P(A) and @ € |RedCand ()| then:

[isrcr [F/xx]] € ‘RedCand(RCT) {:%/)?”

32/38



RCr (M[0— (to, ..., tm-1)])

If is a valid typing derivation in system F, define:

adeqry . 1

such that FV (adeqrypy.7) = {xx| X € FV([', T)}
U{ty| UeTu{y|UeT}

33/38



RCr (M[0— (to, ..., tm-1)])

If is a valid typing derivation in system F, define:

TFM: T
adeqri .1

such that FV (adeqrypy.7) = {xx| X € FV([', T)}
U{ty| UeTu{y| UeT}

. 3 .
adeqr .y = YU adeqr\ yusT = )\tuyu.lsrc(-r) (M*[sz =1tr]) ty nil adeqr gy 7
adeqry .7 = adedrpy 7 (N [z tr])adeqry .y adeqppyx 7 = Axx.adeqr .1

adeqry p.7{u/x} = eMiMx  gedcand(X)=RCr (Mo t]),RCy 24Ar-mvx T 1STCU

33/38



RC+ (M [O = <t07 ) tm71>])

If is a valid typing derivation in system F, define:

TFM: T
adeqri .1

such that FV (adeqrypy.7) = {xx| X € FV([', T)}
U{ty| UeTu{y| UeT}

. 3 .
adeqr .y = YU adeqr\ yusT = )\tuyu.lsrc(-r) (M* [s z =1tr]) tynil adeqr yp. 7

adeqry .7 = adedrpy 7 (N [z tr])adeqry .y adeqppyx 7 = Axx.adeqr .1

adeqry p.7{u/x} = eMiMx  gedcand(X)=RCr (Mo t]),RCy 24Ar-mvx T 1STCU

If X € P(A), @ € |RedCand (Z)|, My € A and
Yy € ’RCU (My) [i/)?” for U €T, then:

[ecars s [0/, 012 | < |Rer (Mo o] ) [£4]

33/38



The translation of M : T



Extracting the bound
In particular if M closed term of closed type T, then:

[adeq. ,.7] € |RCT (M)] and Hisrc(ﬁ)ﬂ e V't (RCr (t) = tl))|

35/38



Extracting the bound
In particular if M closed term of closed type T, then:

[adeq. ,.7] € |RCT (M)] and Hisrc(ﬁ)ﬂ e V't (RCr (t) = tl))|

therefore:
Hisrc(ﬁ) M* adeqHV,:TH €Ml

35/38



Extracting the bound
In particular if M closed term of closed type T, then:

[adeq. ,.7] € |RCT (M)] and Hisrc(ﬁ)ﬂ e V't (RCr (t) = tl))|

therefore:
Hisrc(ﬁ) M* adeqHV,:TH €Ml

recall that M| = =V i =M|'. Fix now:

1 = {n € N| M normalizes in at most n steps}

35/38



Extracting the bound
In particular if M closed term of closed type T, then:

[adeq. ,.7] € |RCT (M)] and Hisrc(ﬁ)ﬂ e V't (RCr (t) = tl))|

therefore:
Hisrc(ﬁ) M* adeqFM:TH €Ml

recall that M| = =V i =M|'. Fix now:
1 = {n € N| M normalizes in at most n steps}

By case disjunction, [Ax_.x] € ’Vriﬁ/\/u"‘ and therefore:

Hisrc(-,%) M* adeq, p. 7 (/\x,.x)ﬂ elffl=1L

35/38



Extracting the bound
In particular if M closed term of closed type T, then:

[adeq. ,.7] € |RCT (M)] and Hisrc(ﬁ)ﬂ e V't (RCr (t) = tl))|

therefore:
Hisrc(ﬁ) M* adeqFM:TH €Ml

recall that M| = =V i =M|'. Fix now:
1 = {n € N| M normalizes in at most n steps}
By case disjunction, [Ax_.x] € ’Vriﬁ/\/u"‘ and therefore:
Hisrc(-,%) M* adeq, p. 7 (/\x,.x)ﬂ elffl=1L
so by computational adequacy:
isrc(ﬁ) M* adeq, p.7 (Ax_.x) ~* s"z

where 1 is such that M normalizes in at most n steps
35/38



Computing the normal form

isrc(Tz) M* adeq, py.7 (Ax_x) ~" s"z

where 1 is such that M normalizes in at most n steps

36/38



Computing the normal form

isrc(Tz) M* adeq, py.7 (Ax_x) ~" s"z

where 1 is such that M normalizes in at most n steps

We can easily define a term red : A — A in system ATy, such that:

> if M >~ N then red M* ~»* N*

» if M is in weak head normal form then red M* ~~* M*

36/38



Computing the normal form

isrc(Tz) M* adeq, py.7 (Ax_x) ~" s"z

where 1 is such that M normalizes in at most n steps

We can easily define a term red : A — A in system ATy, such that:

» if M = N then red M* ~~* N*
» if M is in weak head normal form then red M* ~~* M*

therefore:
it, M* red (isrc(Tz) M* adeq, p. 7 ()\x,.x)) ~* N

where N is the weak head normal form of M

36/38



Conclusion

37/38



Conclusion

» Translation of system F into a simply-typed total
programming language

38/38



Conclusion
» Translation of system F into a simply-typed total

programming language

» No more impredicativity?

38/38



Conclusion

» Translation of system F into a simply-typed total
programming language
» No more impredicativity?

» Normalization of system F reduced to Zorn's lemma?

38/38



Conclusion

» Translation of system F into a simply-typed total
programming language

» No more impredicativity?

» Normalization of system F reduced to Zorn's lemma?

» Weak form of bar recursion: comprehension scheme weaker
than classical countable choice?

38/38



Conclusion

» Translation of system F into a simply-typed total
programming language

» No more impredicativity?

» Normalization of system F reduced to Zorn's lemma?

» Weak form of bar recursion: comprehension scheme weaker
than classical countable choice?

Many possible improvements:

38/38



Conclusion

» Translation of system F into a simply-typed total
programming language
» No more impredicativity?
» Normalization of system F reduced to Zorn's lemma?
» Weak form of bar recursion: comprehension scheme weaker
than classical countable choice?
Many possible improvements:

» Extract directly the normal form rather than a bound

» Normal form of M from normal form of MQ
» Head reduction rather than weak head reduction

38/38



Conclusion

» Translation of system F into a simply-typed total
programming language

» No more impredicativity?

» Normalization of system F reduced to Zorn's lemma?

» Weak form of bar recursion: comprehension scheme weaker
than classical countable choice?

Many possible improvements:
» Extract directly the normal form rather than a bound

» Normal form of M from normal form of MQ
» Head reduction rather than weak head reduction

» Strong normalization

> Realizers much more complicated
» But we get the S-normal form

38/38



Conclusion

» Translation of system F into a simply-typed total
programming language

» No more impredicativity?

» Normalization of system F reduced to Zorn's lemma?

» Weak form of bar recursion: comprehension scheme weaker
than classical countable choice?

Many possible improvements:
» Extract directly the normal form rather than a bound

» Normal form of M from normal form of MQ
» Head reduction rather than weak head reduction

» Strong normalization

> Realizers much more complicated
» But we get the S-normal form

Implementation of the translation

38/38



Adequacy of bar recursion: preliminaries

[Axy.brec (Az.exf - (x2))y {}]
€ [VtIbA™ (b,t) = IXVtA™ (t € X, t)|



Adequacy of bar recursion: preliminaries

[Axy.brec (Az.exf - (x2))y {}]
€ [VtIbA™ (b,t) = IXVtA™ (t € X, t)|

Let ¢ € [Vt3bA™ (b, t)] and ¥ € VX V't A (t € X, t)|, and
write 0 2 [brec (Az.exfs- (p 2)) ¢].



Adequacy of bar recursion: preliminaries

[Axy.brec (Az.exf - (x2))y {}]
€ [VtIbA™ (b,t) = IXVtA™ (t € X, t)|

Let ¢ € [Vt3bA™ (b, t)] and ¥ € VX V't A (t € X, t)|, and
write 0 2 [brec (Az.exfs- (v 2))¥]. [0 {}] € |F|?



Adequacy of bar recursion: preliminaries

[Axy.brec (Az.exf - (x2))y {}]
€ [VtIbA™ (b,t) = IXVtA™ (t € X, t)|

Let ¢ € [Vt3bA™ (b, t)] and ¥ € VX V't A (t € X, t)|, and
write 0 2 [brec (Az.exfs- (v 2))¥]. [0 {}] € |F|?
Let E be the set of £ € [[A_*Tﬂ such that:
> w2 (E(OM)) € |A™ (&, M) U A~ (F, )| if 71 (€ (9)) =0
> £(O) = (1, [cany-+]) otherwise
» {(L)=1
> 0(&) ¢ [fF]



Adequacy of bar recursion: preliminaries

[Axy.brec (Az.exf - (x2))y {}]
€ [VtIbA™ (b,t) = IXVtA™ (t € X, t)|

Let ¢ € [Vt3bA™ (b, t)] and ¥ € VX V't A (t € X, t)|, and
write 0 2 [brec (Az.exfs- (v 2))¥]. [0 {}] € |F|?
Let E be the set of £ € [[A_*Tﬂ such that:
> w2 (§(M)) € |A™ (& M)[U[A™ (F, M)| if w1 (£ (M) =0
> £(O) = (1, [cany-+]) otherwise
» {(L)=1
> 0(8) ¢ |FF]
and let < be the following partial order on E:

=g = (m(EM)=0= ¢ (M)=¢ (M)
[0 31elfl=I11¢E



Adequacy of bar recursion: Zorn's lemma

Theorem (Zorn's lemma on (E, <))

if every chain (totally ordered subset) of E has an upper bound in
E, then E has a maximal element



Adequacy of bar recursion: Zorn's lemma

Theorem (Zorn's lemma on (E, <))

if every chain (totally ordered subset) of E has an upper bound in
E, then E has a maximal element

We prove two things:

» Every non-empty chain has an upper bound

» E has no maximal element



Adequacy of bar recursion: Zorn's lemma

Theorem (Zorn's lemma on (E, <))

if every chain (totally ordered subset) of E has an upper bound in
E, then E has a maximal element
We prove two things:

» Every non-empty chain has an upper bound

» E has no maximal element

Therefore the empty chain has no upper bound, i.e. E = 1. In
particular [{}] ¢ E, we are done.



Adequacy of bar recursion: chains # () have upper bounds

» C non-empty chain



Adequacy of bar recursion: chains # () have upper bounds

» C non-empty chain

N ) &) if my (§(9)) =0 for some £ € C
Emax (M) = { (1,[cany—+]) otherwise
gmax (J—) =1



Adequacy of bar recursion: chains # () have upper bounds

» C non-empty chain

N ) &) if my (§(9)) =0 for some £ € C
Emax (M) = { (1,[cany—+]) otherwise
gmax (J—) =1

> Emax € E: we want to prove 0 (§max) € ||
> Suppose 0 (Emax) € |



Adequacy of bar recursion: chains # () have upper bounds

» C non-empty chain

N ) &) if my (§(9)) =0 for some £ € C
Emax (M) = { (1,[cany—+]) otherwise
gmax (J—) =1

> Emax € E: we want to prove 0 ({max) € |-

» Suppose 0 (§max) € ||
» Continuity of 6 implies existence of finite F C A such that:

V¢ (Vi)ﬁ €F (5 (m) = Emax (m)) =0 (5) =0 (gmax))



Adequacy of bar recursion: chains # () have upper bounds

» C non-empty chain

N ) &) if my (§(9)) =0 for some £ € C
Emax (M) = { (1,[cany—+]) otherwise
gmax (J—) =1

> Emax € E: we want to prove 0 ({max) € |-

» Suppose 0 (§max) € ||
» Continuity of 6 implies existence of finite F C A such that:

V¢ (Vi)ﬁ €F (5 (m) = Emax (m)) =0 (5) =0 (gmax))

» Since C is a non-empty chain there exists £ € C such that
VI € F (E£(M) = Emax (IN)) and therefore 0 (&) = 0 (Emax)-
E€Esof(&) ¢ |ff| and O (Emax) = 0 (§) ¢ ||, contradiction.



Adequacy of bar recursion: chains # () have upper bounds

» C non-empty chain

N ) &) if my (§(9)) =0 for some £ € C
Emax (M) = { (1,[cany—+]) otherwise
gmax (J—) =1

> Emax € E: we want to prove 0 ({max) € |-

» Suppose 0 (§max) € ||
» Continuity of 6 implies existence of finite F C A such that:

V¢ (Vi)ﬁ €F (5 (m) = Emax (m)) =0 (5) =0 (gmax))

» Since C is a non-empty chain there exists £ € C such that
VI € F (E£(M) = Emax (IN)) and therefore 0 (&) = 0 (Emax)-
E€Esof(&) ¢ |ff| and O (Emax) = 0 (§) ¢ ||, contradiction.

Therefore &nax € E is an upper bound for C



Adequacy of bar recursion: E has no maximal element

> Suppose £ is a maximal element of E



Adequacy of bar recursion: E has no maximal element

> Suppose £ is a maximal element of E

> [0€] = [¥ (£ | Axexfa- (9 (Ay-0(EU{x = y}))))]



Adequacy of bar recursion: E has no maximal element

> Suppose £ is a maximal element of E

> [0€] = [v (€] Axexta- (p (Ay-0 (U {x— y}))))]
» Let X={Me A| m(E(M)) € |A~ (&, M)|}



Adequacy of bar recursion: E has no maximal element
> Suppose £ is a maximal element of E
> [06] =¥ (& | Axexfa- (0 (A0 (§U {x = y}))))]
> Let X = {9 € A| m (€ (IM)) € |A— (&, )]}
» e |VtAT (t€ X, t) and [0E] = 6(&) ¢ || so:
[€ [ Mx.exta (¢ (A0 (EU{x =y ¢ [Vt A™ (t € X, t)]



Adequacy of bar recursion: E has no maximal element

> Suppose £ is a maximal element of E

> [0€] = [ (€] Axexta- (0 (Ay-0 (§U {x = y}))))]
> Let X ={M e Al m(£(MM)) € |A~ (£,M)|}
» e |VtAT (t€ X, t) and [0E] = 6(&) ¢ || so:
[€ [ Axexta (M0 (EU{x = y})] ¢ |[V'EA™ (t € X, 1)]
> there is some 91 € A such that:
[(¢ | Axexta (9 (Ay0(EU {x = y}))))Mm] ¢ |A™ (M € X,9m)]



Adequacy of bar recursion: E has no maximal element
> Suppose £ is a maximal element of E
> [0€] = [ (¢ | Axexta (9 (Ay0(EU {x = y)))]
> Let X = {M € A| m (€ (M) € |A~ (£, 20)]}
» e |VtAT (t€ X, t) and [0E] = 6(&) ¢ || so:
[€ | Axexta (9 (A0 (€U {x =y & [Vt A (t € X, 1)|
> there is some 91 € A such that:

[(€ [ Axexta- (0 (Ay.0 (€U {x = y}))) M] & A~ (M € X, )]

> If 1 (€ (91)) = 0 then mo (€ (IN)) ¢ |A— (DT € X,90)|, absurd
by definition of X since £ € E



Adequacy of bar recursion: E has no maximal element
> Suppose £ is a maximal element of E
> [0€] = [ (¢ | Axexta (9 (Ay0(EU {x = y)))]
> Let X = {M € A| m (€ (M) € |A~ (£, 20)]}
» e |VtAT (t€ X, t) and [0E] = 6(&) ¢ || so:
[€ | Axexta (9 (A0 (€U {x =y & [Vt A (t € X, 1)|
> there is some 91 € A such that:

[(€ [ Axexta- (0 (Ay.0 (€U {x = y}))) M] & A~ (M € X, )]

> If 1 (€ (91)) = 0 then mo (€ (IN)) ¢ |A— (DT € X,90)|, absurd
by definition of X since £ € E
> Then [exfa- (¢ (Ay.0 (U {M— y})))] € A7 (M € X, )|



Adequacy of bar recursion: E has no maximal element
> Suppose £ is a maximal element of E
> [0€] = [ (¢ | Axexta (9 (Ay0(EU {x = y)))]
> Let X = {M € A| m (€ (M) € |A~ (£, 20)]}
» e |VtAT (t€ X, t) and [0E] = 6(&) ¢ || so:
[€ | Axexta (9 (A0 (€U {x =y & [Vt A (t € X, 1)|
> there is some 91 € A such that:

[(€ [ Axexta- (0 (Ay.0 (€U {x = y}))) M] & A~ (M € X, )]

> If 1 (€ (91)) = 0 then mo (€ (IN)) ¢ |A— (DT € X,90)|, absurd
by definition of X since £ € E

> Then [exfa- (¢ (Ay.0 (U {M— y})))] € A~ (M € X, M)

> [ (Ay- 0 (EU{M = y}))] ¢ ] but € [=Vb-A™ (b, M)]:

[\y-0 (§U{M— y})] ¢ [vb-A~ (b, )]



Adequacy of bar recursion: E has no maximal element
> Suppose £ is a maximal element of E
> [0€] = [ (¢ | Axexta (9 (Ay0(EU {x = y)))]
> Let X = {M € A| m (€ (M) € |A~ (£, 20)]}
» e |VtAT (t€ X, t) and [0E] = 6(&) ¢ || so:
[€ [ Axexta (M0 (EU{x = y})] ¢ |[V'EA™ (t € X, 1)]
» there is some 9t € A such that:
[(€ | Axexta (2 (Ay-0 (€U {x = y}))) ] ¢ |A™ (Dt € X, 9)|

> If 1 (€ (91)) = 0 then mo (€ (IN)) ¢ |A— (DT € X,90)|, absurd
by definition of X since £ € E

> Then [exfa- (¢ (Ay.0 (U {M— y})))] € A~ (M € X, M)

> [ (Ay- 0 (EU{M = y}))] ¢ ] but € [=Vb-A™ (b, M)]:

[\y-0 (§U{M— y})] ¢ [vb-A~ (b, )]
» There exists ¢ € |A™ (#, )| U |A~ (f, )| such that:
[0 (€U {2 — (3] ¢ |F]



Adequacy of bar recursion: E has no maximal element
> Suppose £ is a maximal element of E
> [0€] = [ (¢ | Axexta (9 (Ay0(EU {x = y)))]
> Let X = {M € A| m (€ (M) € |A~ (£, 20)]}
» e |VtAT (t€ X, t) and [0E] = 6(&) ¢ || so:
[€ | Axexta (9 (A0 (€U {x =y & [Vt A (t € X, 1)|
> there is some 91 € A such that:

[(€ [ Axexta- (0 (Ay.0 (€U {x = y}))) M] & A~ (M € X, )]

> If 1 (€ (91)) = 0 then mo (€ (IN)) ¢ |A— (DT € X,90)|, absurd
by definition of X since £ € E

> Then [exfa- (¢ (Ay.0 (U {M— y})))] € A~ (M € X, M)

> [ (Ay- 0 (EU{M = y}))] ¢ ] but € [=Vb-A™ (b, M)]:

[\y-0 (§U{M— y})] ¢ [vb-A~ (b, )]
» There exists ¢ € |A™ (#, )| U |A~ (f, )| such that:
[0 (€U {2 — (3] ¢ |F]
» [EU{M—(}] € E and £ < [€U {M — (}], contradiction



