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Abstract

In this note I will give a direct reformulation of sheaves in type theory that I came
up with after translating back the topos theoretic notions straight out of the reference
book Sheaves in Geometry and Logic [MM92]. The main takeaways of this note are
the following.

• Despite the name, sheaves have nothing to do with presheaves.
• What it means to be a sheaf can be defined in a basic type theory.
• Sheafification, by contrast, requires advanced machinery and generates monsters.

As a coproduct, this also gives a straightforward explanation for Beth semantics with-
out the need to go through Kripke semantics.

Introduction
Sheaves were always veiled into a shroud of arcane mystery to me. They immediately
summon a complex imagery of topology, abstract geometry and abstruse categorical non-
sense. Even after having written a paper [Péd20] giving a computational reconstruction of
presheaves, sheaves remained more complex. You have this notion of covering, and any cov-
erage of a value can be pasted together to produce a legitimate value. It seems a priori very
hard to give a type-theoretic account of this miraculous phenomenon, which looks more like
the popsci description of topology where choice-wielding toddlers keep deforming psychedelic
playdough in way too many dimensions. This standpoint has always left me beffuzled, since
I personally do not believe in graphical proofs.

The categorical standpoint was not helpful either. In the specific case of sheaves, I hold a
specific grudge against the nLab wiki, which generally deserves suspicion given the amount
of categorical nonsense it can spit out to describe basic structures1. The main problem with
categorical sheaves is that they are described in a topos-theoretic way, which is very weird
from a type-theoretical perspective. As a type theory, elementary topoi are both very weak
and very strong. They are weak because they do not feature basic constructs like universes

1Before the reader starts complaining about my bad faith, I know this is a wiki, so in theory I should
be able to expand it myself. But do you think an article written in Malayalam would be welcome on the
German Wikipedia?
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and dependent elimination, i.e. they are a only model of HOL in general. Similarly, some
other features can only be achieved through low-level elaborate encodings reminiscent of set
theory which hide the computational intent which would be obvious with a built-in high-level
construct. Conversely, topoi are way too powerful. They gleefully hardwire UIP, funext and
propext, which on my scale of acceptability are respectively rated OK-ish, yikes and nuclear
holocaust. If one wants to understand sheaves in an intensional setting this is a bad start.

So what I did was simple. Armed with my understanding of presheaves as a model of
type theory, I would simply try to state all the sheaf paraphernalia in direct style in the
source theory obtained through the presheaf construction. Some of this was already written
in an almost type-theoretic way, notwithstanding the baking in of extensionality principles.
This was the case for Grothendieck topologies. Other stuff was more tricky, and as far as
my knowledge goes, I had never read Definition 2 in such clarity anywhere.

To be fair, in hindsight most of the contents of this note can be extracted from the deep
paper about modalities by Rijke, Shulman and Spitters [RSS20]. Yet I believe that the latter
does too much, insofar as its aim is to treat a much more general situation, with the added
complexity hiding the simplicity of sheaves when stated at the right level of abstraction.
Also, the fact that they adopt univalence as a founding principle also makes the structures
more involved as they need to carefully handle the rich contents of equality.

This note performs the public service of giving a simple explanation of sheaves to people
who, like me, have a deficient comprehension of category theory but a clear understanding of
type theory2. It is not groundbreaking in any way. I wrote it mainly for myself, and should
serve as a reference whenever I want to understand what those (edited) category terrorists
are up to. It might even be useful to somebody else, who knows.

This note is divided in the following way. Section 1 gives a purely type-theoretical
description of sheaves without any mention of presheaves whatsoever. Section 2 complains
about topos theory. Section 3 is the longest one and does the job of translating bit-by-bit the
definitions from [MM92] into an extensional type theory meant to represent Set. Section 4
gives a high-level description of Kripke and Beth semantics as degenerate presheaf and sheaf
models respectively. Section 5 gives some intuition about the computational content of
sheafification.

1 Sheaves
In this section we assume an ambient intensional type theory as a flavour of CIC. It will
feature a universe of propositions Prop and a hierarchy of universes of types Typei. We
will silently use typical ambiguity. Inhabitants of the Prop universe are intended to be
proof-irrelevant but we do not rely on it for the definitions of this section.

Definition 1. A Prop-valued monad is given by the following.
• J : Prop → Prop
2As such, and like all my notes, it is also a rant against category theory.
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• η : Π(P : Prop). P → J P
• >>= : Π(P Q : Prop). J P → (P → J Q) → J Q

Note that we do not require the usual equations for identity and associativity of the
combinators for Type-valued monads. If propositions were proof-irrelevant as intended, all
equations would indeed hold trivially. We assume in the remainder of this section a fixed
Prop-valued monad J.

Definition 2. A type A : Type is a J-sheaf whenever there exists
• askA : Π(P : Prop). J P → (P → A) → A
• σA : Π(P : Prop) (j : J P ) (x : A). askA P j (λp : P. x) = x

Assuming the ambient type theory features some form of quotients as QITs or HITs, one
can define the sheafification in a concise way.

Definition 3. We define the quotient inductive type SJ as

Inductive SJ (A : Type) : Type :=
| ret : Π(x : A).SJ A
| ask : Π(P : Prop). J P → (P → SJ A) → SJ A
| σ : Π(P : Prop) (j : J P ) (x : SJ A). ask P j (λp : P. x) = x

This presentation can be found in [RSS20] in a generalized form. The richer form is
needed to handle less degenerate forms of modalities, and furthemore needs to account for
higher coherences in the univalent setting.

We liberally assume funext and UIP to prove the theorems below. The former is needed
as soon as one phrases monadic structures in type theory by translating them directly from
category theory. The latter is needed to get a simple treatment of QITs that does not require
full-blown univalence.

Theorem 1. SJ is a Type-valued monad, with

η x := ret x
(ret x) >>= f := f x
(ask P i k) >>= f := ask P i (λ(p : P ). (k p) >>= f).

Theorem 2. A type A is a SJ-algebra iff it is a J-sheaf.

Theorem 3. Sheafification is the call-by-name embedding of SJ.

Sheafification can thus be understood as lifting a monad on Prop to a monad on Type.
Note that this is not the standard way to describe sheafification, since it usually relies

on a more low-level presentation of quotients in topos theory. The standard definition is
fairly bad since it needs a strong form of the axiom of choice in the ambient theory to get
anything done. For the sake of completeness, we expose below this encoding as well as
related concepts.
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Definition 4. A type A : Type is J-separated whenever there is a proof

πA : Π(P : Prop) (j : J P ) (x y : A). (P → x = y) → x = y.

In the presheaf model, J-separated types are unsurprisingly called J-separated presheaves.
It is easy to check assuming funext that J-sheaves are in particular J-separated.

The standard sheafification process is typically defined in two steps and critically relies
on propext.

Theorem 4. Let A : Type, we define A+ as the quotient type

A+ : Type := (Σ(P : Prop). J P × (P → A))/ ∼

where

(P, i, x̂) ∼ (Q, j, ŷ) := ∃(T : Prop) (φ : T → P ∧Q).
(J T ) ∧ (Π(e : T ). x̂ (π1 (φ e)) = ŷ (π2 (φ e)))

Theorem 5. For any A : Type, A+ is separated. If furthemore A is already separated then
A+ is a sheaf.

Theorem 6. In addition to the full set of extensionality axioms, assuming

choice : Π(A : Type). ||A|| → A

where || · || is the Prop-squash, then A++ is isomorphic to SJ A.

There is even quotient-free variant of sheafification that can be defined in an elementary
topos. It is literally a set-theoretical encoding of equivalence classes, which is so against the
type-theorerical ethos than I will only write it in the dedicated Section 3.4.

2 A Brief Look at Topoi
Better not look at it for too long, we could turn into topologists — or worse.

Lawvere-Tierney topologies Prop-valued monads are usually called Lawvere-Tierney
topologies the topos world. Since topoi bake in propext, the usual definition of Lawvere-
Tierney topologies doesn’t bother with finesse and states the η and >>= combinators as equal-
ities. If we phrase the nLab definition in a slightly more type-friendly manner, this boils
down to the following.

Definition 5. A Lawvere-Tierney topology is given by a term J : Prop → Prop such that:
• J ⊤ = ⊤
• Π(P : Prop). J (J P ) = J P
• Π(P Q : Prop). J (P ∧Q) = J P ∧ J Q
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Up to propext, the first equation corresponds to η, the second equation corresponds to
the join operator µ of the monad, and the third equation states that the monad is strong.
It is a bizarre way to express the monadic structure that smells of filters. Notably, it is
missing functoriality, i.e. the map operation, which can be derived from those equations and
a copious amount of extensionality. Since Prop is proof-irrelevant in topoi, no equations
are required as they all hold trivially. I would argue that Definition 1 is more elegant and
self-contained, or at least less demanding in the ambient theory.

Canonicity and Monsters There is a surprising claim that can be found in topos-
theoretic writings, which is that some form of canonicity holds in Grothendieck topoi. For
instance, by taking the double-negation monad J P := ¬¬P , allegedly the sheafification pro-
cess would preserve booleans. This is unfortunately a typical confusion in model theory akin
to “Markov’s Principle holds in Kleene realizability”. Since models are given semantically
in the meta-theory, any crap from your meta can flow down into the model. Sheafification
of booleans is literally given by S¬¬ B, which is some kind of eldritch tree from beyond the
chasm of non-euclidean dimensions. It has thus about as much to do with booleans as the
Necronomicon has to do with “Peppa Pig Goes Swimming”.

But, indeed, if you secretly believe in classical logic in the meta-theory, and you implicitly
identify this meta-theory with Set, then clearly S¬¬ B ∼= B because it is true3. But as
soon as you consider syntactic interpretations into explicit derivation systems, this illusion
disappears and you are left with sheafified monsters. Since ZFC does not satisfy the witness
property, canonicity goes down the drain.

Misleading Advertising As outlined in the introduction and formally observed in Sec-
tion 1, you do not need presheaves at all to explain sheaves. Since the definition is purely
internal, you do not even need to pick a base category or whatever, being a sheaf is some-
thing you can describe in a very simple type theory. It is worth repeating in bold in case
you are skimming through this note.

Sheaves have nothing to do with presheaves.
I am no algebraic geometer, but my understanding of this fact is that it is a historical accident
worsened by a commonplace ignorance of logic. From what I gather, sheaves were defined
over topological spaces, so it was unclear at first that just considering presheaves would lead
to an internal logic rich enough to formulate anything, let alone sheafness. As the internal
definition is irrelevant to their most common uses it is not highlighted out.

Second, since the vast majority of mathematicians do not care about their foundations
and work in Set fantasy land with full nonconstructive apparatus, I suspect that the internal
notion of sheaf would look degenerate to a standard mathematician. In Set with classical
logic, there are only two Lawvere-Tierney topologies: the identity monad J A := A and the

3Anybody phrasing Gödel’s incompleteness theorem as “there are unprovable true statements” deserves
a good whipping.
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trivial monad J A := ⊤. The sheaf category over the identity monad is just Set, so this is
fairly useless. Sheaves over the trivial monad are just singleton sets, which is even worse.

To fully appreciate sheaves, you thus need an intuitionistic setting. And if you are not
doing topos theory, what is the only way to force a generic mathematician to restrict the
logic to be intuitionistic? Right, it is through the one complete model of intuitionistic logic,
i.e. presheaves. Therefore, my probably incorrect theory is that most mathematicans do
not care about a direct style description of sheaves since they will likely only ever use it
composed with a presheaf model. This is quite regrettable because this hides the simplicity
of the synthetic presentation under a pile of implementation details.

3 Through Hell and Back
In this section we explain how the high-level definitions from Section 1 correspond to the
usual topological mumbo-jumbo one can find e.g. in the reference book [MM92]. Instead
of explicitly writing set-theoretical constructs, we use the fact that Set is a model of type
theory, albeit quite degenerated. We abstract away from Set by writing it as an extension
of CIC called SetTT where additional principles hold.

3.1 Set theory as a type theory
Definition 6. SetTT is defined as CIC extended with extensionality principles.

Extensionality SetTT satisfies the extensionality rule.

Γ ⊢SetTT e : M =A N

Γ ⊢SetTT M ≡ N : A

This allows to transparently rewrite propositional equations as if they were conversions.
As such, the equations stated below can be equivalently stated as conversions or equalities.
Note that in particular extensionality already implies UIP and funext.

Proof-irrelevance We have proof-irrelevance.

⊢SetTT pi : Π(P : Prop) (p q : P ). p = q

Propositional extensionality We have propext.

⊢SetTT propext : Π(P Q : Prop). (P ↔ Q) → P = Q

And that is it! Most notably, we do not rely on classical logic. In fact, more than a
type-theoretic reification of Set, SetTT may be thought of as a reification of an arbitrary
topos rich enough to interpret dependent types.
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As intended, SetTT has a straightforward intepretation into ZFC with a countable hier-
archy of universes (Ui)i∈N, where A : Type is intepreted as a set and x : A is set membership.
Typei is interpreted as Ui and Prop is interpreted as the set of truth values P({∅}) which is
classically equal to 2. Through Aczel’s trace encoding [Acz98], functions in SetTT are liter-
ally set-theoretical functions in ZFC between the underlying sets. In particular, predicates
over a set A are isomorphic to functions A → Prop as in topos theory.

These equivalences allow to readily translate from the usual phrasing in structural set
theory to SetTT without much trouble.

3.2 Presheaves in SetTT
First of all, since we are not Bourbakists obsessed with the size of their sets, we don’t really
care about the difference between small and big sets. It doesn’t even make much sense in our
setting since smallness is relative to a given universe and we have a countable hierarchy of
those. We could just pick an arbitrary base level and bump the level of all of the constructions
given in this section. Therefore, we will stick to the standard usage of typical ambiguity and
swear to the reader that we are not silently relying on universe inconsistencies.

Definition 7. Let us consider a small category P. A presheaf over P is a functor P → Set.

First, let us reformulate what a (small) category P is in SetTT.

Proposition 1. In SetTT, a category is given by:
• |P| : Type
• HomP : |P| → |P| → Type
• idP : Πp : |P|. HomP p p
• ◦P : Πp q r : |P|. HomP p q → HomP q r → HomP p r
• _ : Π(p q : |P|) (α : HomP p q). ◦P p p q (idP p) α = α
• _ : Π(p q : |P|) (α : HomP p q). ◦P p q q α (idP q) = α
• _ : Π(p q r s : |P|) (α : HomP p q) (β : HomP q r) (γ : HomP r s).

◦P p r s (◦P p q r α β) γ = ◦P p q s α (◦P q r s β γ)

For legibility, we will simply write P for the type of objects, use infix notation for com-
position and mostly omit implicit arguments. We will write the set of morphisms HomP p q
using a preorder notation p ≤ q, despite the morphisms being proof relevant. With this
notational apparatus, the equations above are simply expressed as

α ◦ id = α
id ◦ α = α
γ ◦ (β ◦ α) = (γ ◦ β) ◦ α.

The above type is a dependent record, even if not written explicitly. Since we are in exten-
sional type theory, the equations defined by the record can be omitted when destructing an
instance of this record type, and treated as conversions known to hold. We reuse the same
conventions hereafter.
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Proposition 2. In SetTT a presheaf over P at level i is given by
• A : P → Typei

• θA : Π(p q : P). q ≤ p → A p → A q
• _ : Π(p : P) (x : A p). θA p p id x = x
• _ : Π(p q r : P) (x : A p) (α : q ≤ p) (β : r ≤ q). θA p r (β ◦α) x = θA q r β (θA p q α x)

The θA function is known as the family of restriction morphisms. As above, we will keep
its inferable arguments implicit.

Observe that the record above is parameterized by the universe level of the type family
of the presheaf. The usual set-theoretic presentation covers the case of small presheaves,
i.e. i = 0, but the definition is better given in the general, universe-polymorphic case. For
reasons that will become obvious later on we call this record type Type.

Since we also have an explicit Prop universe in SetTT, it is possible to define a notion of
proof-irrelevant presheaf.

Definition 8. A proof-irrelevant presheaf over P is simply given by
• A : P → Prop
• θA : Π(p q : P). q ≤ p → A p → A q

Since Prop is proof-irrelevant, the equations governing the behaviour of θA w.r.t. identity
and composition are already true so they do not need to be stated explicitly. As above, we
will call this record type Prop.

Definition 9. The type of global elements of a presheaf (A, θA) is given by
• x : Π(p : P). A p
• _ : Π(p q : P) (α : q ≤ p). θA α (x p) = x q.

We write El : Type → Type for the function that maps a given presheaf to its type of
global elements. There is a similar function Prop → Prop which we will conflate with El. As
one may remark, equations over proofs of a propositions are trivial so this function is simply

λ((A, θA) : Prop).Π(p : P). A p

implicitly using extensionality principles.

3.3 Presheaves as a model of type theory
We now introduce a model of type theory based on presheaves. So we now have to consider
two type theories:

1. the target type theory, which will be the system in which we will write the model;
2. and the source type theory, which will be what will be validated in the model.

The target will simply be SetTT, since presheaves are usually described from within set
theory. To fuel confusion, the source will actually contain SetTT, although we will not
describe the whole translation in full detail. Let us call the source theory PshTTP for a fixed
category P described in SetTT.
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Intuitively, a type ⊢PshTTP A : Typei is interpreted as a presheaf [[A]] at level i in SetTT.
Similarly, propositions in PshTTP are interpreted as proof-irrelevant presheaves. A term
⊢PshTTP M : A is thus interpreted as a global element [M ] of [[A]] in SetTT. Written formally,

⊢PshTTP A : Type implies ⊢SetTT [[A]] : Type
⊢PshTTP M : A implies ⊢SetTT [M ] : El [[A]]

There is a bit of complexity added to the mix because one needs to handle dependent
types, and in particular terms living in a context, but it does not change this fundamental
intuition.

Note that this model crucially relies on extensionality. We will be stealthily rewriting
equations known to hold in the current context without further warning. This allows to
guarantee the property that

⊢PshTTP M ≡ N : A implies ⊢SetTT [M ] ≡ [N ] : [[A]].

Getting a presheaf model that works in intensional type theory requires a complete
change of model. See the series of articles [JTS12; Jab+16; Péd20] that arguably solve this
problem. Since we want to transfer back textbook results, we do not want to change the
presheaf interpretation and will just stick to the usual description.

We do not describe the full model, but state the important result.

Theorem 7. PshTTP contains SetTT.

This allows to work in the presheaf model as if it were an extensional theory, which it
actually is. In the remainder of this section we will focus on some basic type formers that will
be needed to understand sheaves. For legibility, if [[A]] := (A, θA) we will write [[A]]p := A p
and θA := θ[[A]] with a little abuse of notation. These form the structural data needed to
define a presheaf. Equations can be checked separately thanks to extensionality, and we will
omit their proofs.

Proposition 3. Given two presheaves [[A]] and [[B]] the non-dependent arrow [[A → B]] is
defined as

[[A → B]]p :=


fun : Π(q : P) (α : q ≤ p). [[A]]q → [[B]]q
_ : Π(q r : P) (α : q ≤ p) (β : r ≤ q) (x : A q).

θB β (fun q α x) = fun r (β ◦ α) (θA β x)


θA→B (α : q ≤ p) f := λ(r : P) (β : r ≤ q) (x : [[A]]r). f r (β ◦ α) x

The underlying type of [[A → B]] is known as the type of natural transformations, and
the equation of the subset type are called naturality equations. If in the above definition B
is a proposition, then naturality becomes trivially true.

We now turn to the definition of the presheaf of universes, since it is a key feature of
dependent type theories.
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Proposition 4.

[[Type]]p :=



typ : Π(q : P) (α : q ≤ p). Type
hom : Π(q r : P) (α : q ≤ p) (β : r ≤ q).

typ q α → typ r (β ◦ α)
_ : Π(q : P) (α : q ≤ p)(x : typ q α).

hom q q α id x = x
_ : Π(q r s : P) (α : q ≤ p) (β : r ≤ q) (γ : s ≤ r) (x : typ q α).

hom q s α (γ ◦ β) x = hom r s (β ◦ α) γ (hom q r α β x)


θType (α : q ≤ p) (A, θA) :=

 λ(r : P) (β : r ≤ q). A r (β ◦ α) ,
λ(r s : P) (β : r ≤ q) (γ : s ≤ r) (x : A r (β ◦ α)).

θA r s (β ◦ α) γ x


It is quite a mouthful, although it follows a pattern similar to functions. From a high

level, it is no more than Type relativized to a starting point p : P. In particular it is relatively
easy to check that El [[Type]] ∼= Type. Once again, propositions are interpreted similarly but
all equations become trivially true.

Proposition 5.

[[Prop]]p :=


typ : Π(q : P) (α : q ≤ p). Prop
hom : Π(q r : P) (α : q ≤ p) (β : r ≤ q).

typ q α → typ r (β ◦ α)


θProp (α : q ≤ p) (A, θA) :=

 λ(r : P) (β : r ≤ q). A r (β ◦ α) ,
λ(r s : P) (β : r ≤ q) (γ : s ≤ r) (x : A r (β ◦ α)).

θA r s (β ◦ α) γ x


This is literally a copy-paste of the above where Type is replaced by Prop and all trivial

equations are removed. Again, El [[Prop]] ∼= Prop.

Proposition 6. We will rely on some isomorphisms to ease the writing of presheaf elements.

El [[A → B]] ∼=
{

f : Π(p : P). [[A]]p → [[B]]p
_ : Π(p q : P) (α : q ≤ p) (x : [[A]]p). θB α (f p x) = f q (θA α x)

}
As usual the naturality equation can be ignored when [[B]] : Prop.

El [[A → Type]] ∼=


B : Π(p : P). [[A]]p → Type
θB : Π(p q : P) (α : q ≤ p) (x : [[A]]p). B p x → B q (θA α x)
_ : Π(p : P) (x : [[A]]p) (y : B p x). θB p p id x y = y
_ : Π(p q r : P) (α : q ≤ p). (β : r ≤ q) (x : [[A]]p) (y : B p x).

θB p r (β ◦ α) x y = θB q r β (θA α x) (θB p q α x y)
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And again, we have the degenerate Prop case.

El [[A → Prop]] ∼=
{

B : Π(p : P). [[A]]p → Prop
θB : Π(p q : P) (α : q ≤ p) (x : [[A]]p). B p x → B q (θA α x)

}
We have now all the material to define dependent products.

Proposition 7. Given A : Type and (B, θB) : El [[A → Type]] as given by the isomorphism
from Proposition 6, we define

[[Π(x : A). B x]]p :=


fun : Π(q : P) (α : q ≤ p) (x : [[A]]q). B q x
_ : Π(q r : P) (α : q ≤ p) (β : r ≤ q) (x : [[A]]q).

θB β (θA β x) (fun q α x) = fun r (β ◦ α) (θA β x)


θΠ(x:A). B x (α : q ≤ p) f := λ(r : P) (β : r ≤ q) (x : [[A]]r). f r (β ◦ α) x

Note that dependent products have the same computational content as non-dependent
arrows. Actually, with a slight abuse of notation since we did not formally define types in
a non-empty context, [[Π(x : A). B]] = [[A → B]]. Similar isomorphisms apply to global
elements of a dependent product, although we will not make them explicit.

Inductive types are defined pointwise, including when they have indices. We will not give
their translation here.

3.4 Sheaves
It is time to dive into the horror of sheaves. We will follow the exposition of the reference
book [MM92], quoting the relevant definitions and mention their precise source. The defini-
tions are simply reformulated in SetTT with a type-theoretic flavour, and matched with the
corresponding direct style concept through the presheaf intepretation.

Sieves [Section I.4]

Given an object C in the category C, a sieve on C (in French, a “crible” on C)
is a set S of arrows with codomain C such that f ∈ S and the composite fh is
defined implies fh ∈ S.

Definition 10. A sieve on p : P is given as
• A predicate S : Π(q : P) (α : q ≤ p). Prop which corresponds to the set of arrows
• A proof θS : Π(q r : P) (α : q ≤ p) (β : r ≤ q). S q α → S r (β ◦ α) which corresponds

to closure under composition.

Note that we have merely made explicit the domain of the arrow in the predicate. It is
implicit in the set-theoretic definition, but once again instead of using dependent types to
define categories this book makes the choice to use partial functions instead.
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Proposition 8. A sieve on p is just a term of type [[Prop]]p.

Some constructions on sieves are also considered, which we rephrase as well.

Definition 11. The maximal sieve ⊤p : [[Prop]]p is the constantly true function, which is
trivially monotonous. It corresponds in the model to the true proposition, hence the notation.

Definition 12. Given a sieve (S, θS) : [[Prop]]p and α : q ≤ p,

α∗(S, θS) : [[Prop]]q := (λ(r : P) (β : r ≤ q). S r (β ◦ α),_)

Otherwise said, α∗(S, θS) is just θProp α (S, θS).

For clarity purposes, in what follows we will implicitly coerce a sieve (S, θS) to its under-
lying predicate S.

Grothendieck topologies [Section III.2]

A (Grothendieck) topology on a category C is a function J which assigns to each
object C of C a collection J(C) of sieves on C, in such a way that

1. the maximal sieve tC = {f | cod(f) = C} is in J(C);
2. (stability axiom) if S ∈ J(C), then h∗(S) ∈ J(D) for any arrow h : D → C;
3. (transitivity axiom) if S ∈ J(C) and R is any sieve on C such that h∗(R) ∈

J(D) for all h : D → C in S, then R ∈ J(C).

Definition 13. A Grothendieck topology is a function

J : Π(p : P). [[Prop]]p → Prop

together with proofs:
1. ηJ : Π(p : P). J p ⊤p

2. natJ : Π(p q : P) (α : q ≤ p) (S : [[Prop]]p). J p S → J q (θProp α S)
3. >>=J : Π(p : P) (S R : [[Prop]]p).

J p S → (Π(q : P) (α : q ≤ p). S q α → J q (θProp α R)) → J p R

Exploiting the isomorphisms we have described before, it is clear that J and natJ cor-
respond to a term ⊢PshTT J : Prop → Prop. Since all the types we are considering here are
propositions, naturality conditions are trivially true. In particular,

Π(q : P) (α : q ≤ p). S q α → J q (θProp α S) ∼= [[S → J R]]p

so the type of >>=J is isomorphic to

El [[Π(S R : Prop). J S → (S → J R) → J R]].

Similarly, the type of ηJ is isomorphic to El [[J ⊤]]. The following theorem is now obvious.
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Theorem 8. Grothendieck topologies are the same as Prop-valued monads in the presheaf
interpretation.

Interestingly, even within the same book, this definition of Grothendieck topology is
much closer to the monadic one than the definition of Lawvere-Tierney topologies. The
major difference is that ηJ is written with propext in mind. Meanwhile, Lawvere-Tierney
topologies are defined in Section V.1 following the same extensional presentation as the nLab.
I find this fascinating that the low-level notion fits more naturally in type theory while the
topos-theoretic presentation hardwires some unnatural conventions because when you have
an elementary topos everything looks like a monomorphism.

Matching families [Section III.4]

If P is such a presheaf and the sieve S is a cover of an object C of C, a matching
family for S of elements of P is a function which assigns to each element f :
D → C of S an element xf ∈ P (D), in such a way that

xf · g = xfg for all g : E → D in C

First, note that through our interpretation a cover of p : P in the topology J is just a
dependent pair of type ΣS : [[Prop]]p. J p S.

Definition 14. Let (P, θP ) : Type, (S, θS) : [[Prop]]p and i : J p S. A matching family for S
of elements of P is a function

x : Π(q : P) (α : q ≤ p). S q α → P q

together with a proof

_ : Π(q r : P) (α : q ≤ p) (β : r ≤ q) (e : S q α). θP β (x q α e) = x r (β ◦ α) (θS β e)

Despite the book definition leaving proof-irrelevant content from the e argument mali-
ciously hidden, we cannot be fooled anymore. The side-condition is a naturality equation,
so this is standing for a function.

Theorem 9. Matching families for S : [[Prop]]p of elements of P are isomorphic to [[S → P ]]p.

The definition surreptitiously requires a proof i : [[J S]]p by requiring a cover but it is
actually not needed. As we will see it is a somewhat misplaced requirement for sheaves.

Amalgamation [Section III.4]

An amalgamation of such a matching family is a single element x ∈ P (C) with

x · f = xf for all f ∈ S.

13



Definition 15. Let x̂ : [[S → P ]]p. An amalgamation of x̂ is an element x : [[P ]]p s.t.

Π(q : P) (α : q ≤ p) (e : S q α). θP α x = x̂ q α e

The equation has a trivial direct style explanation through the presheaf interpretation.

Theorem 10. An amalgamation of x̂ : [[S → P ]]p is an element x : [[P ]]p s.t.

[[Π(e : S). x = x̂ e]]p

Sheaves [Section III.4]

Then P is a sheaf (for J) precisely then, when every matching family for any
cover of any object of C has a unique amalgamation.

This is getting boring by now.

Definition 16. (P, θP ) : Type is a sheaf for J when there is an amalgamation candidate

h : Π(p : P) (S : [[Prop]]p) (i : J p S). [[S → P ]]p → [[P ]]p

together with proofs that it is indeed an amalgamation and that it is unique. I am too lazy
to spell out these equations but they are obtained directly using the previous expansions.

The S and i arguments correspond to the cover and the [[S → P ]]p argument to the
matching family. In any case, unicity of the amalgamation ensures the naturality of h, so it
actually corresponds to a term

⊢PshTT h : Π(S : Prop) (i : J S). (S → P ) → P.

The amalgamation property is equivalent to a proof

⊢PshTT _ : Π(S : Prop) (i : J S) (x̂ : S → P ) (e : S). h S i x̂ =P x̂ e.

Finally, unicity of the amalgamation is equivalent to a proof that

⊢PshTT _ : Π(S : Prop) (i : J S) (x̂ : S → P ) (x : P ).
(Π(e : S). x̂ e = x) → h S i x̂ =P x.

This justifies the claims from Section 1. Since we have a bit of leeway in the exact phrasing,
we went for a slightly more compact definition there. Yet given that PshTT is a perfectly
fine type theory, it is easy to check directly in it that the structure given in direct style above
is isomorphic to the definitions from Section 1, gladly using extensionality principles.

14



Separated Presheaves [Section III.5]

Call a presheaf P separated if a matching family can have at most one amalga-
mation. In other words, P is separated if for any x, y ∈ P (C) and any cover
S ∈ J(C), x · f = y · f for all f ∈ S implies x = y.

Theorem 11. A type ⊢PshTT P : Type is separated exactly when

⊢PshTT _ : Π(S : Prop) (x y : P ). J S → (S → x = y) → x = y.

Since we are now skilled in presheaf-speak, it is easy to check on sight that the theorem
is exactly the direct style formulation of the formulation in the model. We do not have to
bother with naturality anywhere since all the functions considered are propositional.

Let us highlight that for our purposes the elementary reformulation is even better than the
abstract unicity statement since with the former we do not need to quantify over matching
families, i.e. functions of type S → P , and simply work under the assumption S which
amounts to considering the trivial matching families for two elements x, y : P . Obviously
the equivalence between the two statements relies on funext but this is implicit in SetTT,
and for that matter, ZFC.

Sheafification [Section III.5]

Given an arbitrary presheaf P , we might therefore try to define a new presheaf
P+ by

P+(C) = lim
−→R∈J(C)

Match(R,P )

where Match(R,P ) denotes the set of matching families for the cover R of C, and
the colimit is taken over all covering sieves of C, ordered by reverse inclusion. In
other words, an element of P+(C) is an equivalence class of matching families

x = {xf | f : D → C ∈ R}, xf ∈ P (D), and xf · k = xfk,

for all k : E → D, where two such families x = {xf | f ∈ R} and y = {yg | g ∈ S}
are equivalent when there is a common refinement T ⊆ R ∩ S with T ∈ J(C)
such that xf = yf for all f in T .

We need quotients in SetTT, which we did not define. Since Set features them, it is
legitimate to assume them in SetTT. Quotients are interpreted through the presheaf model
in a similar way to inductive types, thus we readily get the following result.
Theorem 12. Given a type ⊢PshTT P : Type, P+ is the quotient type

⊢PshTT P+ : Type := (Σ(S : Prop). J S × (S → P ))/ ∼

where

(S, i, x̂) ∼ (R, j, ŷ) := ∃(T : Prop) (φ : T → S ∧R).
(J T ) ∧ (Π(e : T ). x̂ (π1 (φ e)) = ŷ (π2 (φ e)))
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I cannot stress how bad this construction is. The equivalence relation needs to land in
Prop, so the existential over T : Prop prominently featured in its definition is proof-irrelevant.
This means that every time we will want to eliminate from this quotient to perfom some
reasoning in Type we basically need to use a strong form of choice like the global choice
function from Section 1.

Under such strong hypotheses, if P is already separated then P+ is isomorphic to the
QIT SJ P described in Section 1, but the latter is much more well-behaved when one cares
about computation, even assuming a very extensional ambient theory. Thanks to Santa
Claus’ choice, the isomorphism can be easily sketched:

• to (S, i, x̂) : P+ associate
ask S i (λ(e : S). ret (x̂ e)) : SJ P

• to ask S1 i1 (λ(s1 : S1). . . . (ask Sn in (λ(sn : Sn). ret x))) : SJ P associate

(∃(s1 : S1). . . . (sn : Sn).⊤,
n∧

k=1

ik, λ(s1, . . . , sn). x) : P
+

where
∧

is defined using the monadic structure of J .

Separatedness of P is needed to ensure that the quotients are preserved. Needless to say
that none of this makes sense without propext.

Elementary Sheafification [Section V.3] The definition of sheafification in the above
section relies on having a somewhat rich type theory with quotients. There is an alternative
definition for elementary topoi in Section V.3 of the reference book that boils down to
handcrafting quotient types as done in set theory, i.e. by considering equivalence classes.
For the sake of completeness we give here the definition in direct style in type theory. We
will not give the relevant quotes as we did previously because the book takes great pleasure
in hiding the computational content of their constructions under existential statements and
diagrammatic equations. This is what you get when you have a deficient syntax to write
your types, dear categorists.
Definition 17. The set of modal propositions is defined as

PropJ := {P : Prop | J P → P}.
Definition 18. Let A : Type. We define A+ : Type as

A+ := {P : A → PropJ | J (∃(x : A).Π(y : A). π1 (P y) ↔ J (x = y))}.
This type is isomorphic to the other A+ type defined before. It is defined in an even

worse way since now we have to explicitly pick elements out of equivalence classes instead
of merely trying to preserve a (nasty) equivalence relation. Since we already assumed global
choice to write combinators for the other one it does not really matter, but this one needs
choice virtually everywhere.
Theorem 13. For any A : Type, A+ is separated. If furthemore A is already separated then
A+ is a sheaf.
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4 Kripke Semantics and Beth Semantics
Kripke and Beth semantics are similar models of intuitionistic logic. They can be understood
as a model of the FOL fragment of respectively presheaves and sheaves. In particular, they
are proof-irrelevant, i.e. apart from first-order variables, all proof terms live in sort Prop.
This simplifies the model quite a bit. For Kripke models, this means that we do not have to
care for naturality conditions on functions. For Beth models, this means we do not have to
care for unicity of the amalgamation of a matching family. The former is not very important
assuming we have UIP in our target theory, but the latter means that we can go for a much
more direct model construction that does not rely on sheafification.

We now recall the interpretations of FOL for both models. Traditionally, rather than a
category, Kripke and Beth models are defined w.r.t. a preorder (P,≤). In our setting this
means that morphisms have type HomP : P → P → Prop, i.e. they are propositions. This
does not matter in practice. All of what follows is folklore.

First, we define our FOL language. We fix a presheaf ι : Type for terms, together with
atomic predicates X : El [[ιn → Prop]]. As usual we will silently rely on the isomorphisms
with natural transformations. Note that morphisms α : q ≤ p can act pointwise by θι on a
substitution ρ : Var → [[ι]]p, which we write for simplicity α • ρ : Var → [[ι]]q.

4.1 Kripke Semantics
Definition 19. Given p : P, ρ : Var → [[ι]]p and A a FOL formula, we define the Kripke
interpretation p ⊩ρ A : Prop in SetTT by induction on A.

p ⊩ρ X(t1, . . . , tn) := X p [t1]ρ . . . [tn]ρ
p ⊩ρ A → B := ∀(q : P) (α : q ≤ p). q ⊩α•ρ A → q ⊩α•ρ B
p ⊩ρ ⊥ := ⊥
p ⊩ρ A ∨B := (p ⊩ρ A) ∨ (p ⊩ρ B)
p ⊩ρ ⊤ := ⊤
p ⊩ρ A ∧B := (p ⊩ρ A) ∧ (p ⊩ρ B)
p ⊩ρ ∀x.A := ∀(q : P) (α : q ≤ p) (x : [[ι]]q). q ⊩α•ρ,x A
p ⊩ρ ∃x.A := ∃(x : [[ι]]p). p ⊩ρ,x A

In the above definition, we write ∀(x : A). B to insist that B : Prop, but these types are
really dependent products.

Proposition 9. As is well-known, the Kripke relation forms a proof-irrelevant presheaf, i.e.

Π(p q : P) (α : q ≤ p). p ⊩ρ A → q ⊩α•ρ A.

Proposition 10. The Kripke model interprets intuitionistic FOL, i.e. if A is a closed FOL
formula we have

(⊢iFOL A) → Π(p : P). p ⊩(·) A.
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Obviously Kripke models are the degenerate case of a presheaf interpretation where we
only consider propositions, as we claimed above. Thanks to proof-irrelevance, we do not
have to deal with naturality. Interestingly, we can also define it as an interpretation into
Type without naturality. In this case we break conversion in the source theory, i.e. it is not
a model of CIC anymore. Yet, it still makes sense from a programming point of view, since
the resulting theory enjoys a call-by-value semantics, e.g. on function types conversion is
generated by the equation

(λ(x : A). t) V ≡cbv t{x := V }

where V is restricted to be a value. See my other note on the topic for more details.

4.2 Beth Semantics
Beth semantics are usually defined through the notion of bar. Bars are a staple notion from
the philosophical school of intuitionistic mathematics. There are various formulations that
are not equivalent without a sufficiently strong Fan Theorem, and a great deal of effort has
been put in the understanding of the relationship between them. The standard notion of bars
requires the underlying preorder to be a tree, i.e. it has a well-defined notion of successor of
a node. Since I do not care about these Brouwerian shenanigans I will pick a variant that is
simple and works for an arbitrary preorder, at the cost of being stronger than the historical
definition without the right Fan Theorem.

Definition 20. We will conspicuously write

J p P := ∀(q : P) (α : q ≤ p).∃(r : P) (β : r ≤ q). P r (β ◦ α)

for any P : Π(q : P) (α : q ≤ p). Prop.

Intuitively, seeing the preorder as a DAG, J p P means that P is eventually true following
all possible paths starting from p. Beth semantics is then given as the following variant of
Kripke semantics.

Definition 21. Given p : P, ρ : Var → [[ι]]p and A a FOL formula, we define the Beth
interpretation p ⊩ρ A : Prop in SetTT by induction on A.

p ⊩ρ X(t1, . . . , tn) := J p (λ(q : P) (α : q ≤ p). X q [t1]ρ . . . [tn]ρ)
p ⊩ρ A → B := ∀(q : P) (α : q ≤ p). q ⊩α•ρ A → q ⊩α•ρ B
p ⊩ρ ⊥ := J p (λ(q : P) (α : q ≤ p).⊥)
p ⊩ρ A ∨B := J p (λ(q : P) (α : q ≤ p). (q ⊩α•ρ A) ∨ (q ⊩α•ρ B))
p ⊩ρ ⊤ := ⊤
p ⊩ρ A ∧B := (p ⊩ρ A) ∧ (p ⊩ρ B)
p ⊩ρ ∀x.A := ∀(q : P) (α : q ≤ p) (x : [[ι]]q). q ⊩α•ρ,x A
p ⊩ρ ∃x.A := J p (λ(q : P) (α : q ≤ p).∃(x : [[ι]]q). q ⊩α•ρ,x A)

The same results as Krikpe hold for Beth.
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Proposition 11. The Beth relation forms a proof-irrelevant presheaf, i.e.

Π(p q : P) (α : q ≤ p). p ⊩ρ A → q ⊩α•ρ A.

Proposition 12. The Beth model interprets intuitionistic FOL, i.e. if A is a closed FOL
formula we have

(⊢iFOL A) → Π(p : P). p ⊩(·) A.

Obviously something else is happening. I already spilled the beans, so guess what? Beth
semantics is a (degenerate) sheaf model.

Proposition 13. J is clearly a Lawvere-Tierney topology.

Proposition 14. The Beth relation is a J-algebra in the presheaf model, i.e. there is a proof

Π(p : P). J p (λ(q : P) (α : q ≤ p). q ⊩α•ρ A) → p ⊩ρ A

for every formula A.

The proof does not rely on anything else than J satsifying the topology axioms. Hence,
the traditional definition in terms of bars would also go through immediately.

It is quite obvious that Beth models are a form of sheafification, but there are two major
differences with the general case.

• All types considered are propositions.
• In particular, we only consider first-order logic quantifications.
This is why the interpretation is much simpler, we did not have to rely on a horrendous

quotient inductive type. The only difference with Krikpe models lies in the fact that we
freely added the J combinator for the ⊥,∨,∃ and atomic cases. It is therefore immediate to
anybody who knows about programming language theory that this corresponds to a call-by-
name embedding of the monad J, i.e. a mapping into the Eilenberg-Moore category. This
observation leads to a synthetic presentation of Beth models.

Theorem 14. Given a preorder P and a Prop-valued monad J in the presheaf intepretation
over P, Beth models are given synthetically as the composition

B
JN−→ K

Psh(P)−→ Set

where
• B is the Beth model
• K is the Kripke model
• JN is the call-by-name embedding of the monad J
• Psh(P) is the (degenerate) presheaf interpretation.

All the models above are degenerate from a computational point of view, since they are
all preorders dealing with provability rather than actual proofs.
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5 An Intensional Analysis of Sheaves
We look at the abstract definitions of Section 1 with a eye towards computation.

5.1 Dialogue Trees
We first highlight the relationship of sheaves with a structure known as dialogue trees.

Definition 22. Given a input type I : Type and an output type O : Π(i : I). Type, the type
of dialogue trees is defined as the inductive type

Inductive D (A : Type) : Type :=
| ret : Π(x : A).D A
| ask : Π(i : I). (O i → D A) → D A.

Dialogue trees form a monad, and a free one at that. A dialogue tree can be seen as a
way to implement an oracle, where I is the type of questions and O the type of answers.
While ret means that enough information is available to produce a value, ask corresponds
to a question to the oracle, and the function to the continuation to apply when the oracle
has answered.

Since D is a free monad, it is somewhat easy to give a syntactic model of Baclofen Type
Theory [PT17] where all types are D-algebras through the weaning interpretation. Indeed,
there is a straightforward description of D-algebras that is compatible with intensionality,
namely

TypeD := {A : Type | Π(i : I). (O i → A) → A}.

We will call a function Π(i : I). (O i → A) → A an oracle function for A. Assuming funext,
TypeD is isomorphic to the usual definition of D-algebras. Furthermore, even without funext,
TypeD is closed under dependent products, in the sense that if A : Type and B : A → TypeD

then Π(x : A). π1 (B x) has an oracle function defined pointwise. This allows to easily
define the weaning translation, which can be described as a high-level point of view by
replacing Type with TypeD everywhere. Closure by dependent product codomain allows to
lift everything to an arbitrary context. Inductive types are freely turned into D-algebras by
adding a constructor for the oracle function, e.g. booleans are interpreted as

Inductive boolD : Type :=
| trueD : boolD

| falseD : boolD

| askbool : Π(i : I). (O i → boolD) → boolD .

The crux of the weaning translation is to equip TypeD with an oracle function. The simplest
way to do that is also to turn it into a free algebra as well, which incurs some technicality
w.r.t. Tarski universes but can be performed nonetheless. See the aforementioned paper for
the full construction.
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Theorem 15. The weaning translation provides a model of BTT where types are interpreted
as intensional D-algebras. In particular this model can be defined in vanilla CIC, no need
for any extensionality axiom.

The main difference between BTT and CIC is that the former only satisfies a restricted
form of dependent elimination, where the elimination predicate needs to be linear, i.e. strict.
Failure of unrestricted dependent elimination is caused by the existence of non-standard or
effectful inductive terms, similarly to what happens in effectful call-by-name languages. For
instance, non-termination forces to interpret booleans as B⊥ in Scott domains, which has
three different values classically.

We emphasize that BTT is stronger than HOL, since it has universes. Furthermore in
presence of the extensionality rule, CIC can be embedded into BTT in a way similar to the
embedding of LK into LJ, since there is a canonical way to linearize a predicate which is
(propositionally) the identity in CIC.

5.2 Sheaves as Dialogue Trees
It is clear from Definition 2 that sheaves are a special case of D-algebras. Indeed, defining

I := ΣP : Prop. J P
O (P, i) := P

it becomes apparent that sheaves are an instance of dialogue trees where O : I → Prop is a
propositional predicate, and thus in particular proof-irrelevant, rather than living in Type.

Assuming funext and UIP, dialogue trees are very simple in this degenerate setting. Since
there is at most one possible answer to the query, the branching structure collapses, and
dialogue trees are isomorphic to a list of queries to the oracle.

With these notations, a sheaf is just a type A equipped with an oracle function

askA : Π(i : I). (O i → A) → A

satisfying in addition the uniqueness axiom

σA : Π(i : I) (x : A). askA i (λ(p : O i). x) = x.

The function corresponds to A being a D-algebra, while uniqueness further mandates that
a list of queries that returns a value is not distinguishible from that value. In some sense, it
hides those queries from the outside, as if they were some kind of silent transitions. Hence,
SJ-algebras are a special kind of quotiented D-algebras.

This requirement is highly problematic in an intensional setting, because it is stated as an
equality. In particular, without funext sheaves are not closed under product codomain, since
it results in an equality between two functions that are not definitionally equal. Contrarily
to D-algebras, I currently do not know of a good intensional definition of SJ-algebras, and
I actually doubt there is any.
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The same issue arises with inductively generated types. They need to be interpreted as
free SJ-algebras, but this requires the existence of QITs in the ambient theory. As is folklore
with any generic construction that remotely relies on propositional equality, there are only
two stable solutions to make quotients work: either require UIP or go full univalence. As a
hardcore compatibilist, I do not like either one, although if I had to choose I would go for
UIP.

It is actually even worse than that, since in general the type of sheaves is not a sheaf
itself, just as the type of algebras is not an algebra. Thus there are no universes in sheaves.
In particular, contrarily to BTT it is not even possible to state dependent elimination there.
What is even the point to preserve all that structure, for Martin-Löf’s sake?

This is actually a well-known problem, and the standard solution seems to generalize
sheaves to stacks [CMR17]. I have zero understanding of what a stack is, although what I
understand from the cited article seems to indicate it is the natural thing to do, i.e. relax
the equality in the uniqueness condition into higher path types. But then it looks like we
are back to requiring univalence in the ambient theory, which is a no-no.

The only sane solution I can think of is the laxification trick, namely replacing this
equality by a proof-relevant parametricity-like predicate. This is a poor man’s univalence,
a.k.a. Sattler’s obfuscation by syntax. Proof that it works left as an exercise to the reader.

5.3 Computational Sheaves
Thierry Coquand is the co-author of a series of interesting papers on sheaf models of systems
that grow increasingly closer to dependent type theories. Due to the choice of concrete sites
for the sheaf construction, the definition of covers always follow a similar structure that
closely matches the inductive dialogue tree definition. Typically, the notion of covering is
defined as an inductive tree with two cases, either a leaf or a node that performs a step in
the DAG followed by subtrees. The monadic structure arises then automatically from the
dialogue structure, which was actually already the case for tree in direct style.

Geometrical Logic The paper [Coq05] provides a proof of completeness of dynamical
proofs for geometric theories. A bit of squinting shows that the very notion of dynamical
proof is literally a dialogue tree, and that covers can be defined as a dialogue tree directly
inside the presheaf model. For simplicity, if we only consider propositional logic, a geometric
theory is a set of formulae

T :=

{
Φi ⊢

∨
k∈Oi

Ψi,k

}
i∈I

where Φ,Ψk are conjunctions of atoms. The base category considered has objects finite sets
of atomic formulae, and order given by reverse set inclusion. The covering definition X ◁ Y
between an object X and a set of objects Y is inductively defined as

X ◁ {X}
(Φ ⊢

∨
k∈O Ψk) ∈ T X ⊩ Φ (∀k ∈ O. X,Ψk ◁ Yk)

X ◁
∪

k∈O Yk
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which mimicks the dialogue tree inductive definition. In this simplified setting, a query is
a formula (Φ ⊢

∨
k∈O Ψk) ∈ T together with a proof that Φ holds in the current state, and

an answer is a proof that one of the disjuncts Ψk holds. It is clear that the set of answers
depends on the query since the size of the disjunction depends on the axiom of the theory
under consideration. Similarly, the higher-order nature of the continuation for the query is
obvious when written as above. Handling FOL is a simple generalization of the above.

The theorem proved in the paper is confusingly labelled completeness despite being a
proof of soundness of the corresponding Beth model. We highlight the fact that axioms from
the geometrical theory are interpreted as queries to the oracle, resulting in the dynamical
structure of the proof tree since it is unknown a priori how these axioms are implemented.
This is a clever example of side-effects reminiscent of thread forking.

Cohen Reals The papers [CJ12] and [CM17] give a sheaf model of a barebone dependent
type theory, which is shown to negate Markov’s Principle in the second one. The presheaf
model is given over the preorder of finitely supported partial functions N → B ordered by
reverse inclusion. For simplicity, we explain it here instead in terms of lists of booleans,
where q ≤ p if p is a suffix of q. Covering of p : list B by a set of lists L is inductively
defined as

p ◁ {p}
tt :: p ◁ Ltt ff :: p ◁ Lff

p ◁ Ltt ∪ Lff

Here, because the set of answers is finite it is less clear that this is a dialogue tree, as it is given
as what amounts to a binary tree. But by exploiting the fact that P tt×P ff ∼= Π(b : P). P b
the dialoguing nature of this covering relation appears.

Algebraic Closure The paper [MC14] gives a constructive sheaf model of the algeraic
closure of a field. The presheaf model is given over a special kind of K-algebras for some
field K. Covering of an algebra A is once again inductively defined as a more concrete form
of

A ◁ {A}
a ∈ A A/⟨a⟩ ◁ L A

[
1
a

]
◁R

A ◁ L ∪R

so that the queries to our oracle are given as an element a of the current global algebra, and
the oracle decides whether this element is irreducible.

5.4 Partiality Monads
For completeness, we mention the fact that synthetic sheaves are strikingly similar to the
various kinds of partiality monads described e.g. by Uustalu et al. [UV17]. These monads
are known as lifting monads in the category theory literature.
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Partiality monads are given by a set of truth values Ω : Type together with a function
El : Ω → Prop interpreting it as a proposition. The partiality monad is then defined as

P A := ΣP : Ω.El Ω → A.

They give three representative examples.
• The error monad Ω := B and El b := b = tt. In this case P A ∼= 1 + A.
• The non-termination monad Ω := S and El s := s ∼ ⊤ where S is the Sierpinski set or

Rosolini’s dominance.
• The full partial map classifier Ω := Prop and El P := P

It is remarkable how these monads are similar to sheafification, up to the quotient construc-
tion that ensures the uniqueness property.
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