
“Upon ThisQuote I Will Build My Church Thesis”
Pierre-Marie Pédrot

INRIA

France

pierre-marie.pedrot@inria.fr

ABSTRACT
The internal Church thesis (CT) is a logical principle stating that
one can associate to any function 𝑓 : N → N a concrete code,

in some Turing-complete language, that computes 𝑓 . While the

compatibility of CT in simpler systems has been long known, its

compatibility with dependent type theory is still an open question.

In this paper, we answer this question positively. We define

“MLTT”, a type theory extending MLTT with quote operators in

which CT is derivable. We furthermore prove that “MLTT” is con-
sistent, strongly normalizing and enjoys canonicity using a rather

standard logical relation model. All the results in this paper have

been mechanized in Coq
1
.

KEYWORDS
Martin-Löf type theory, dependent types, Church’s thesis, logical

relation

1 INTRODUCTION
“Calculemus!” By these words, Leibniz famously enjoined the reader

to compute. Contemporary logicians took this motto as a founding

principle after the progressive discovery of the proof-as-program

correspondence. This major breakthrough, also known as the Curry-

Howard equivalence, is the seemingly simple observation that

proofs and programs are the same object, in an essential way [11].

Although not primarily associated to the Curry-Howard school

of thought, the Russian constructivists led by Markov pushed this

tenet to an extreme point, postulating that all mathematical objects

were indeed algorithms. Their doctrine [25] is materialized by a

foundational system that can be summarily described as a neu-

tral Bishop-style intuitionistic logic extended with two additional

axioms [36]: Markov’s principle (MP) and Church’s thesis (CT).
Of those two axioms, Markov’s principle is the simplest one, as

it requires little to state:

∀𝑓 : N → N.¬¬(∃𝑛 : N. 𝑓 𝑛 = 0) → ∃𝑛 : N. 𝑓 𝑛 = 0

and is equally easy to understand. Alternative formulations include

“a Turing machine that does not loop terminates” or “non-zero

reals are apart from zero”. Markov’s principle is a sweet spot of

semi-classical logic, as it can be given a computational content

preserving the witness property [12].

Church’s thesis is somewhat more involved, as it requires the

internal definition of a computation model in the logic itself. As-

suming a logic rich enough, this is traditionally [20] achieved by

defining the decidable Kleene predicate T (𝑝, 𝑛, 𝑘) and its associated
primitive recursive decoding function U : N → N. Here, 𝑝 : N is

assumed to be the syntactic code of some program in the chosen

Turing-complete computation model, 𝑛 : N some integer argument,

1
Development browsable at https://github.com/ppedrot/quote-mltt.

and 𝑘 : N some encoding of evaluation traces of the model. Under

these assumptions, T (𝑝, 𝑛, 𝑘) holds whenever 𝑘 is the trace of the

fact that 𝑝 applied to 𝑛 evaluates to some integer 𝑣 . Furthermore, if

indeed the predicate holds, then U𝑘 should return the value 𝑣 .

Assuming we have settled this computational paraphernalia, CT
is simply the internal statement

∀𝑓 : N → N. ∃𝑝 : N.∀𝑛 : N. ∃𝑘 : N. T (𝑝, 𝑛, 𝑘) ∧ U𝑘 = 𝑓 𝑛.

Said otherwise, any function 𝑓 definable in the theory is known

to be computable by some concrete algorithm 𝑝 from within the

theory.

Contrarily to MP, which is a consequence of excluded middle,

CT is a very anti-classical axiom [36]. Assuming very weak forms of

choice, it contradicts excluded middle, or even LPO. Similarly, it is

also incompatible with choice-like principles like double negation

shift. Finally, it also makes the logic very intensional as it contra-

dicts function extensionality, under the same kind of weak choice

assumptions.

The consistency ofMP and CT w.r.t. some logical system is typi-

cally proved via realizability. Quite remarkably, Kleene’s seminal

paper [21] already proves that CT is compatible with Heyting’s

arithmetic. For a more expressive theory, the effective topos is a

famous example of a realizability topos in which both principles

hold [17].

On the other side of the iron curtain, one major offshoot of

the Curry-Howard philosophical stance is Martin-Löf’s type the-

ory [26], in short MLTT, a famous foundation for constructive

mathematics. It is the theoretical underpinning of several widely

used proof assistants such as Agda, Coq or Lean. In these soft-

ware systems, there is no formal separation between proofs and

programs, as they live in the same syntax and obey the same typ-

ing and computation rules. This monistic credo turnsMLTT into

the quintessential intuitionistic foundation of our modern times,

blending logic and computation into the very same cast.

In the wake of the Swedish tradition of neutrality, MLTT does

not pick a side in the constructivist feud. It neither proves fan

principles from the Brouwerian band nor mechanistic axioms from

the Markovian clique. Considering the claim above that inMLTT
proofs are programs, it does seem a bit surprising that it is not biased

towards the latter side. Surely it ought to be easy to convertMLTT to
the Markovian orthodoxy, for otherwise the Curry-Howard mantra

would be but a misleading advertisement. Let us survey the current

status of each Russian axiom individually in the canon of dependent

type theory.

As we have just explained, it is known thatMP is not derivable

in MLTT [4]. Since it is a consequence of classical logic, it holds in

classical models like the ZF one [38], but it is also possible to add

MP toMLTT while retaining the computational properties through

https://github.com/ppedrot/quote-mltt

Pierre-Marie Pédrot

a form of delimited exceptions [30]. Note that, as usual for such an

expressive system, the exact statement ofMP may matter [8].

As forCT, we already stated that it is negated by classical models,

and thus is not a consequence ofMLTT. By contrast with MP, the
compatibility of CT with dependent type theory is a much more

contentious subject. To make things simpler, we will therefore

focus on this single principle in this paper, and deliberately ignore

Markov’s principle. The proviso about phrasing of the statement

mattering a lot is even more paramount with CT, which is the chief

reason why the problem and its answers are a matter of debate.

In the remainder we will prove that MLTT is indeed compatible

with the strongest form of Church’s thesis usually agreed upon, but

for this we first need to explain what we actually mean by these

sibylline words. We dedicate the next section to a thorough exegesis

of this topic.

2 A COMPREHENSIVE CT SCAN
Contrarily to more archaic systems, MLTT does not need a real-

izability interpretation to turn its proofs into programs. In some

sense, it is already a realizability interpretation, asMLTT terms are

literally bona fide programs. It should therefore be very natural to

add CT toMLTT.
As a matter of fact, as long as the context is empty, the following

rule is admissible

⊢ 𝑀 : N → N

⊢ ⟨𝑀⟩ : Σ𝑝 : N.Π𝑛 : N. Σ𝑘 : N. T (𝑝, 𝑛, 𝑘) × U𝑘 = 𝑀 𝑛

where ⟨𝑀⟩ is some term derived from𝑀 in a systematic way. De-

pending on the pursued goal, this process is variously known in

the type theory world as extraction [22] or quotation [34]. Obvi-

ously, a rule that is derivable for closed sequents is not necessarily

internalizable in the theory, so there is a non-trivial gap to fill there.

An additional issue is that dependent type theories have various

notions of existence. Typically, they contrast dependent sum types

Σ𝑥 : 𝐴. 𝐵 with existential types ∃𝑥 : 𝐴. 𝐵. The precise details

depend on the exact theory considered, but the general rule is that

the former corresponds to actual, constructive evidence, while the

latter stands for mere existence, i.e. no computational content can

be extracted from this type. Such non-computational types are

called propositions, an umbrella term for mildly related concepts.

The three most common instances of propositions are captured

by the realizability-driven Prop universe of CIC [29], the hProp
subuniverse inspired by the univalent world [37], and the SProp
universe of strict propositions [10]. Regardless of the setting, Σ-
types validate choice by construction through large elimination or

projections, while existential types may or may not validate choice.

The arithmetic statement of CT mentions two existential quan-

tifiers, hence we have a priori at least 4 possible translations into

MLTT. In practice, the second one returns an enumerable propo-

sition, so that for most notions of proposition, namely Prop with
singleton elimination or hProp with unique choice, the use of ∃
or Σ results in equivalent statements. We will thus always stick

to a Σ-type for this quantifier. More problematic is the first exis-

tential quantifier, the nature of which leads to radically different

worlds. For conciseness, we will call CTΣ (resp. CT∃) the statement

of Church’s thesis with a Σ (resp. ∃) type as the first existential
quantifier.

As mere existence does not validate choice by default, CT∃ is

much closer to the traditional first-order setting. When ∃ is taken

to live in the Prop universe of CIC, the relative expressivity of

CT∃ has been studied extensively in the setting of synthetic com-

putatibility [6, 7]. An important remark is that the lack of choice

prevents building an internal quoting function (N → N) → N that

associates to some function its concrete code. As already hinted at

before, this means that CT∃ does not necessarily contradict func-

tion extensionality. Actually, we can even go much further: in the

case where propositions are identified with hProps, CT∃ turns out

to be compatible not only with MLTT but also with full-blown

univalence [35]. More generally and quite counterintuitively, uni-

valence is compatible with many principles that would make the

hardcore Bishop-style intuitionist raise a suspicious eyebrow, as

long as they are squashed enough and thus made computationally

harmless [33, 35, 37].

Contrastingly, as Σ-types come with intuitionistic (non)-choice

built-in, CTΣ is the telltale of an extremely weird mathematical

realm. For starters, it immediately implies the existence of a quoting

function and breaks both function extensionality and classical logic.

The consistency of CTΣ with MLTT is an open problem that has

been lingering for a while and seems to be considered a difficult

question by experts [23, 24, 35]. The best result thus far [18] is the

consistency of CTΣ with a stripped-down version ofMLTTwithout

the so-called 𝜉 rule:

Γ, 𝑥 : 𝐴 ⊢ 𝑀 ≡ 𝑁 : 𝐵

Γ ⊢ 𝜆𝑥 : 𝐴.𝑀 ≡ 𝜆𝑥 : 𝐴. 𝑁 : Π𝑥 : 𝐴. 𝐵

Although we understand the difficulties experienced by the authors

of this paper and acknowledge their distinct goals, we consider that

removing this congruence from MLTT when precisely trying to

implement a principle implying the existence of a quoting function

is unarguably throwing the baby with the bathwater. The lack of

the 𝜉 rule basically prevents any computation under a 𝜆-abstraction,

which means that functions are morally identified with their code.

Ubiquitary conversion is a stepping stone of MLTT for program

reasoning, so treating functions as blackboxes is a no-go.

Given the strong relationship between quoting functions and

metaprogramming, we should also mention some attempts at mak-

ing the latter a first-class citizen of dependent type theory. These

systems are built with practical programming in mind rather than

constructive mathematics, but the endeavours are similar enough

that they are worth highlighting. There is in particular a wealth of

literature on contextual types [27], a special kind ofmodal types [13]

capturing well-typed terms in an object context. Although contex-

tual types can coexist with dependent types [16], the ability to

pattern-match on code in these settings is still a difficult prob-

lem that is only satisfyingly handled in the absence of dependent

types [3, 19]. The closest thing to what we achieve in this paper is

an unpublished line of work for dependently-typed quoting [14].

3 HIGH-LEVEL DESCRIPTION
We now give the high-level intuitions that we develop technically

later on. In this paper, we define “MLTT”, read “MLTTwith quotes”,

a minute extension ofMLTTwith quoting operators that implement

CTΣ in a straightforward way. As already explained, CTΣ holds

“Upon This Quote I Will Build My Church Thesis”

externally in MLTT. If we want it as an internal rule, there are two

problems to solve: first, handling terms in an arbitrary context, and

second, showing that our hypothetical internalization preserves

conversion.

Despite the aura of complexity surrounding this question, our

solution is disappointingly simple. The first problemwill be handled

in the most trivial way one can think of. Namely, the primitives

computing the internal version of CTΣ will simply block as long

as their arguments are not closed. Since the return type of these

primitives is first-order, this will not be a problem as it will not

endanger canonicity.

The second problem is solved in a similarly obvious manner.

Given two terms𝑀 ≡ 𝑁 : N → N one needs to ensure that the quo-

tation of these terms agree. In particular, the integer code returned

by these operations must be the same. This sounds complicated, as

in general two equivalent functions may have different codes. In

Turing-complete languages, this is actually impossible to achieve

in a computable way, due to Rice’s theorem. But in MLTT, there is
a very simple way to find a canonical representative of an equiva-

lence class of functions: just pick the normal form! Conversion in

MLTT is decidable, as it virtually amounts to comparing the normal

forms of the considered terms for syntactic equality. This requires

that all well-typed terms have a normal form, but this property is

usually taken for granted in dependent type theories and will for

sure hold true in “MLTT”.
As the astute reader may complain about, this is not enough in

presence of 𝜂-rules, which are included in our system. But even

in this case, our normalization trick can be adapted by simply

maximally𝜂-reducing and stripping all annotations from the normal

form. As a result, it is possible to associate a canonical code to

equivalence classes of convertible terms even up to 𝜂-conversion,

and importantly, the resulting program has the same extensional

behaviour as the source term.

Despite the intuitive simplicity of the above guiding ideas, proofs

about dependent type theory are very tedious and error-prone, let

alone when they contain bits of computability. To keep the naysayer

at bay, all proofs were mechanized in the Coq proof assistant. For

easy reference, we will add hyperlinks to the Coq development

signalled by the icon. Note that for readability, we use named

variables in the paper, but the actual formalization relies on De

Bruijn indices. This will add some impedance to the matching

between the paper statements and the actual Coq code, but it should

be straightforward to go back and forth.

4 BASIC TYPE THEORY
Let us fix some conventions. Since we will be juggling quite a bit

between levels, we will use a different font style to refer to objects

from the metatheory, with types in bold and type ascription written
in set-theoretic style 𝑥 ∈ X. Some metatheoretical types of interest

are X ⇒ Y, the metafunctions from X to Y, and N the metaintegers.

We will write term for the type of “MLTT” terms defined later on.

Our base theory will be an instance of MLTT featuring one

Russell-style universe, negative Π and Σ types with definitional

𝜂-rules, together with a natural number type, an empty type and an

identity type. We recall the syntax of this theory in Figure 1. The

typing rules are standard and feature five kinds of judgments: con-

text well-formedness, type well-formedness, term well-typedness,

type conversion and typed term conversion. To pin down the con-

ventions we expose a representative excerpt of the rules in Figure 2.

We use the usual notations 𝐴 → 𝐵 and 𝐴 × 𝐵 for non-dependent

product and sum respectively. We will write 𝑀 = 𝑁 for Id𝐴𝑀 𝑁

when𝐴 is clear from the context. In practice, we will almost always

use it with𝐴 := N. Similarly, we will sometime drop the annotations

of 𝜆-abstrations and pairs. If 𝑛 ∈ N, we write [𝑛]N ∈ term for the

unary numeral associated to 𝑛.

We will also use some notational devices to discriminate between

intended meanings. We will write Λ := N for numbers coding for

programs.

Partial functions will play an important role. In type theory, there

is a standard encoding [32] going through the partiality monad

℘(𝐴) := N → option 𝐴. A term 𝑝 : ℘(𝐴) is undefined if for all

𝑛 : N, 𝑝 𝑛 = None. Otherwise its associated value is the first 𝑣 s.t.

𝑝 𝑛 = Some 𝑣 .
Although we could encode it, we do not have a built-in option

type in MLTT. Since we will only ever consider partial integers in

this paper, we will rely on a simpler encoding.

Definition 4.1 (Partial integers). We define the type of partial

integers N℘ := N → N. The intuitive meaning of a partial integer

𝑃 : N℘ is the following.

• If for all 𝑛 : N, 𝑃 𝑛 = 0, then 𝑃 is undefined.

• Otherwise, let 𝑛0 the smallest integer such that 𝑃 𝑛0 = S 𝑣
for some 𝑣 . Then 𝑃 evaluates to 𝑣 .

Notation 4.2. Given 𝑃 : N℘ we define the shift of 𝑃 as

𝑃+ : N℘ := 𝜆𝑘 : N. 𝑃 (S𝑘).

The intuitive meaning of evaluation from Definition 4.1 can be

internalized inMLTT through the step evaluation predicate.

Definition 4.3 (Step evaluation). Given𝑀 : N℘,𝑉 : N and𝐾 : N,
we define the step-evaluation predicate, written 𝑀 ⇝ 𝑉 ∥ 𝐾 and

read “𝑀 evaluates to 𝑉 in 𝐾 steps” as

𝑀 ⇝ 𝑉 ∥ 𝐾 : □ :=

recN (_.N℘ → □) (𝜆𝑝 : N℘. 𝑝 0 = S𝑉)
(𝑛, 𝑟 . 𝜆𝑝 : N℘. (𝑝 0 = 0) × (𝑟 𝑝+)) 𝐾 𝑀.

Remark 4.4. If 𝑛 ∈ N, then assuming well-typed enough arguments

we have

𝑀 ⇝ 𝑉 ∥ [𝑛]N ≡
(𝑀 0 = 0) × . . . × (𝑀 [𝑛 − 1]N = 0) × (𝑀 [𝑛]N = S𝑉).

Given the algorithmically-friendly nature ofMLTT, we will pick
a slightly nicer, but equivalent, phrasing of CTΣ. Following [7],

we will merge the Kleene predicate T and its associated decoding

function U into a single function run : Λ → N → N℘. Computation

traces will simply be the number of steps needed to reach a value,

which will be accounted for by the step-evaluation predicate.

Definition 4.5. Henceforth, we will define CT inMLTT as

Π𝑓 : N → N. Σ𝑝 : Λ.Π𝑛 : N. Σ𝑘 : N. run 𝑝 𝑛 ⇝ 𝑓 𝑛 ∥ 𝑘
for some model run : Λ → N → N℘.

LogRel.Computation.html#tEval
LogRel.Computation.html#tEval

Pierre-Marie Pédrot

𝑀, 𝑁,𝐴, 𝐵 ::= 𝑥 | 𝑀 𝑁 | 𝜆𝑥 : 𝐴.𝑀 | □ | Π𝑥 : 𝐴. 𝐵 | Σ𝑥 : 𝐴. 𝐵 | ⟨𝑀, 𝑁 :: 𝑥 : 𝐴, 𝐵⟩ | 𝑀.𝜋1 | 𝑀.𝜋2
| N | 0 | S𝑀 | recN (𝑛. 𝑃) 𝑅0 (𝑚, 𝑟 . 𝑅𝑆)𝑉 | ⊥ | rec⊥ (𝑒. 𝑃)𝑉 | Id𝐴𝑀 𝑁 | refl𝐴𝑀 | recId𝐴𝑀 (𝑦, 𝑒. 𝑃) 𝑅 𝑁 𝑉

Figure 1: Syntax ofMLTT (Coq definition)

⊢ ·
Γ ⊢ 𝐴

⊢ Γ, 𝑥 : 𝐴

⊢ Γ (𝑥 : 𝐴) ∈ Γ

Γ ⊢ 𝑥 : 𝐴

⊢ Γ

Γ ⊢ □
Γ ⊢ 𝐴 : □

Γ ⊢ 𝐴
Γ ⊢ 𝐴 Γ, 𝑥 : 𝐴 ⊢ 𝐵

Γ ⊢ Π𝑥 : 𝐴. 𝐵

Γ ⊢ 𝐴 Γ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵

Γ ⊢ 𝜆𝑥 : 𝐴.𝑀 : Π𝑥 : 𝐴. 𝐵

Γ ⊢ 𝐴 Γ, 𝑥 : 𝐴 ⊢ 𝐵 Γ ⊢ 𝑀 : 𝐴 Γ ⊢ 𝑁 : 𝐵{𝑥 := 𝑀}
Γ ⊢ ⟨𝑀, 𝑁 :: 𝑥 : 𝐴, 𝐵⟩ : Σ𝑥 : 𝐴. 𝐵

Γ, 𝑛 : N ⊢ 𝑃 Γ ⊢ 𝑅0 : 𝑃{𝑛 := 0} Γ,𝑚 : N, 𝑟 : 𝑃{𝑛 :=𝑚} ⊢ 𝑅𝑆 : 𝑃{𝑛 := S𝑚} Γ ⊢ 𝑉 : N

Γ ⊢ recN (𝑛. 𝑃) 𝑅0 (𝑚, 𝑟 . 𝑅𝑆)𝑉 : 𝑃{𝑛 := 𝑉 }
Γ ⊢ 𝑀 : Π𝑥 : 𝐴. 𝐵

Γ ⊢ 𝜆𝑥 : 𝐴.𝑀 𝑥 ≡ 𝑀 : Π𝑥 : 𝐴. 𝐵

Γ ⊢ 𝐴 Γ ⊢ 𝐴 ≡ 𝐴1 Γ ⊢ 𝐴 ≡ 𝐴2 Γ, 𝑥 : 𝐴 ⊢ 𝑀 ≡ 𝑁 : 𝐵

Γ ⊢ 𝜆𝑥 : 𝐴1 . 𝑀 ≡ 𝜆𝑥 : 𝐴2 . 𝑁 : Π𝑥 : 𝐴. 𝐵

Figure 2: Curated excerpt ofMLTT typing rules (Coq definition)

𝑀, 𝑁,𝐴, 𝐵 ::= . . . | ϙ𝑀 | ϛ𝑀 𝑁 | 𝜚 𝑀 𝑁

Figure 3: Additional syntax of “MLTT”

5 “MLTT” EXTENSIONS
We now turn to the definition of the extensions that define “MLTT”
proper.

Definition 5.1. The new term constructors of “MLTT” are de-

fined in Figure 3, and will be collectively referred to as the quoting
primitives.

We give names exposing the intuition of the meaning of those

terms. The term ϙ𝑀 is the quote of𝑀 which is intended to return

the code of the function𝑀 . The term ϛ𝑀 𝑁 is the step-count of𝑀
applied to 𝑁 , i.e. it will return the number of steps needed to evalu-

ate the quote of𝑀 on argument 𝑁 . Finally, 𝜚 𝑀 𝑁 is the reflection
of𝑀 applied to 𝑁 , which produces a proof that indeed the quote

of𝑀 fullfils the expected runtime behaviour.

Definition 5.2 (Computation model). A computation model for

“MLTT” is described by the following:

• a metafunction ⌈·⌉ ∈ term ⇒ N;
• an “MLTT” term run ∈ term.

To define the typing system alone we do not need any additional

requirements on those objects, but let us give some intuition before

proceeding any further.

The ⌈·⌉ function is just some arbitrary Gödel numbering of the

syntax. As already explained, the run function is going to serve as

a Kleene predicate expressed in a functional form. In particular, we

expect run : Λ → N → N℘ and run 𝑝 𝑛 to compute the result of

the application of the program 𝑝 to the argument 𝑛 if it exists. In

practice, run is expected to be defined inMLTT alone, or for that

matter, in a much weaker fragment corresponding to PRA. In the

remainder of this paper, we assume a fixed computation model.

Notation 5.3. We write

𝑀 Ϙ 𝑁 := run (ϙ𝑀) 𝑁 ⇝ 𝑀 𝑁 ∥ ϛ𝑀 𝑁

for the specification of the quoting operators on𝑀 and 𝑁 . Further-

more, given any 𝑝, 𝑛, 𝑘 ∈ N, let
run 𝑝 𝑛 𝑘 := run [𝑝]N [𝑛]N [𝑘]N.

We now have enough to define the typing rules of the additional

“MLTT” primitives in Figure 4. We delay the description of the

conversion rules of these primitives to a later point, because we

still need more infrastructure.

Γ ⊢ 𝑀 : N → N

Γ ⊢ ϙ𝑀 : Λ

Γ ⊢ 𝑀 : N → N Γ ⊢ 𝑁 : N

Γ ⊢ ϛ𝑀 𝑁 : N

Γ ⊢ 𝑀 : N → N Γ ⊢ 𝑁 : N

Γ ⊢ 𝜚 𝑀 𝑁 : 𝑀 Ϙ 𝑁

Figure 4: Typing rules of “MLTT”

Nonetheless, these rules are already sufficient to state the one

internal property of “MLTT” we care about.

Theorem 5.4. “MLTT” proves CT.

Proof. CT is trivially implemented by

𝜆𝑓 : N → N. ⟨ϙ 𝑓 , 𝜆𝑛 : N. ⟨ϛ 𝑓 𝑛, 𝜚 𝑓 𝑛⟩⟩.
□

To finish the specification of “MLTT”, we now need to define the

conversion rules of the theory. This requires some heavy definitions.

Definition 5.5 (Quasi-closedness). Given𝑀 ∈ term and Γ ∈ ctx,
we say that𝑀 is Γ-quasi-closed, written closΓ 𝑀 if, ignoring 𝜆 and

pair annotations, all free variables of𝑀 are in Γ. Some representa-

tive cases are defined at Figure 5. In the particular case where Γ is

empty, we will write clos𝑀 .

Definition 5.6 (Deep normal and neutral forms). We recall the

inductive definition of deep normal and neutral forms of MLTT
terms at Figure 6 and define the additional rules for “MLTT” at
Figure 7.

LogRel.AutoSubst.Ast.html#term
LogRel.DeclarativeTyping.html#TypingDecl
LogRel.Closed.html#is_closedn
LogRel.Closed.html#is_closedn
LogRel.NormalForms.html#dnf
LogRel.NormalForms.html#dnf

“Upon This Quote I Will Build My Church Thesis”

𝑥 ∈ Γ

closΓ 𝑥

closΓ 𝑀 closΓ 𝑁

closΓ 𝑀 𝑁

closΓ,𝑥 :𝐴𝑀

closΓ (𝜆𝑥 : 𝐴.𝑀)
closΓ 𝐴 closΓ,𝑥 :𝐴 𝐵

closΓ (Π𝑥 : 𝐴. 𝐵)
closΓ 𝐴 closΓ,𝑥 :𝐴 𝐵

closΓ (Σ𝑥 : 𝐴. 𝐵)
closΓ 𝑀 closΓ 𝑁

closΓ ⟨𝑀, 𝑁 :: 𝑥 : 𝐴, 𝐵⟩

Figure 5: Quasi-closedness (excerpt)

dne𝑥

dne𝑀

dnf 𝑀

dne𝑀 dnf 𝑁

dne𝑀 𝑁

dnf 𝑀

dnf (𝜆𝑥 : 𝐴.𝑀)
dnf 𝐴 dnf 𝐵

dnf (Π𝑥 : 𝐴. 𝐵)
dnf 𝑃 dne𝑉

dne rec⊥ (𝑒. 𝑃)𝑉
dnf 𝑀 dnf 𝑁

dnf ⟨𝑀, 𝑁 :: 𝑥 : 𝐴, 𝐵⟩

Figure 6: Deep normal / neutralMLTT terms (excerpt)

Normal forms are, as usual, terms which cannot be simplified

further. Neutral forms are a subcase of the former, intuitively cap-

turing the notion of a term whose evaluation is blocked due to a

missing variable. In particular, they cannot trigger new conversions

when they are substituted for a variable. Our definition is standard

for the MLTT fragment, except maybe that we we ignore 𝜆 and

pair type annotations just like for the clos predicate. Only worth

discussing are the newly introduced terms of “MLTT”.
The quote primitives do not generate any new non-neutral nor-

mal forms. Indeed, their expected types are concrete datatypes, so

if we want canonicity we just cannot create new constructors for

those. They do generate new neutrals, though. The intuition is that

these primitives only compute on closed normal forms, so if one of

their argument is not closed, they will block and thus be neutral.

Notation 5.7. We write clnf 𝑀 if both clos𝑀 and dnf 𝑀 .

The last non-trivial ingredient needed is erasure of “MLTT”
terms. We rely on it to quotient normal forms w.r.t. the various

𝜂-rules of our system.

Definition 5.8 (Erasure). Given𝑀 ∈ term, we define its erasure

∥𝑀 ∥ ∈ term by induction on𝑀 . This operation can be understood

as the composition of two finer-grained primitives: first, replace

𝜆 and pair type annotations with a dummy term, and second, per-

form maximal 𝜂-reduction of 𝜆 and pair nodes. We choose □ for

the dummy term, but any closed normal term would do. We give

the relevant operations in Figure 8, all other cases are term homo-

morphisms.

Notation 5.9. Given𝑀 ∈ term we write ⌈⌈𝑀⌉⌉ ∈ N := ⌈∥𝑀 ∥⌉, the
Gödel number of the erasure of𝑀 .

Definition 5.10 . Given 𝑘, 𝑣 ∈ N we define [𝑘, 𝑣]Ϙ ∈ term by

induction on 𝑘 as

[0, 𝑣]Ϙ := reflN (S [𝑣]N)
[𝑘 + 1, 𝑣]Ϙ := (reflN 0) × [𝑘, 𝑣]Ϙ.

We now have all the necessary definitions to define the new

conversion rules of “MLTT” at Figure 9. We give some intuitions

about these conversion rules by paraphrasing the rules. The congru-

ence rules are self-evident. The computation rule for ϙ𝑀 is simply

stating that quoting a closed normal term produces the Gödel num-

ber of its erasure. The two other rules reflect the behaviour of the

run operator in the theory itself. They start by assuming that 𝑀

is a closed normal term, so its quote is a concrete code. Assuming

canonicity, for any 𝑛, 𝑘 ∈ N, run ⌈⌈𝑀⌉⌉ 𝑛 𝑘 must be convertible to a

numeral. Similarly,𝑀 [𝑛]N must be convertible to some numeral 𝑣 .

Since we expect run to model the computation of “MLTT”, there
must be some 𝑘0 ∈ N s.t. run ⌈⌈𝑀⌉⌉ 𝑛 𝑘0 is convertible to S 𝑣 . If 𝑘0 is
the smallest such bound, then ϛ𝑀 [𝑛]N returns 𝑘0, and 𝜚 𝑀 [𝑛]N
must provide a closed proof of 𝑀 Ϙ [𝑛]N. But given the previous

assumptions,𝑀 Ϙ [𝑛]N is convertible to a finite sequence of prod-

ucts of equalities 0 = 0 with a trailing equality S 𝑣 = S 𝑣 . This type
is trivially inhabited by the term [𝑘0, 𝑣]Ϙ.

6 COMPUTATIONAL ADEQUACY
There is still one missing piece for “MLTT” to make sense. Indeed,

in the intuitive explanation of the conversion rules for the quot-

ing primitives we gave above, we argued that run should model

the runtime behaviour of “MLTT”. In spite of this, we have made

no additional assumption on Definition 5.2 so far. We make this

requirement formal as computational adequacy in this section. This

first forces us to endow “MLTT” with a notion of evaluation.

Definition 6.1 (Weak-head normal and neutral forms). We define

weak-head normalwhnf and neutralwhne forms similarly to their

deep counterparts from Figure 6, the only difference being that we

do not require non-neutral subterms to be in normal form. Weak

neutral forms for the quoting operators are the same as deep neutral

forms from Figure 7.

Definition 6.2 (Evaluation). Wemutually define two step-indexed

evaluation relations ↓ and ⇓ in the metatheory, respectively com-

puting the weak-head and the deep normal form. An excerpt of

the MLTT fragment is presented in Figure 10. Weak evaluation

for “MLTT” extensions is defined in Figure 11, the rules for deep

evaluation being the same.

Although both relations are given as inference rules, they really

are step-indexed recursive functions in the metatheory, of type

term ⇒ N ⇒ option term. We write 𝑀 ↑𝑘 and 𝑀 ⇑𝑘 when no

derivation is possible, implicitly meaning that the corresponding

function returns None. We will use the same notations without the

𝑘 index to existentially quantify over this index, e.g.𝑀 ↓ 𝑁 means

that there exists some 𝑘 ∈ N s.t.𝑀 ↓𝑘 𝑁 .

The evaluation rules for the MLTT fragment are, once again,

standard. The only interesting rules are the ones for the quoting

primitives, as they make weak-head evaluation depend on deep

evaluation. All evaluation paths for the quoting primitives start

by deeply evaluating their arguments and checking whether they

are quasi-closed. If not, they immediately return. Otherwise, they

perform a macroscopic evaluation step. For ϙ𝑀 , that just means

quoting the closed normal form into a number. For ϛ𝑀 𝑁 and

LogRel.NormalEq.html#erase
LogRel.NormalEq.html#erase
LogRel.Computation.html#qEvalTm
LogRel.Computation.html#qEvalTm
LogRel.NormalForms.html#whnf
LogRel.NormalForms.html#whnf
LogRel.UntypedReduction.html#eval_body
LogRel.UntypedReduction.html#eval_body

Pierre-Marie Pédrot

¬clos𝑀 dnf 𝑀

dne (ϙ𝑀)
¬(clos𝑀 ∧ clos𝑁) dnf 𝑀 dnf 𝑁

dne (ϛ𝑀 𝑁)
¬(clos𝑀 ∧ clos𝑁) dnf 𝑀 dnf 𝑁

dne (𝜚 𝑀 𝑁)

Figure 7: Deep normal and neutral forms of “MLTT” extensions

∥𝜆𝑥 : 𝐴.𝑀 ∥ :=

{
𝑁 if ∥𝑀 ∥ = 𝑁 𝑥 and 𝑥 ∉ 𝑁

𝜆𝑥 : □. ∥𝑀 ∥ otherwise

∥⟨𝑀, 𝑁 :: 𝑥 : 𝐴, 𝐵⟩∥ :=

{
𝑃 if ∥𝑀 ∥ = 𝑃 .𝜋1 and ∥𝑁 ∥ = 𝑃 .𝜋2
⟨∥𝑀 ∥, ∥𝑁 ∥ :: 𝑥 : □,□⟩ otherwise

Figure 8: Term erasure

Γ ⊢ 𝑀 ≡ 𝑀′
: N → N

Γ ⊢ ϙ𝑀 ≡ ϙ𝑀′
: Λ

Γ ⊢ 𝑀 : N → N clnf 𝑀

Γ ⊢ ϙ𝑀 ≡ [⌈⌈𝑀⌉⌉]N : Λ

Γ ⊢ 𝑀 ≡ 𝑀′
: N → N Γ ⊢ 𝑁 ≡ 𝑁 ′

: N

Γ ⊢ ϛ𝑀 𝑁 ≡ ϛ𝑀′ 𝑁 ′
: N

Γ ⊢ 𝑀 ≡ 𝑀′
: N → N Γ ⊢ 𝑁 ≡ 𝑁 ′

: N

Γ ⊢ 𝜚 𝑀 𝑁 ≡ 𝜚 𝑀′ 𝑁 ′
: 𝑀 Ϙ 𝑁

Γ ⊢ 𝑀 : N → N clnf 𝑀 Γ ⊢ run ⌈⌈𝑀⌉⌉ 𝑛 𝑘0 ≡ S [𝑣]N : N ∀𝑘 < 𝑘0. Γ ⊢ run ⌈⌈𝑀⌉⌉ 𝑛 𝑘 ≡ 0 : N

Γ ⊢ ϛ𝑀 [𝑛]N ≡ [𝑘0]N : N

Γ ⊢ 𝑀 : N → N clnf 𝑀 Γ ⊢ run ⌈⌈𝑀⌉⌉ 𝑛 𝑘0 ≡ S [𝑣]N : N ∀𝑘 < 𝑘0. Γ ⊢ run ⌈⌈𝑀⌉⌉ 𝑛 𝑘 ≡ 0 : N

Γ ⊢ 𝜚 𝑀 [𝑛]N ≡ [𝑘0, 𝑣]Ϙ : 𝑀 Ϙ [𝑛]N

Figure 9: New conversion rules of “MLTT”

𝑥 ↓𝑘 𝑥 𝜆𝑥 : 𝐴.𝑀 ↓𝑘 𝜆𝑥 : 𝐴.𝑀

𝑀 ↓𝑘 𝑀0 whne𝑀0

𝑀 𝑁 ↓𝑘+1 𝑀0 𝑁

𝑀 ⇓𝑘 𝑀0

𝜆𝑥 : 𝐴.𝑀 ⇓𝑘+1 𝜆𝑥 : 𝐴.𝑀0

𝑀 ↓𝑘 𝜆𝑥 : 𝐴.𝑀0 𝑀0{𝑥 := 𝑁 } ↓𝑘 𝑅
𝑀 𝑁 ↓𝑘+1 𝑅

𝑥 ⇓𝑘 𝑥
𝑀 ↓𝑘 𝜆𝑥 : 𝐴.𝑀0 𝑀0{𝑥 := 𝑁 } ⇓𝑘 𝑅

𝑀 𝑁 ⇓𝑘+1 𝑅
𝑀 ↓𝑘 𝑀′ whne𝑀′ 𝑀′ ⇓𝑘 𝑀0 𝑁 ⇓𝑘 𝑁0

𝑀 𝑁 ⇓𝑘+1 𝑀0 𝑁0

Figure 10: Step-indexed evaluation forMLTT (excerpt)

𝜚 𝑀 𝑁 , it corresponds to performing a guarded 𝜇-recursion to find

the smallest index such that the erasure of 𝑀 𝑁 evaluates to a

numeral.

Definition 6.3 (Computational adequacy). We say that the com-

putation model is adequate if it satisfies the following properties.

• We have a derivation ⊢ run : Λ → N → N℘.

• For all 𝑀 ∈ term and 𝑛, 𝑘 ∈ N whenever 𝑀 [𝑛]N ⇑𝑘 then

run ⌈⌈𝑀⌉⌉ 𝑛 𝑘 ⇓ 0.
• For all𝑀 ∈ term and 𝑛, 𝑘, 𝑣 ∈ Nwhenever𝑀 [𝑛]N ⇓𝑘 [𝑣]N

then run ⌈⌈𝑀⌉⌉ 𝑛 𝑘 ⇓ S [𝑣]N.

The last two points are essentially stating that the metathe-

oretical deep evaluation function coincides with the object run
evaluation function. This leaves very little leeway in the potential

implementation of run.

7 SOUNDNESS THEOREMS
In the remainder of this paper, we assume that our globally fixed

computational model is adequate. Under this implicit assumption,

we get the following results.

Theorem 7.1 (Consistency). “MLTT” is consistent.

Theorem 7.2 (Strong normalization). Well-typed terms in
“MLTT” are strongly normalizing.

Theorem 7.3 (Canonicity). Any “MLTT” term 𝑀 such that
⊢ 𝑀 : N normalizes to a numeral.

The rest of this paper is dedicated to the sketch of the proof of

the three above theorems, which all derive from the same property.

8 BASICS OFMLTT LOGICAL RELATIONS
We will prove our metatheoretical results about “MLTT” using a

logical relation model. The base model is basically the now famous

inductive-recursive one from Abel et al. [1], with a handful of

surprisingly minor tweaks. In this section we briefly recall the

principles of Abel-style logical relations.

From a high-level point of view, Abel-style logical relations for

MLTT are just a glorified kind of realizability with a lot of bells and
whistles. Notably, in the semantic world, well-formed types Γ ⊩ 𝐴

LogRel.Main.html#consistency
LogRel.Main.html#consistency
LogRel.Main.html#strong_normalization
LogRel.Main.html#strong_normalization
LogRel.Main.html#nat_canonicity_red
LogRel.Main.html#nat_canonicity_red

“Upon This Quote I Will Build My Church Thesis”

𝑀 ⇓𝑘 𝑀0 clos𝑀0

ϙ𝑀 ↓𝑘+1 [⌈⌈𝑀0⌉⌉]N

𝑀 ⇓𝑘 𝑀0 ¬clos𝑀0

ϙ𝑀 ↓𝑘+1 ϙ𝑀0

𝑀 ⇓𝑘 𝑀0 𝑁 ⇓𝑘 𝑁0 ¬(clos𝑀0 ∧ clos𝑁0)
ϛ𝑀 𝑁 ↓𝑘+1 ϛ𝑀0 𝑁0

𝑀 ⇓𝑘 𝑀0 𝑁 ⇓𝑘 𝑁0 ¬(clos𝑀0 ∧ clos𝑁0)
𝜚 𝑀 𝑁 ↓𝑘+1 𝜚 𝑀0 𝑁0

𝑀 ⇓𝑘 𝑀0 𝑁 ⇓𝑘 [𝑛]N clos𝑀0 𝑘0 ≤ 𝑘 ∥𝑀0∥ [𝑛]N ⇓𝑘0 [𝑣]N ∀𝑘′ < 𝑘0 . ∥𝑀0∥ [𝑛]N ⇑𝑘 ′

ϛ𝑀 𝑁 ↓𝑘+1 [𝑘0]N
𝑀 ⇓𝑘 𝑀0 𝑁 ⇓𝑘 [𝑛]N clos𝑀0 𝑘0 ≤ 𝑘 ∥𝑀0∥ [𝑛]N ⇓𝑘0 [𝑣]N ∀𝑘′ < 𝑘0 . ∥𝑀0∥ [𝑛]N ⇑𝑘 ′

𝜚 𝑀 𝑁 ↓𝑘+1 [𝑘0, 𝑣]Ϙ

Figure 11: Step-indexed weak-head evaluation of “MLTT” extensions

are defined inductively, while well-typed terms p𝐴 | Γ ⊩ 𝑀 : 𝐴

are defined recursively over a proof p𝐴 ∈ Γ ⊩ 𝐴. In turn, well-

typedness is extremely similar to, say, Kleene realizability [36], i.e.

p𝐴 | Γ ⊩ 𝑀 : 𝐴 essentially means that𝑀 weak-head normalizes to

some value 𝑉 , further satisfying some conditions depending on 𝐴.

Due to conversion being an integral part of typing, one also needs

to associate to a given semantic type additional predicates for type

and term convertibility, but they are the expected ones.

Themajor departure from usual realizability in this kind of model

is the proper handling of variables. All semantic predicates are actu-

ally presheaves over contexts equipped with weakenings. Further-

more neutral terms enjoy a very specific status, see e.g. Lemma 8.6.

This will turn out to be important for our goals.

The relation itself is parameterized by syntactic predicates for

the various notions of typing and reduction. These predicates must

satisfy a list of closure properties, which are typically weaker than

the ones enjoyed by the standard typing rules ofMLTT. Another
way to understand this is that logical relations turn a liberal type

system, called declarative, with many closure rules that is easy to

work with, into a lower-level type system that is hardly usable but

which is similar in spirit to the steps performed by a typing algo-

rithm. Proofs in this generic system are in some sense normalized
compared to the declarative system. As a matter of fact, this is a

way to prove decidability of type-checking, since an algorithmic

presentation of type-checking will satisfy the low-level closure

properties. A notable difference with the declarative system is that

generic typing requires making explicit the notion of neutral terms,

through the introduction of neutral convertibility which can be

understood as the usual convertibility restricted to neutral terms.

In the remainder of this section we assume fixed some instance

of syntactic typing and reduction rules forMLTT. Due to their sheer
size and the fact they are neither surprising nor new, we will not

state the closure properties here, but rather link the corresponding

Coq code directly.

Definition 8.1 (Generic Typing). We define the notion of generic

typing as a list of closure properties that our typing rules must

satisfy.

Given generic notions of typing and reduction, one can define

reducibility in the abstract. Our base logical relation is unchanged

w.r.t. Abel et al. [1], so we will not give the full definition in this

paper. To begin with, writing everything in full on paper would

be both unreadable and uninformative, and probably ridden with

typos. Rather, we recall below some representative type formers to

build intuition and point to the Coq development for more details.

We will also consciously ignore universe level issues. They are

technical although important bookkeeping details, but we consider

that they clutter the simple principles behind logical relations, and

since our results are backed up by a mechanized proof, we should

not have to care about such minutiae in the human-readable paper.

Definition 8.2 (Reducibility). We give a partial but evocative

definition of reducibility at Figure 12.

As already explained, we gloss over the details and instead con-

centrate on the high-level view. We abuse implicit arguments in

Figure 12 to keep things readable, and we also omit additional well-

formedness conditions. At the risk of repeating ourselves, this is

really just the run-of-the-mill complete presheaf model forMLTT,
where presheaves have been manually encoded by means of quan-

tifications over all weakenings of the current context. Note the lack

of naturality conditions thanks to Lemma 8.3. In our setting, typed

reduction is simply untyped reduction annotated with proofs that

both sides are well-typed and convertible. Similarly, well-typed neu-

trals are untyped neutrals together with a proof of well-typedness

and self-convertibility. Without further consideration for the low-

level details, the logical relation satisfies some salient properties

that we are going to list below.

Lemma 8.3 (Reducibility irrelevance). For all proofs of type
reducibility p𝐴, q𝐴 ∈ Γ ⊩ 𝐴, if p𝐴 | Γ ⊩ 𝑀 : 𝐴 then q𝐴 | Γ ⊩ 𝑀 : 𝐴

and similarly for the other statements.

This allows us to silently drop the proof of type formation for

reducibility statements as a notational device. As long as there is

one, it does not matter which one we pick.

Lemma 8.4 (Reducibility escape). If Γ ⊩ 𝑀 : 𝐴 then Γ ⊢ 𝑀 : 𝐴

and similarly for the other statements.

Lemma 8.5 (Anti-reduction). Reducibility is closed by typed
anti-weak-reduction.

Lemma 8.6 (Neutral reflection). Given a weakly neutral
term syntactically self-convertible at some type 𝐴, then it is reducible
at that type.

Just like for standard realizability, we need to close reducibility by

substitution to state the fundamental lemma. The relation resulting

LogRel.GenericTyping.html#GenericTyping
LogRel.GenericTyping.html#GenericTyping
LogRel.LogicalRelation.html#LR
LogRel.LogicalRelation.html#LR
LogRel.LogicalRelation.Irrelevance.html#LRIrrelevantCum
LogRel.LogicalRelation.Irrelevance.html#LRIrrelevantCum
LogRel.LogicalRelation.Escape.html#escapeTerm
LogRel.LogicalRelation.Escape.html#escapeTerm
LogRel.LogicalRelation.Reduction.html#redSubstTerm
LogRel.LogicalRelation.Reduction.html#redSubstTerm
LogRel.LogicalRelation.Neutral.html#neuTerm
LogRel.LogicalRelation.Neutral.html#neuTerm

Pierre-Marie Pédrot

Reducibly well-formed types

Γ ⊩N 𝐴 :=
{

red ∈ Γ ⊢ 𝐴 →→∗ N
}

Γ ⊩Π 𝐴 :=



dom ∈ term
cod ∈ term
red ∈ Γ ⊢ 𝐴 →→∗ Π𝑥 : dom. cod
dom ∈ Π(𝜌 : Δ ≤ Γ) . Δ ⊩ dom{𝜌}
cod ∈ Π(𝜌 : Δ ≤ Γ) (𝑥 : dom | Δ ⊩ 𝑥 : dom{𝜌}) . Δ ⊩ cod{𝜌, 𝑥}
. . .


Reducibly well-typed terms at type N for p ∈ Γ ⊩N 𝐴

Γ ⊢ 𝑀 →→∗ 0 : N

p | Γ ⊩N 𝑀 : 𝐴

Γ ⊢ 𝑀 →→∗ S𝑁 : N p | Γ ⊩N 𝑁 : 𝐴

p | Γ ⊩N 𝑀 : 𝐴

Γ ⊢ 𝑀 →→∗ 𝑁 : N whne𝑁 Γ ⊢ne 𝑁 : N

p | Γ ⊩N 𝑀 : 𝐴

Reducibly well-typed terms at product type for p ∈ Γ ⊩Π 𝐴

p | Γ ⊩Π 𝑀 : 𝐴 :=


nf ∈ term
red ∈ Γ ⊢ 𝑀 →→∗ nf : Π𝑥 : dom. cod
app ∈ Π(𝜌 : Δ ≤ Γ) (𝑥 : dom | Δ ⊩ 𝑥 : dom{𝜌}) . cod 𝑥 | Δ ⊩ nf{𝜌} 𝑥 : cod{𝜌, 𝑥}
. . .


Figure 12: Reducibility (excerpt)

from this closure is known in the literature as validity. We link to

the various notions of validity from the development for reference,

but refrain from writing them in full in the paper.

Theorem 8.7 (Fundamental lemma). Well-typedMLTT terms
are valid.

9 THE LOGICAL RELATION FOR “MLTT”
For technical reasons, we will work with a slightly tweaked version

of the additional typing rules of “MLTT”. The rules from Figure 9

are presented for readability purposes, and will be derivable rules of

the actually considered system. The differences are the following.

First, instead of a global typing axiom for run, we add it as a

premise to the “MLTT” rules that require it, i.e. those for ϛ and

𝜚 . This is just a cosmetic change that strengthens induction over

“MLTT” derivations.
Second, for reasons that will become clear soon, we turn the

well-typedness premises of those rules into self-convertibility. For

instance, the introduction rule of ϙ becomes:

Γ ⊢ 𝑀 ≡ 𝑀 : N → N

Γ ⊢ ϙ𝑀 : Λ

The exact rules are defined as an inductive type in the follow-

ing file . By reflexivity of term conversion, it is clear that these

rules imply the ones from Figure 9. Once we have proved The-

orem 9.13, we will also be able to derive that self-convertibility

implies well-typedness, which actually shows that the two versions

are equivalent.

The model itself is defined in terms of a small-step reduction

relation, so we need to define it properly for MLTT, in addition to

the big-step variant from Section 6.

Definition 9.1 (Reduction). We mutually define weak-head and

deep reductions, respectively written 𝑀 →→ 𝑁 and 𝑀 ⇒⇒ 𝑁 in

Figure 13 for an MLTT excerpt and in Figure 14 for the quoting

(𝜆𝑥 : 𝐴.𝑀) 𝑁 →→ 𝑀{𝑥 := 𝑁 }
𝑀 →→ 𝑀′

𝑀 𝑁 →→ 𝑀′ 𝑁

(𝜆𝑥 : 𝐴.𝑀) 𝑁 ⇒⇒ 𝑀{𝑥 := 𝑁 }
𝑀 →→ 𝑀′

𝑀 𝑁 ⇒⇒ 𝑀′ 𝑁

𝑀 ⇒⇒ 𝑀′ whne𝑀

𝑀 𝑁 ⇒⇒ 𝑀′ 𝑁

𝑁 ⇒⇒ 𝑁 ′ dne𝑀

𝑀 𝑁 ⇒⇒ 𝑀 𝑁 ′

𝑀 ⇒⇒ 𝑀′

𝜆𝑥 : 𝐴.𝑀 ⇒⇒ 𝜆𝑥 : 𝐴.𝑀′

Figure 13: MLTT reduction (excerpt)

primitives. Once again, deep reduction for the latter is the same as

weak-head reduction.

Note that deep reduction is simply iterated weak-head reduction

on the subterms of weak-head normal forms. These reductions are a

specific sequentialization of the corresponding evaluation function,

and their reflexive-transitive closure compute the same normal

forms. Importantly, these relations are deterministic.

One major remark for our proof to go through is that in Abel-

style logical relations, the closure properties of type and term con-

version are compatible with the existence of a deep normal form.

Said otherwise, we never perform conversion on terms potentially

introducing non-termination. This can be leveraged by the follow-

ing definition.

Definition 9.2 (Deep Conversion). We define deep term conver-

sion Γ ⊢nf 𝑀 ≡ 𝑁 : 𝐴 as the predicate Γ ⊢ 𝑀 ≡ 𝑁 : 𝐴 extended

with the following side-conditions.

• There is some𝑀0 s.t.𝑀 ⇓ 𝑀0 and Γ ⊢ 𝑀 ≡ 𝑀0 : 𝐴.

• There is some 𝑁0 s.t. 𝑁 ⇓ 𝑁0 and Γ ⊢ 𝑁 ≡ 𝑁0 : 𝐴.

LogRel.LogicalRelation.html#LR
LogRel.LogicalRelation.html#NatRedTm.NatRedTm
LogRel.LogicalRelation.html#PiRedTm.PiRedTm
LogRel.Validity.html#termValidity
LogRel.Fundamental.html#Fundamental
LogRel.Fundamental.html#Fundamental
LogRel.DeclarativeTyping.html#Definitions
LogRel.UntypedReduction.html#OneRedAlg
LogRel.UntypedReduction.html#OneRedAlg
LogRel.DeepTyping.html#ConvTermNfDecl
LogRel.DeepTyping.html#ConvTermNfDecl

“Upon This Quote I Will Build My Church Thesis”

𝑀 ⇒⇒ 𝑀′

ϙ𝑀 →→ ϙ𝑀′
clnf 𝑀

ϙ𝑀 →→ [⌈⌈𝑀⌉⌉]N
𝑀 ⇒⇒ 𝑀′

ϛ𝑀 𝑁 →→ ϛ𝑀′ 𝑁

dnf 𝑀 𝑁 ⇒⇒ 𝑁 ′

ϛ𝑀 𝑁 →→ ϛ𝑀 𝑁 ′
clnf 𝑀 ∥𝑀 ∥ [𝑛]N ⇓𝑘0 [𝑣]N ∀𝑘 < 𝑘0 . ∥𝑀 ∥ [𝑛]N ⇑𝑘

ϛ𝑀 [𝑛]N →→ [𝑘0]N
𝑀 ⇒⇒ 𝑀′

𝜚 𝑀 𝑁 →→ 𝜚 𝑀′ 𝑁

dnf 𝑀 𝑁 ⇒⇒ 𝑁 ′

𝜚 𝑀 𝑁 →→ 𝜚 𝑀 𝑁 ′
clnf 𝑀 ∥𝑀 ∥ [𝑛]N ⇓𝑘0 [𝑣]N ∀𝑘 < 𝑘0 . ∥𝑀 ∥ [𝑛]N ⇑𝑘

𝜚 𝑀 [𝑛]N →→ [𝑘0, 𝑣]Ϙ

Figure 14: Weak-head reduction of “MLTT” extensions

• 𝑀0 and 𝑁0 have the same erasure, i.e. ∥𝑀0∥ = ∥𝑁0∥.
We define similarly deep type conversion Γ ⊢nf 𝐴 ≡ 𝐵 and deep

neutral conversion.

When instantiating the logical relation with deep conversions,

one gets access to the fact that both sides of the conversion deeply

normalize, and furthermore they have the same erasure, i.e. they are

equal up to 𝜂-expansions and 𝜆 and pair annotations. This is the rea-

son for the alternative “MLTT” presentation where typing premises

of quoting primitives are turned into self-convertibility. Before

proving the fundamental lemma, syntactic deep self-convertibility

gives more information than just syntactic typability.

Lemma 9.3 (Deep Typing). The typing rules where the various
conversion predicates are replaced by their deep equivalent satisfy the
generic typing interface.

It is somewhat insightful to remark that the requirement that we

erase the normal forms before comparing them is critical for the

above lemma. Indeed, the generic conversion rules for the negative

Π and Σ types are given directly as 𝜂-expansions. Therefore, two

convertible normal forms may differ on their annotations or up

to some 𝜂-expansion. Erasing all annotations and maximally 𝜂-

reducing ensures thus that the result is unique for each equivalence

class.

As a result, the logical relation instantiated with deep typing

is a model of MLTT. We only have to check that the additional

“MLTT” rules are also interpreted. Due to the fact that semantic

self-convertibility is equivalent to semantic well-typedness, it is

enough to check the rules from Figure 9, the ones from Figure 4 are

a consequence of the former.

Lemma 9.4 (Quote Reducibility). The conversion rules for the
ϙ primitive hold in the reducibility model.

Proof. We focus on the congruence rule, since the reduction

one is a subcase. Let us assume Γ ⊩ 𝑀 ≡ 𝑀′
: N → N. In particular,

we know by escape that Γ ⊢nf 𝑀 ≡ 𝑀′
: N → N. We thus have two

terms 𝑀0 and 𝑀
′
0
s.t. 𝑀 ⇓ 𝑀0, 𝑀

′ ⇓ 𝑀′
0
and ∥𝑀0∥ = ∥𝑀′

0
∥. From

this equality, either both 𝑀0 and 𝑀
′
0
are quasi-closed or both are

not.

In the latter case, both ϙ𝑀0 and ϙ𝑀
′
0
are neutral and convertible,

so by reflection they are reducibly convertible. We conclude by anti-

reduction.

Otherwise, they reduce to numerals [⌈⌈𝑀0⌉⌉]N and [⌈⌈𝑀′
0
⌉⌉]N,

which are equal by erased equality, and thus reducibly convert-

ible. We conclude again by anti-reduction. □

In order to prove reducibility of the two remaining quoting

primitives, we need some fair amount of rewriting theory about our

quote-extended 𝜆-calculus. The computation model is completely

untyped, and we will only ever care about erased terms, so we

are forced to consider variants of reductions that ignore 𝜆 and pair

annotations. The following results are standard [5], althoughmaybe

for the interleaving of weak and deep reduction when reducing the

quoting primitives.

Definition 9.5 (Parallel Reduction). We define parallel reduction

up to 𝜆 and pair annotations for “MLTT” in the usual way. Since the

reduction rules for the quoting primitives are macroscopic, their

parallel version cause no trouble.

Lemma 9.6 (Inclusion). Parallel reduction contains deep reduc-
tion.

Lemma 9.7 (Confluence). Parallel reduction is confluent.

Definition 9.8 (Standard Reduction). We define standard reduc-

tion up to 𝜆 and pair annotations for “MLTT” in the usual way.

Standard reduction for quoting primitives is defined through stan-

dard reduction of the subterms rather than closure by weak-head

reduction.

Lemma 9.9 (Parallel inclusion). Standard reduction contains
parallel reduction.

Lemma 9.10 (Standardisation). Standard reduction to a deep
normal form implies deep evaluation up to 𝜆 and pair annotations.

Lemma 9.11 (Erasure Irrelevance). Standard reduction to a
deep normal form is preserved by erasure.

The equivalences linking these various reductions and evalu-

ations make it easy to switch to one view or another, depending

on the kind of property one wants to show. With these tools in

hand, we can tackle the remaining reducibility proofs. Note also

that computational adequacy is not required for any of the above

properties, it is only used in the following lemma.

Lemma 9.12 (Reflection Reducibility). The conversion rules
for the ϛ and 𝜚 primitives hold in the reducibility model.

Proof. Once again we focus on the congruence rule. Since the

two primitives behave computationally the same, we only treat the

𝜚 case which is more involved typingwise. Let us assume Γ ⊩ 𝑀 ≡
𝑀′

: N → N and Γ ⊩ 𝑁 ≡ 𝑁 ′
: N. By the same argument as before,

we have deeply normal terms𝑀0,𝑀
′
0
(resp. 𝑁0 and 𝑁

′
0
) convertible

to the original terms and with the same erasure, and thus with the

same closedness.

LogRel.DeepTyping.html#DeepTypingProperties
LogRel.DeepTyping.html#DeepTypingProperties
LogRel.Substitution.Introductions.Quote.html#QuoteEvalRedEq
LogRel.Substitution.Introductions.Quote.html#QuoteEvalRedEq
LogRel.Confluence.html#pred
LogRel.Confluence.html#pred
LogRel.Confluence.html#red_pred
LogRel.Confluence.html#red_pred
LogRel.Confluence.html#pred_confluent
LogRel.Confluence.html#pred_confluent
LogRel.Standardisation.html#sred
LogRel.Standardisation.html#sred
LogRel.Standardisation.html#pred_sred
LogRel.Standardisation.html#pred_sred
LogRel.Standardisation.html#sred_dredalg
LogRel.Standardisation.html#sred_dredalg
LogRel.Standardisation.html#sred_erased
LogRel.Standardisation.html#sred_erased
LogRel.Substitution.Introductions.Reflect.html#ReflectRedEq
LogRel.Substitution.Introductions.Reflect.html#ReflectRedEq

Pierre-Marie Pédrot

If not all these terms are closed, then 𝜚 𝑀0 𝑁0 and 𝜚 𝑀
′
0
𝑁 ′
0
are

convertible neutral terms, we conclude by the same argument as

above.

Otherwise, they are all closed. In this case, by reducibility, 𝑁0 =

𝑁 ′
0
= [𝑛]N for some 𝑛 ∈ N. Since reducibility is closed by appli-

cation, we get Γ ⊩ 𝑀 𝑁 ≡ 𝑀′ 𝑁 ′
: N. This implies that both

applications deeply evaluate to the same semantic integer, i.e. a

series of successors ending either with 0 or a neutral. By confluence,
we rule out the second case as𝑀0 𝑁0 is closed, so these terms reduce

to some numeral [𝑣]N. By confluence and standardisation,𝑀0 [𝑛]N
also evaluates to [𝑣]N. By irrelevance of erasure, ∥𝑀0∥ [𝑛]N also

evaluates to [𝑣]N. By computational adequacy, there exists some 𝑘0
s.t. run ⌈⌈𝑀0⌉⌉ 𝑛 𝑘0 ⇓ S [𝑣]N and run ⌈⌈𝑀0⌉⌉ 𝑛 𝑘′ ⇓ 0 for all 𝑘′ < 𝑘0.
Given that 𝑀0 and 𝑀

′
0
have the same erasure, this also holds for

𝑀′
0
. Hence, we can fire the ϛ and 𝜚 reduction rules, so that ϛ𝑀 𝑁

and ϛ𝑀′ 𝑁 ′
evaluate to [𝑘0]N and 𝜚 𝑀 𝑁 and 𝜚 𝑀′ 𝑁 ′

evaluate

to [𝑘0, 𝑣]Ϙ. We are almost done, the only remaining problem is to

show that this value is indeed of semantic type𝑀 Ϙ [𝑛]N. But this
is a trivial, albeit technically annoying consequence of the previous

normalizations properties of the various terms implied. □

Finally, one also has to prove validity for these conversion rules,

that is to say that they are stable by substitution. This turns out

to be a trivial fact. Congruence rules are stable by substitution

by construction. As for the other conversion rules, it is enough

to observe that both quasi-closedness and erasure of quasi-closed

terms are stable by substitution. We get the generalization below

as an immediate result.

Theorem 9.13 (Fundamental Lemma for “MLTT”). Well-
typed “MLTT” terms are valid.

The metatheoretical facts we claimed in Section 7 are direct

consequences of the basic properties of the logical relation. Hence

we are done.

10 MECHANIZATION
While the Abel et al. proof has been implemented in Agda [1],

our mechanization is written in Coq and is based upon a recent

work by Adjedj et al. [2] that encodes away induction-recursion

into standard inductive types through a technique known as small

induction recursion [15]. Apart from this, the two formalizations

are globally the same. The only advantage of the Coq version, which

we believe to be decisive, is the availability of tactics. The largish

corpus of proofs relating the numerous untyped reductions are

rendered tractable by the reliance on handcrafted automatization,

when such proofs would have been a nightmare to write explicitly

in Agda as terms.

All theorems stated in the paper have been formalized. The only

thing that we did not formally prove was the actual existence of

adequate models of computation. We globally axiomatized one in

the development instead. The precise list of axioms can be retrieved

by applying the Print Assumptions command to the toplevel the-

orems .

The reader may reasonably complain about the use of axioms, as

they may very well be inconsistent. Yet, the existence of adequate

models is at the same time an utterly trivial fact, and a technically

extremely challenging task. Indeed, at an intuitive level run has

already been implemented inMLTT, because we defined evaluation
as a step-indexed function in our metatheory, which turns out to be

a variant ofMLTT. As explained before, we do not even need that

much, the fragment we use to implement basically fits into PRA. In
any paper proof, such a computability result would be immediately

brushed off as obvious, barely requiring any explanation. Now, in

the land of formal proofs, given the non-trivial size of our untyped

language, implementing evaluation and proving anything about it

in Coq was already cumbersome with transparent conversion rules,

tactics and handy notations. By contrast, doing the same directly in

the object theory is monstruous enough to drive any sane person

into sheer madness, let alone considering that we have to work up

to a Gödel encoding. Out of common decency we will not attempt

to close this unquestionable gap.

11 FUTUREWORK
Although we did not formally prove it out of unrepented sloth, it is

quite clear that “MLTT” enjoys decidability of type-checking. Since

type interpretation is unchanged in the logical relation, the global

shape of the algorithm remains the same as the one forMLTT. The
only potential trouble comes from computational behaviour of the

quoting primitives. We briefly discuss why they cause no issue.

At heart, the usual algorithm applies rules eagerly for typing, and

switches to another behaviour when facing conversion, in which

case it recursively weak-head reduces the compared terms and com-

pares subterms modulo 𝜂-expansion. In order to handle “MLTT”,
we thus need to ensure that weak-head evaluation to a normal form

is computable on well-typed terms. But this is a consequence of the

fundamental lemma, and actually, if we squint at our reducibility

proofs long enough, they already contain a conversion algorithm.

Also, given that our Coq proof is based on a development that

proves decidability of type-checking for MLTT [2], it should be

quite simple to prove it for “MLTT”.

Another topic that may be of interest is the compatibility of

MLTT with the full Russian axiomatic. We know that MLTT is

compatible with MP, and after this paper we know that MLTT is

compatible withCT. Hence a natural question is whetherMLTT can
accommodate both axioms at the same time. We are convinced that

not only this is the case, but also that the model described here can

be easily extended to handleMP. The reason for this confidence lies

in the uncanny similarity between those two principles. Just likeCT,
it is true that Markov’s rule, the external version ofMP, is derivable
inMLTT. This can be showed using a variant of Friedman’s trick [9,

28, 31]. Again, like CT, the return type of this rule is a concrete data

type, i.e. a Σ0
1
formula. It should therefore be easy to add a binary

term former 𝜇 for MP

Γ ⊢ 𝑀 : N → N Γ ⊢ 𝑁 : ¬¬(Σ𝑛 : N. 𝑀 𝑛 = 0)
Γ ⊢ 𝜇 𝑀 𝑁 : Σ𝑛 : N. 𝑀 𝑛 = 0

that blocks until both arguments are closed and returns the witness

extracted by Friedman’s trick when this is the case. If we do not care

about decidability, we could even opt for an unbounded search. Note

that one must be careful to return the same integer for convertible

arguments, i.e. 𝜇 must be congruent, but this is easily obtained as

the return type can be turned into an hProp by considering instead

the smallest index where𝑀 evaluates to 0.

LogRel.Fundamental.html#Fundamental
LogRel.Fundamental.html#Fundamental
LogRel.Main.html#consistency
LogRel.Main.html#consistency

“Upon This Quote I Will Build My Church Thesis”

More generally, we trust that many such axioms can be added

to MLTT this way. The constraints are that these axioms should be

admissible on closed terms and return Σ0
1
formulae. Furthermore,

the external process turning closed proofs into proofs of the con-

clusion should produce a unique term for each equivalence class of

convertible arguments. We leave the exploration of this subject for

a later time.

12 CONCLUSION
In this paper, we proved that it was possible to add CTΣ toMLTT
without disrupting any of the desirable properties of the resulting

system such as consistency, strong normalization and canonicity.

Against all odds, the model used for this is the most straightforward

one can conceive, as it boils down to the standard logical relation

forMLTT. The computational content of our variant of Church’s

thesis is too borderline stupid to even be considered unsurprising:

it computes on closed terms, period. The only mildly non-trivial

phenomenon is the need for erasure of annotations and maximal

𝜂-reduction, but that trick is hardly worthy of attention. As a result,

we are still bewildered about the reason for which this problem

was believed to be hard.

The theorems have been formalized in Coq, greatly reducing

the risk of an accidental error in the proof. For simplicity, the

development still axiomatizes the computation model in the object

theory. In all likelihood, these axioms would be deemed self-evident

in a computability theory paper proof.

Finally, we believe that the generic recipe we followed for this

model can be generalized to many other admissible principles in

dependent type theory.

REFERENCES
[1] Andreas Abel, Joakim Öhman, and Andrea Vezzosi. 2017. Decidability of Con-

version for Type Theory in Type Theory. Proc. ACM Program. Lang. 2, POPL,
Article 23 (Dec. 2017), 29 pages. https://doi.org/10.1145/3158111

[2] Arthur Adjedj, Meven Lennon-Bertrand, Kenji Maillard, Pierre-Marie Pédrot, and

Loïc Pujet. 2024. Martin-Löf à la Coq. In Proceedings of the 13th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2024, London, UK,
January 15-16, 2024, Sandrine Blazy, Brigitte Pientka, Amin Timany, and Dmitriy

Traytel (Eds.). ACM. https://doi.org/10.1145/3636501.3636951

[3] Matt Brown and Jens Palsberg. 2016. Breaking through the normalization barrier:

a self-interpreter for f-omega. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016, St.
Petersburg, FL, USA, January 20 - 22, 2016, Rastislav Bodík and Rupak Majumdar

(Eds.). ACM, 5–17. https://doi.org/10.1145/2837614.2837623

[4] Thierry Coquand and Bassel Mannaa. 2017. The Independence of Markov’s

Principle in Type Theory. Log. Methods Comput. Sci. 13, 3 (2017). https://doi.

org/10.23638/LMCS-13(3:10)2017

[5] René David. 1995. Une preuve simple de résultats classiques en lambda-calcul.

Comptes rendus de l’Académie des sciences. Série I, Mathématique 320 (Jan. 1995),
p 1401–1406. https://hal.science/hal-00384995

[6] Yannick Forster. 2021. Church’s Thesis and Related Axioms in Coq’s Type Theory.

In 29th EACSL Annual Conference on Computer Science Logic, CSL 2021, January
25-28, 2021, Ljubljana, Slovenia (Virtual Conference) (LIPIcs, Vol. 183), Christel
Baier and Jean Goubault-Larrecq (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 21:1–21:19. https://doi.org/10.4230/LIPICS.CSL.2021.21

[7] Yannick Forster. 2021. Computability in constructive type theory. Ph. D. Disserta-
tion. Saarland University, Germany. https://d-nb.info/1255182792

[8] Yannick Forster, Dominik Kirst, Bruno da Rocha Paiva, and Vincent Rahli. 2023.

Markov’s Principles in Constructive Type Theory. In 29th International Confer-
ence on Types for Proofs and Programs, TYPES 2023, June 12-15, 2023, Universitat
Politècnica de València, Spain.

[9] Harvey Friedman. 2007. Classically and intuitionistically provably recursive
functions. Vol. 669. 21–27. https://doi.org/10.1007/BFb0103100

[10] Gaëtan Gilbert. 2019. A type theory with definitional proof-irrelevance. (Une
théorie des types avec insignifiance des preuves définitionnelle). Ph. D. Dissertation.
Mines ParisTech, France. https://tel.archives-ouvertes.fr/tel-03236271

[11] Jean-Yves Girard, Paul Taylor, and Yves Lafont. 1989. Proofs and Types. Cambridge

University Press.

[12] Kurt Gödel. 1958. Über eine bisher noch nicht benützte Erweiterung des finiten

Standpunktes. Dialectica 12, 3-4 (1958), 280–287. https://doi.org/10.1111/j.1746-

8361.1958.tb01464.x

[13] Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal. 2021. Multimodal

Dependent Type Theory. Log. Methods Comput. Sci. 17, 3 (2021). https://doi.org/

10.46298/LMCS-17(3:11)2021

[14] Håkon Robbestad Gylterud. 2019. Quoting operations as extensions of 𝜆-calculus

and type theory. (2019). https://hakon.gylterud.net/research/quote/cas-2019-

02.pdf

[15] Peter Hancock, Conor McBride, Neil Ghani, Lorenzo Malatesta, and Thorsten

Altenkirch. [n. d.]. Small Induction Recursion. In Typed Lambda Calculi and
Applications (Berlin, Heidelberg, 2013), Masahito Hasegawa (Ed.). Springer Berlin

Heidelberg, 156–172. https://doi.org/10.1007/978-3-642-38946-7_13

[16] Jason Z. S. Hu, Brigitte Pientka, and Ulrich Schöpp. 2022. A Category Theoretic

View of Contextual Types: From Simple Types to Dependent Types. ACM Trans.
Comput. Log. 23, 4 (2022), 25:1–25:36. https://doi.org/10.1145/3545115

[17] John Hyland. 1982. The Effective Topos. Studies in logic and the foundations of
mathematics 110 (1982), 165–216.

[18] Hajime Ishihara, Maria Emilia Maietti, Samuele Maschio, and Thomas Streicher.

2018. Consistency of the intensional level of the Minimalist Foundation with

Church’s thesis and axiom of choice. Arch. Math. Log. 57, 7-8 (2018), 873–888.
https://doi.org/10.1007/S00153-018-0612-9

[19] Junyoung Jang, Samuel Gélineau, Stefan Monnier, and Brigitte Pientka. 2022.

Mœbius: metaprogramming using contextual types: the stage where System F

can pattern match on itself. Proc. ACM Program. Lang. 6, POPL (2022), 1–27.

https://doi.org/10.1145/3498700

[20] Stephen Cole Kleene. 1943. Recursive Predicates and Quantifiers. Trans. Amer.
Math. Soc. 53 (1943), 41–73. https://doi.org/10.2307/2267986

[21] Stephen Cole Kleene. 1945. On the interpretation of intuitionistic number theory.

Journal of Symbolic Logic 10 (1945), 109 – 124.

[22] Pierre Letouzey. 2004. Programmation fonctionnelle certifiée : L’extraction de
programmes dans l’assistant Coq. (Certified functional programming : Program
extraction within Coq proof assistant). Ph. D. Dissertation. University of Paris-Sud,
Orsay, France. https://tel.archives-ouvertes.fr/tel-00150912

[23] Maria Emilia Maietti. 2009. A minimalist two-level foundation for constructive

mathematics. Ann. Pure Appl. Log. 160, 3 (2009), 319–354. https://doi.org/10.

1016/J.APAL.2009.01.006

[24] Maria Emilia Maietti and Giovanni Sambin. 2005. Toward a minimalistic founda-

tion for constructive mathematics. In From sets and types to topology and analysis
- Towards practicable foundations for constructive mathematics, Laura Crosilla and
Peter M. Schuster (Eds.). Oxford logic guides, Vol. 48. Oxford University Press.

[25] Maurice Margenstern. 1995. L’école constructive de Markov. Revue d’histoire des
mathématiques (1995).

[26] Per Martin-Löf. 1984. Intuitionistic type theory. Studies in proof theory, Vol. 1.

Bibliopolis.

[27] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. 2008. Contextual

modal type theory. ACM Trans. Comput. Log. 9, 3 (2008), 23:1–23:49. https:

//doi.org/10.1145/1352582.1352591

[28] Erik Palmgren. 1995. The Friedman-Translation for Martin-Löf’s Type Theory.

Math. Log. Q. 41 (1995), 314–326. https://doi.org/10.1002/MALQ.19950410304

[29] Christine Paulin-Mohring. 1989. Extraction de programmes dans le Calcul des
Constructions. (Program Extraction in the Calculus of Constructions). Ph. D. Dis-
sertation. Paris Diderot University, France. https://tel.archives-ouvertes.fr/tel-

00431825

[30] Pierre-Marie Pédrot. 2020. Russian Constructivism in a Prefascist Theory. In LICS
’20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken,
Germany, July 8-11, 2020, Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and

Dale Miller (Eds.). ACM, 782–794. https://doi.org/10.1145/3373718.3394740

[31] Pierre-Marie Pédrot and Nicolas Tabareau. 2018. Failure is Not an Option - An

Exceptional Type Theory. In Programming Languages and Systems - 27th Euro-
pean Symposium on Programming, ESOP 2018, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece,
April 14-20, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 10801), Amal

Ahmed (Ed.). Springer, 245–271. https://doi.org/10.1007/978-3-319-89884-1_9

[32] Fred Richman. 1983. Church’s Thesis Without Tears. J. Symb. Log. 48, 3 (1983),
797–803. https://doi.org/10.2307/2273473

[33] Egbert Rijke, Michael Shulman, and Bas Spitters. 2020. Modalities in homotopy

type theory. Log. Methods Comput. Sci. 16, 1 (2020). https://doi.org/10.23638/

LMCS-16(1:2)2020

[34] Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick Forster,

Fabian Kunze, Gregory Malecha, Nicolas Tabareau, and Théo Winterhalter. 2020.

The MetaCoq Project. J. Autom. Reason. 64, 5 (2020), 947–999. https://doi.org/10.

1007/S10817-019-09540-0

[35] Andrew W. Swan and Taichi Uemura. 2021. On Church’s thesis in cubical

assemblies. Math. Struct. Comput. Sci. 31, 10 (2021), 1185–1204. https://doi.org/

10.1017/S0960129522000068

https://doi.org/10.1145/3158111
https://doi.org/10.1145/3636501.3636951
https://doi.org/10.1145/2837614.2837623
https://doi.org/10.23638/LMCS-13(3:10)2017
https://doi.org/10.23638/LMCS-13(3:10)2017
https://hal.science/hal-00384995
https://doi.org/10.4230/LIPICS.CSL.2021.21
https://d-nb.info/1255182792
https://doi.org/10.1007/BFb0103100
https://tel.archives-ouvertes.fr/tel-03236271
https://doi.org/10.1111/j.1746-8361.1958.tb01464.x
https://doi.org/10.1111/j.1746-8361.1958.tb01464.x
https://doi.org/10.46298/LMCS-17(3:11)2021
https://doi.org/10.46298/LMCS-17(3:11)2021
https://hakon.gylterud.net/research/quote/cas-2019-02.pdf
https://hakon.gylterud.net/research/quote/cas-2019-02.pdf
https://doi.org/10.1007/978-3-642-38946-7_13
https://doi.org/10.1145/3545115
https://doi.org/10.1007/S00153-018-0612-9
https://doi.org/10.1145/3498700
https://doi.org/10.2307/2267986
https://tel.archives-ouvertes.fr/tel-00150912
https://doi.org/10.1016/J.APAL.2009.01.006
https://doi.org/10.1016/J.APAL.2009.01.006
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1002/MALQ.19950410304
https://tel.archives-ouvertes.fr/tel-00431825
https://tel.archives-ouvertes.fr/tel-00431825
https://doi.org/10.1145/3373718.3394740
https://doi.org/10.1007/978-3-319-89884-1_9
https://doi.org/10.2307/2273473
https://doi.org/10.23638/LMCS-16(1:2)2020
https://doi.org/10.23638/LMCS-16(1:2)2020
https://doi.org/10.1007/S10817-019-09540-0
https://doi.org/10.1007/S10817-019-09540-0
https://doi.org/10.1017/S0960129522000068
https://doi.org/10.1017/S0960129522000068

Pierre-Marie Pédrot

[36] A.S. Troelstra and D. Dalen. 1988. Constructivism in Mathematics: An Introduction.
Number vol. 1 in Constructivism in Mathematics. North-Holland.

[37] The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent
Foundations of Mathematics. https://homotopytypetheory.org/book, Institute for

Advanced Study.

[38] Benjamin Werner. 1997. Sets in Types, Types in Sets. In Theoretical Aspects
of Computer Software, Third International Symposium, TACS ’97, Sendai, Japan,
September 23-26, 1997, Proceedings (Lecture Notes in Computer Science, Vol. 1281),
Martín Abadi and Takayasu Ito (Eds.). Springer, 530–346. https://doi.org/10.

1007/BFB0014566

https://homotopytypetheory.org/book
https://doi.org/10.1007/BFB0014566
https://doi.org/10.1007/BFB0014566

	Abstract
	1 Introduction
	2 A comprehensive CT scan
	3 High-level Description
	4 Basic Type Theory
	5 “MLTT” Extensions
	6 Computational Adequacy
	7 Soundness Theorems
	8 Basics of MLTT Logical Relations
	9 The Logical Relation for ``MLTT"
	10 Mechanization
	11 Future Work
	12 Conclusion
	References

