Presheaves as an Purified Effectful Call-by-Value
Language

Pierre-Marie Pédrot

September 5, 2019

Abstract

This note shows that the well-known presheaf construction can be understood as a
standard realizability technique applied to an effectful language. More specifically, the
naturality requirement of presheaf morphisms is tantamount to a semantic property of
purity, and the category of presheaves is thus the restriction to observationally pure
terms of an effectful call-by-value language.

1 Categorical Nonsense

For the sake of completeness, we recall here a few categorically nonsensical definitions and
results.

1.1 Presheaves

Definition 1. Let C be some category, henceforth called the base category. A presheaf over
C is just a functor C?” — Set.

Theorem 1. Presheaves with natural transformations as morphisms form a cocomplete
cartestan closed category.

This category, written thereafter C, is a actually much richer, e.g. it is also a topos, but
we will not care about this in this note. Let us also remark that this definition is incredibly
compact, which is probably one of the reasons of its ubiquity in categorical models.

Insight 1. Presheaf categories are the bread and butter of model constructions, a well-known

fact better summarized as: “Préfaisceauz: retour de ’étre aimé, désenvotutement, démarrage

de motos russes’?.

T am sure Grothendieck would have approved this statement.

1.2 Thunkability

Definition 2. Let L be a category equipped with a monad (7,7,). We say that a morphism
f:L(A,T B) is thunkable [Fih99] whenever the following diagram commutes.

T
I rp—"s12p

nT B

A

Thunkability captures the intuitive notion of being observationally pure in call-by-value.

Insight 2. In call-by-value A-calculus, a term ¢ : A is thunkable if it satisfies the equation
below.
let z =t in A().x = A().t.

This intuitively reflects the fact that ¢ behaves as a value, as evaluating it eagerly doesn’t
have any observable difference from thunking it.

Proposition 1. We have the following.

e FEvery morphism of the form A LB T B s thunkable.
e In particular, na is thunkable.
e If f:L(A,TB) and g : L(B, T C) are both thunkable, then so is

Tg

Al 1B T™>B-"?. TR

This immediately leads to the correctness of the following definition.

Definition 3. The Fiihrmann category Le(r) is the subcategory of the Kleisli category Ly
restricted to thunkable morphisms.

Proposition 2. Assuming L has equalizers and T is a strong monad, if L is cartesian closed
then Le(ry is also cartesian closed. Note that in general the whole Kleisli category L is not
cartesian closed.

Proof. This is a folklore result from realizability. Define:
°]'LG)(T) = 1L
. AXL@(T)BI:AXLB

o A =1y, Bisintuitively {f : A =1 TB|Vx: A fxz is thunkable}. Formally, we
define it as an equalizer in L:

A=T nB

(A :>L@(T) B) (A =L TB) (A =L T? B)

A=nrB

The corresponding morphisms are straightforward, but the fact that they enjoy their
respective universal property is critically due to the thunkability restriction.]

Insight 3. This construction is pervasive in realizability when the language of realizers is
call-by-value. For instance, when the only effect is divergence, a term is thunkable iff it has
a weak normal form. Compare with the standard way to define realizers for implication in
Kleene realizability [Kle45]:

fIFA— B = Ve.xFA— fxluvAvlE B.

This is hardwiring the fact that we only consider functions that, when applied to a well-
behaved argument, result in a thunkable term. As such, this is literally the thunkable arrow
from the definition above. This construction can be readily generalized to any effectful
language of realizers by replacing ¢ | v with the adequate notion of being thunkable.

Barring logical consequences, it turns out that under mild assumptions, the thunkable
restriction is essentially the identity [Lev17].

Definition 4. We say that T is of codescent type whenever the following diagram is an

equalizer.
A pag—" 72y

nr A

In Set, almost all monads are of codescent type, except those isomorphic to the singleton
monad or to the squash monad.

Proposition 3. If T is of codescent type, then Ler) is equivalent to L.

Proof. In that case, f : L(A, T B) is thunkable iff there exists f : L(A, B) s.t. f =ngof. [

Insight 4. The above result is essentially saying that thunkable terms are extensionally
equivalent to some value in the model. It might not be the case in the source syntax though.

1.3 Call-by-Value Effects in Direct Style

This section presents a variant of the previous definitions, although they are describing this
time call-by-value effects in direct style. We stick to Fithrmann presentation for simplicity,
although we could also have chosen a finer-grained model like CBPV [Lev04].

Definition 5. Let F,G : C — D be two functors. An artificial transformation 6 : F’ & a
is a transformation that is not necessarily natural, that is, it is a family of morphisms
04 :D(F A, G A) not expected to satisfy any further equation.

Definition 6. An abstract Kleisli category is given by:

o A category K

o A functor L: K — K
o An artificial transformation 9 : 1 2L

e A natural transformation € : L — 1

such that 9, is natural, and subject to the following equations.

1—2 o7 11— o 0.2
19‘/ I \ € \ Le
L0, 2 1 L

Insight 5. This is categorical gobbledygook capturing a very weak direct style notion call-
by-value, where L A should be understood as the type of thunks returning A. Nothing that
looks like a proper type former in sight, and not even a syntactic notion of value. The very
fact we do not require ¥ to be natural is categorically smelly, and likely a manifestation of the
deeply entrenched bias of categorical semantics for the negative fragment and call-by-name
in general.

Proposition 4. If L is a category equipped with a monad (T, n, 1), then the Kleisli category
Ly is also an abstract Kleisli category, with L A := T A on objects, for any f : Ly(A, B),
Lf:=nopuoT f,¥:=npron andc := id.

K stands for a call-by-value language where effects are ambient. Thunkability is readily
generalized to this setting.

Definition 7. A morphism f : K(A, B) is thunkable whenever the following diagram com-

mutes.
Y4

A LA
f Lf
B—"5.IB

Note that on an actual Kleisli category, this definition coincides with the one given in
that setting.

2 Artificial Presheaves

For the remainder of this section, let us pick C a base category.
Definition 8. The category of artificial presheaves C® is defined as follows.

o Its objects are functors C? — Set.

o C®(A, B) are artificial transformations A 2 B.
The goal of this section is to show the following theorem.

Theorem 2. C¥® is an abstract Kleisli category.

4

2.1 Notations

Bear in mind that we are dealing with higher-order constructions, so that it is easy to get
lost trying to remember what level we are currently living at. For readability, we use a fair
amount of notations.

We will use type-theoretic notations for the Set category. Set happens to be a model of
Martin-Lof type-theory, so there is no reason not to take advantage of this fact. In particular
given a set A and an A-indexed set B, II(z : A). B stands for the set-theoretic dependent
function space, which should not be confused with V(z : A). B. While the former is the set,
the latter is a first-order formula.

Letters p, q,r will range over objects of C and greek letters «, 5, will range over mor-
phisms of C. Given p : C, we write (¢« : p) for binders (¢ : C) (a : C(q,p)). For instance,

Viga:p).A = V(¢:C)(a:C(q,p)). A.

To disambiguate them from higher-order functors defined later on, functors A : C* =
C — Set will be called presheaves, and will be given by a pair (A4,,04) where A is a family
of sets indexed by objects of C and

Oa:l(p:C)(qa:p). A, = A,
subject to the usual equations for functors, i.e.
HA idgzidi(;t ‘9A (ﬁOCOé)ZQA ﬁosetHA .

As already done in the above equations, we will omit the p and ¢ arguments of 6 4.

2.2 Defining L

We need to define L : C® — C®, both on objects and morphisms of C® .

Object component The object component is a presheaf, so it is defined as a pair. Let
(A,04) : C® we build (L A, 0L 4) : C* as follows.

(LA), : Set
(LA), = II(qa:p). A,
Given a : C(q, p) we define
Opaa : (LA), = (LA),
Opaa = MNax:II(rB:p).A)(rB:q).xr (foa)
It is easy to check that indeed (L A,y 4) is functorial, owing to the fact that C itself is
a category, as
01 4 id;)j =Nz :H(rB:p).A)(rB:p).zr (Boidy)
=Nz :II(rp:p).A)(rp:p)azrp

_ s 3Set
= 1dp

and similarly for a : C(q,p) and 5 : C(r,q) we have
Opa (Boa)=Aa:1(sy:p).A)(sy:p)ar(yo(foa))
= Me: sy :p)-Ar) (sy:p)ar((yop)oa)

= (04 B) 0> (014).

»

Morphism component Let (4,,04) and (B,,05) be two presheaves and f : C®(A, B).
Recall that
C*(A,B)=Tl(p: C). A, — B,.

We define L f : C*(L A, L B) as follows.
(Lf)p . (LA), = (LB),
(Lf)p = Mz :1(qgpB:p). Ay -NgB:p) fy (x qp)

No naturality equation has to be checked, which is a good thing because there is none in
general.

2.3 Defining v

Let us now define 9 : 1 = L. Assume (A,,04) : C®, we need to define 94 : C*(A, L A).
A

(ﬁA)p Ap - (L A)p
(Pa), = Mz :A,).

No naturality equations are expected.

(qa:p).Os o x

2.4 Defining ¢
Let us now define e : L — 1. Assume (A,,04) : C®, we need first to define e4 : C*(L A, A).

(ea)p : (LA)y — Ap

(ca)p = Mz :1l(ga:p).Ay).z pid,
We are not done yet, as we need to check that ¢ is natural, that is, that the following diagram
commutes for any f : C*(A, B).

LA A
Lf f
LB B
or, syntactically, this amounts to prove that for any x : II(ga : p). A, we have
Ty ((ea)p) = ey (L f)y)
fp (xpid)) = (Mg :p). fy (v q @) pid,
Iy (2 p idy) = f, (2 p idy).

6

2.5 Equations

We need to check a handful of equations.

Naturality of ¥, We show that ¥, : L — L? is natural, i.e. for any f: C*®(A, B)

LA L? A
Lf kﬁf
LB—=2"-1?B

which amounts to proving that for any z : (g« : p). A, we have

(L2 1)y (Dra)p 2) = Wr5)p (L £y 2)
AMga:p). Nrp:q).f. (HLAaxrﬁ); Mga:p).Org a (ANrB:p). fr(xrB))
Mga:p)Arf:q). fr (wr (o)) =AMga:p)Arf:q) fr (zr (Boa))

?

First diagram We now turn to the diagram below.

Ny

This is equivalent to showing that for any = : A,, we have

(ra)p (Da)p) = (LIa)y ((Da)y)
Mga:p).Opaa (Mga:p).0s ax) L Mga:p). ANrB:q).04 0 (04 ax)
AMga:p).ANrp:q).04 (foa)zx < Mga:p). ANrp:q).04 P (04 ax)
which is a direct consequence of the functoriality of 64.
Second diagram We focus on the following diagram.

N

1

This is equivalent to showing that for any x : A,, we have

?

(€a)p (Wa)p) =2

?
04 id, v =2

which is the other functoriality equation of 64.

Third diagram
I

N

This is equivalent to showing that for any = : II(q« : p). A,, we have

L L?

?

(Lea)y (ra)p)
AMga:p).x q (id, o) Ly

X

which is a consequence of C being a category.

3 E que s’apelerio Thunkable

The main result of this note lies here. Now that we proved that C® was a model of effectful
call-by-value, let us have a look at the semantic notion of purity in this model. Without
further ado:

Theorem 3. Thunkable morphisms in C* are exactly natural transformations.
Proof. Let f : C®(A, B). By definition, it is thunkable when the following diagram com-

mutes.
Y4

A LA
f Lf
B—"5.IB

This is in turn equivalent to the following equation holding for any x : A,,.

(L f)p (Wa)p) = (UB)p (fp ¥)
Mga:p).fy (0a ax)=ANga:p).0p o (f, x)

Up to function extensionality, which holds in Set, this is literally the naturality equation for
/- O

Let us insist that while thunkability is a naturality equation in C®, the naturality dis-
cussed above does not live at the same level. Said otherwise, a C®-morphism is natural
w.r.t. 9 iff it is natural as a presheaf morphism, which are a priori two distinct notions.

A direct consequence of this theorem is the following observation.

Theorem 4. The presheaf category C is exactly the subcategory of C® restricted to thunkable
morphisms.

Insight 6. This justifies the claims from the abstract. Artificial presheaves form an abstract
Kleisli category and thus a model of the call-by-value A-calculus. By semantically restricting
it to terms that behaves as if they were values, we get a model of the full A-calculus, including
arbitrary (-rule. This can be presented in the same syntactic way as the realizability trick
described before.

The inclusion is not trivial, i.e. in general not all C®-morphisms are thunkable. For
instance, pick C := 2, the two-point discrete category. Let consider the terminal object 1
and the coproduct + in the presheaf category. Then, up to extensionality |C(1, I+1)] =2 1+1
but [C*(1,1+1)[=21+1—1+1.

Insight 7. This is saying that there are exactly two values of boolean type?, but that there
are four effectful booleans in this model. In addition to true and false, which correspond to
the two constant functions of type 14+1 — 141, there are two terms that use the argument,
namely the identity and the flip functions.

4 Curry-Howard interpretation

So now we have a direct style presentation of an effectful programming language. Can we
understand the dynamic content of this effect? In this section we show that the description
given in C® can be translated to one given in terms of Set.

Let us start by remarking that C contains Set in the following sense. If A : Set, we
write AC : C for the constant presheaf returning A. Then C(AC, BC) = Set(4, B). Due to
their universal properties, the type formers in Set are isomorphic to their presheaf equivalent
through this translation.

Insight 8. This means that C is just a bigger version of Set. It has a priori more types, but
on their common types they have the same terms.

We make formal the propery of being an object from Set.
Definition 9. We say that a presheaf is pure if it is isomorphic (in C) to a constant presheaf.

Considering the above isomorphism, it is easy to see that the subcategory of pure
presheaves is equivalent to Set. If you remove the new types that have been added by

2No shit Sherlock!

the presheaf construction, you gained nothing, as long as you only consider effect-free mor-
phisms. But what happens for effectful morphisms?

We go back to effects for a second, to get rid of the direct style presentation. Instead, we
will canonically define a monad and work in its Kleisli category.

Proposition 5. Given any abstract Kleisli category (K, L, 9, ¢), let us write O(K) for the
subcategory of thunkable morphisms. L trivially induces a functor ©(L) : O(K) — O(K).
Furthermore, ©(L) is a monad and its Kleisli category is equivalent to K.

Nothing involved there, it is almost by definition. But this means that we can also see
the L : C® — C® from the previous section as a monad L:C — C. For pure presheaves, it
turns out that the Kleisli morphisms in C are equivalent to Kleisli morphisms for a specific
reader monad in the Set category.

Definition 10. We define S the set of sieves of C as the quotient
{(p:C,q:C,a:C(g,p)}/ ~s

where
(p7 q, Oé) ~S (T7 Saﬁ) =q=T.

That is, sieves are cones of morphisms that have the same target object.

Proposition 6. Let R be the reader monad in Set over sieves, i.e. RA =8 — A. We
have the following isomorphism.:

(A€, L B®) =~ Set(A, R B).
Proof. Let f : C'(AC, L B®). That is, we have a family of functions
fpiA—=1l(ga:p). B
that satisfy the following naturality equation for any « : C(q,p).

A = A

fo fa

I(ga :p). B P15 o I(ga : p). B
Spelled out, this means that for any = : A, o : C(¢,p) and g : C(r,q),

foxrB=fyxr (Boa).

Now, simply define ¢ : A - S — B as
pa(pga)=frqa

10

which by virtue of the above naturality requirement preserves the sieve quotient.
Dually, if p: A - S — B, define f: C’(AC,ﬁBC) as

frrqa=pz(pqa).

It is trivial to check that the naturality equation holds. Furthermore, these two translations
define indeed an isomorphism.]

Unfortunately, if A : Set, then in general L A€ is not pure, which prevents seeing Lasa
monad over the subcategory of pure presheaves.

5 Other

For completeness, Fithrmann also defines weaker notions of purity, but it turns out that they
are degenerate in C®.

Proposition 7. All morphisms in C* are copyable, discardable and central.

This is similar to the case of the monad T X := X x X, which is not surprising as
the resulting Kleisli category is a full subcategory of the artificial presheaf model over the
discrete two-point category 2.

References

[Fiih99] Carsten Fithrmann. “Direct Models for the Computational Lambda Calculus”. In:
FElectr. Notes Theor. Comput. Sci. 20 (1999), pp. 245-292. DOI: 10.1016/S1571~
0661(04)80078-1. URL: https://doi.org/10.1016/S1571-0661(04)80078-1.

[Kle45] Stephen Cole Kleene. “On the Interpretation of Intuitionistic Number Theory”.
In: J. Symb. Log. 10.4 (1945), pp. 109-124. DOI: 10.2307/2269016. URL: https:
//doi.org/10.2307/2269016.

[Lev04] Paul Blain Levy. Call-By-Push-Value: A Functional/Imperative Synthesis. Vol. 2.
Semantics Structures in Computation. Springer, 2004. 1SBN: 1-4020-1730-8.

[Levl7] Paul Blain Levy. “Contextual isomorphisms”. In: Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL 2017,
Paris, France, January 18-20, 2017. 2017, pp. 400-414. URL: http://dl.acm.
org/citation.cfm?id=3009898.

11

