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Martin-Lof type theory truly is the paradise of constructive mathematics, as it is indeed both
a logical foundation and a programming language. Yet the previous sentence does not do justice
to the profound essence of MLTT: it is not just some fancy logical reasoning strapped onto a
run-of-the-mill programming language. In MLTT, computation and logic are literally identified
into a single monistic view, and the choice to consider an object as logical or computational can
be framed as an opinion. It is thus a truism that “proofs are programs” in MLTT, a self-evident
truth which we will dub the credo of Church’s church for reasons that will become clear soon.
This identification holds by construction and does not require e.g. any realizability model.

With this in mind, it should come as a surprise that MLTT enjoys non-computational models,
such as the Set model where MLTT functions are interpreted as ZFC functions. The reason for
this discrepancy is that, in MLTT, the proof-as-program identification is an external fact not
reflected in the theory itself. Thankfully, there is a well-known solution to bridge this gap: the
internal Church Thesis [8]. In higher-order arithmetic, this principle can be stated as

CT:V(f:N=>N).Ip:N).V(n:N).Ik:N).Tpnk (fn)

where T is the decidable Kleene predicate. Namely, T p n k v holds whever p is the code of
some Turing machine, and running p on the input n terminates in less than k steps and returns
the value v. Said otherwise, CT guarantees that any internal function f : N — N is reflected by
an actual algorithm p : N from within the logic, i.e. is extensionally a program.

The CT principle was heavily used by the Russian constructivist school [6], and is known
to be consistent with higher-order arithmetic. The typical way to prove this is via Kleene
realizability, where proofs are interpreted as concrete codes. One has to be wary that CT is
quite an oddball, though. Assuming enough choice, it contradicts both weak forms of excluded
middle like LLPO and function extensionality. This is not a problem for MLTT, which does not
validate either.

After having accumulated that much evidence, the reader could rightfully assume that the
compatibility of MLTT with CT is a classic, if not folklore result. As a matter of fact, MLTT+CT
is the foundation for synthetic computability [3], another offshoot of the synthetic trend that
trivializes the annoying parts of computability proofs by working directly and implicitly with
computable functions. Surely one does not add axioms lightly when it comes to developping a
sizable formalized library. So, MLTT 4 CT ought to be known to be consistent. Right?

Interestingly, the answer to this question so far was: it depends'. The problem boils down to
the precise definition of CT in our theory. Many type theories feature several kind of existential
types, typically contrasting actual existence Xz : A. B with propositional existence 3x : A. B.
Since the arithmetic statement of CT features an existential quantification, there are as many
ways to interpret CT as there are existential types?, i.e. we have two principles

CTy : IO(f:N=>N).EZp:N).IOn:N).X(Ek:N).Tpnk (fn)
CTy : I(f:N—=N).Ip:NL.In:N).Zk:N).Tpnk (f n)

1One could not have expected less from a dependent type theory.
2The translation choice for the second existential quantification does not matter in most settings.



which are in general not equivalent. As 3 is usually intended to be uncomputational and thus
does not satisfy choice, CT3 is the nicest of the two, i.e. it does not contradict classical logic
nor function extensionality. As a result, it was showed to be consistent not only with MLTT,
but also with univalence [7]. By contrast, as X-types validate non-choice automatically, CTy is
the portal to an algorithmic hell featuring a quote function ¢ : (N — N) — N.

At the risk of repeating ourselves, “proofs are programs” in MLTT, even if only externally so.
It should thus be easy to extend MLTT with CTyx. At this point the waters become extremely
murky. The few published results on the topic [5, 4] are only able to prove the consistency of
CTy with a crippled subset of MLTT deprived of the £ rule, i.e. congruence for A-abstractions,
which prevents conversion to proceed under binders. Furthermore, they hint that handling
full-blown MLTT is a hard problem.

This was an unbearable situation for us. First, we believe that the £ rule is a critical feature
of MLTT. Second, MLTT + CTy is obviously consistent, because remember that “proofs are
programs”. So, it was a categorical imperative to actually prove it, and not merely on paper, as
nobody trusts paper proofs about type theory. Therefore, as the only reasonable path forward,
we formalized in Coq the consistency of “MLTT”, an extension of MLTT that proves CTyx. This
settles the question for good.

In a nutshell, “MLTT” is a variant of MLTT with one universe, negative I and ¥ types
with definitional n-rules, additionally featuring empty, identity and natural number types. It
features three additional quotation primitives

'FM:N—N 'FM:N—N 'EN:N I'FM:N—N I'FN:N
'Fe M:N I'Fe M N:N 'FoM N:M9?N

where M Q@ N :=T (? M) N (s M N) (M N). In other words, these three operations implement
the skolemization of CTy. In particular, “MLTT” proves CTy trivially, hence
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proofs are programs” in “MLTT””.

For brevity, we will not present in detail the computational rules of these operations, but give
the general idea. Basically, these operations will only compute on closed deep normal forms.
For instance, the conversion rule for ¢ is given as

@ M =[M] when M closed deep normal form

where [-] : Term — N is a quotation function in the metatheory, which together with T defines
a computational model for “MLTT”.

Under mild hypotheses on this model, it is possible to show that not only “MLTT” is
consistent, but is also strongly normalizing and enjoys canonicity. We prove these facts through
essentially the same logical relation used by Abel et al. to prove decidability of conversion [1].
The main difference is that we annotate our semantic proofs of conversions with the fact that not
only they are normalizing for head reduction, but also for iterated head (i.e. deep) reduction.
This addition is virtually transparent and did not require any non-trivial change to the relation.
The only additional material needed for the proof is a fair amount of rewriting theory for the
untyped fragment of “MLTT”, including confluence and standardization. Moreover, some care
has to be taken to properly handle the definitional n-rules of negative types, which adds some
unwanted technicity. The Coq formalization is based on the logrel-coq project [2] and can be
found at https://github.com/ppedrot/quote-mltt. Although we did not prove decidability
of type-checking for “MLTT”, this should be an easy byproduct of this development.


https://github.com/ppedrot/quote-mltt

It appears that the solution to the internalization of CT in MLTT is conceptually trivial:

simply restrict computation to closed normal forms. While this seems to go against the type-
theoretical ethos, it turns out that this plays well with the usual expectations on MLTT such
as canonicity and strong normalization. As a result, we believe that this cheap trick can go a
long way to internalize externally derivable rules in MLTT. We leave the study of the class of
axioms that can be implemented this way to future work.
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