
Effects, Substitution and Induction
An Explosive Ménage à Trois

Pierre-Marie Pédrot1 and Nicolas Tabareau1

Inria Rennes – Bretagne Atlantique, LS2N

Since the inception of dependent type theory, several people tried to apply the techniques
coming from simply-typed settings to enrich it with new reasoning principles using effects,
typically classical logic. The early attempts were mixed, if not outright failures. Most no-
tably, Barthe and Uustalu showed that writing a typed CPS translation preserving dependent
elimination was out of reach [1], and similarly Herbelin proved that CIC is inconsistent with
computational classical logic [3].

Retrospectively, this should not have been that surprising. This incompatibility is the re-
flect of a very ancient issue: mixing classical logic with the axiom of choice, whose intuitionistic
version is a consequence of dependent elimination, is a well-known source of foundational prob-
lems [5]. While in the literature much emphasis has been put on the particular case of classical
logic, we argue here that this is an instance of a broader phenomenon, namely that side-effects
are at odds with dependent type theory, in a pick two out of three conundrum. This mismatch
is evocatively dubbed the ménage à trois and is embodied by the following theorem, which is a
generalization of Herbelin’s paradox.

Theorem 1 (Explosive ménage à trois). A type theory that features observable effects and
enjoys both arbitrary substitution and dependent elimination is logically inconsistent.

We describe more in detail the premises of this theorem hereafter, where ⋆ stands for any
proof term, not necessarily unique.

Definition 1. Substitution is the admissibility of the following rule.

Γ, x : A ⊢ ⋆ : B Γ ⊢ u : A

Γ ⊢ ⋆ : B{x := u}

Definition 2. Dependent elimination on booleans is the admissibility of the following rule.

Γ, x : B ⊢ A : □ Γ ⊢ ⋆ : A{x := true} Γ ⊢ ⋆ : A{x := false}

Γ, x : B ⊢ ⋆ : A

Finally, we need to express what it means for a type theory to be observably effectful.
Intuitively, a type theory is pure when every term observationally behaves as a value. So a
simple way to formalize what it means to be effectful is to say that there exists a boolean term
which is not observationally equivalent to true nor false.

Definition 3. A type theory is observably effectful if there exists a closed term ⊢ t : B that is not
observationally equivalent to a value, that is, there exists a context C such that C[true] ≡ true

and C[false] ≡ true, but C[t] ≡ false, where ≡ denotes definitional equality.

Proof. We define equality and empty type using the standard impredicative encoding, and we
take t and C as provided by Definition 2. By dependent elimination, it holds that x : B ⊢ C[x] =
true. By substitution, ⊢ C[t] = true. By conversion and because C[t] ≡ false, this implies
⊢ false = true. But, by dependent elimination, we also have ⊢ false = true → ⊥.



An Explosive Ménage à Trois Pédrot and Tabareau

Example 1. It is possible to use callcc [2] to write a term decide : □ → B that decides
inhabitance of a type. Obviously, decide A cannot evaluate to a value in general. Such terms
are called backtracking or non-standard, and are the root of Herbelin’s paradox.

Facing this impossibility theorem, we briefly list possible ways out and their trade-offs.

No Effects This is the good old CIC, featuring both substitution and dependent elimination.

Call-by-value Every function can expect its argument to be a value, which explains why de-
pendent elimination is always valid: true and false are the only non-variable boolean
values. Constrastingly, substitution is now by definition restricted to values. Generaliz-
ing it to arbitrary terms is not correct if there are effectful terms, as evidenced by the
requirement of a value restriction in most systems. Albeit not strictly speaking dependent
type theory, this is the path followed by PML [4].

Call-by-name In this setting, substitution always holds by construction. However, as al-
ready noticed in [6], dependent elimination is now lost in general. If there are effectful
terms, knowing the behaviour of a predicate on boolean values is not enough to know
the behaviour of the predicate in general, as there is a desynchronization between effects
performed in the term and effects performed in the type during pattern-matching. This
is what BTT [6] is all about.

Boom It is possible to satisfy the premises of the theorem, at the expense of consistency. The
exceptional type theory [7] is such an instance. While seemingly concerning at first, one
can argue that this is a paradigm shift from a dependent type theory to a dependently-
typed programming language, where consistency is not relevant.

We will give more in-depth insights about these paradigms, and advocate for an encompass-
ing theory called ∂CBPV [8]. This is a generalization of call-by-push-value to dependent types
allowing for a uniform setting in which describe these effectful theories.

References
[1] G. Barthe and T. Uustalu. Cps translating inductive and coinductive types. In Proceedings of

Partial Evaluation and Semantics-based Program Manipulation, pages 131–142. ACM, 2002.
[2] T. Griffin. A formulae-as-types notion of control. In Seventeenth Symposium on Principles of

Programming Languages, San Francisco, California, USA, January 1990, pages 47–58, 1990.
[3] H. Herbelin. On the degeneracy of sigma-types in presence of computational classical logic. In

P. Urzyczyn, editor, Seventh International Conference, TLCA ’05, Nara, Japan. April 2005, Pro-
ceedings, volume 3461 of Lecture Notes in Computer Science, pages 209–220. Springer, 2005.

[4] R. Lepigre. A classical realizability model for a semantical value restriction. In 25th European
Symposium on Programming, ESOP 2016, pages 476–502, 2016.

[5] P. Martin-Löf. 100 Years of Zermelo’s Axiom of Choice: What was the problem with it? Comput.
J., 49(3):345–350, 2006.

[6] P.-M. Pédrot and N. Tabareau. An effectful way to eliminate addiction to dependence. In 32nd
Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages
1–12. IEEE Computer Society, 2017.

[7] P.-M. Pédrot and N. Tabareau. Failure is Not an Option – An Exceptional Type Theory. In 27th
European Symposium on Programming, ESOP 2018, pages 245–271, 2018.

[8] P.-M. Pédrot and N. Tabareau. The Fire Triangle. Draft at https://www.pédrot.fr/articles/
dcbpv.pdf, 2019.

2

https://www.pédrot.fr/articles/dcbpv.pdf
https://www.pédrot.fr/articles/dcbpv.pdf

