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Since the inception of dependent type theory, several people tried to apply the techniques
coming from simply-typed settings to enrich it with new reasoning principles using effects,
typically classical logic. The early attempts were mixed, if not outright failures. Most no-
tably, Barthe and Uustalu showed that writing a typed CPS translation preserving dependent
elimination was out of reach [1], and similarly Herbelin proved that CIC is inconsistent with
computational classical logic [3].

Retrospectively, this should not have been that surprising. This incompatibility is the re-
flect of a very ancient issue: mixing classical logic with the axiom of choice, whose intuitionistic
version is a consequence of dependent elimination, is a well-known source of foundational prob-
lems [5]. While in the literature much emphasis has been put on the particular case of classical
logic, we argue here that this is an instance of a broader phenomenon, namely that side-effects
are at odds with dependent type theory, in a pick two out of three conundrum. This mismatch
is evocatively dubbed the ménage à trois and is embodied by the following theorem, which is a
generalization of Herbelin’s paradox.

Theorem 1 (Explosive ménage à trois). A type theory that features observable effects and
enjoys both arbitrary substitution and dependent elimination is logically inconsistent.

We describe more in detail the premises of this theorem hereafter, where ⋆ stands for any
proof term, not necessarily unique.

Definition 1. Substitution is the admissibility of the following rule.

Γ, x : A ⊢ ⋆ : B Γ ⊢ u : A

Γ ⊢ ⋆ : B{x := u}

Definition 2. Dependent elimination on booleans is the admissibility of the following rule.

Γ, x : B ⊢ A : □ Γ ⊢ ⋆ : A{x := true} Γ ⊢ ⋆ : A{x := false}

Γ, x : B ⊢ ⋆ : A

Finally, we need to express what it means for a type theory to be observably effectful.
Intuitively, a type theory is pure when every term observationally behaves as a value. So a
simple way to formalize what it means to be effectful is to say that there exists a boolean term
which is not observationally equivalent to true nor false.

Definition 3. A type theory is observably effectful if there exists a closed term ⊢ t : B that is not
observationally equivalent to a value, that is, there exists a context C such that C[true] ≡ true

and C[false] ≡ true, but C[t] ≡ false, where ≡ denotes definitional equality.

Proof. We define equality and empty type using the standard impredicative encoding, and we
take t and C as provided by Definition 2. By dependent elimination, it holds that x : B ⊢ C[x] =
true. By substitution, ⊢ C[t] = true. By conversion and because C[t] ≡ false, this implies
⊢ false = true. But, by dependent elimination, we also have ⊢ false = true → ⊥.
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Example 1. It is possible to use callcc [2] to write a term decide : □ → B that decides
inhabitance of a type. Obviously, decide A cannot evaluate to a value in general. Such terms
are called backtracking or non-standard, and are the root of Herbelin’s paradox.

Facing this impossibility theorem, we briefly list possible ways out and their trade-offs.

No Effects This is the good old CIC, featuring both substitution and dependent elimination.

Call-by-value Every function can expect its argument to be a value, which explains why de-
pendent elimination is always valid: true and false are the only non-variable boolean
values. Constrastingly, substitution is now by definition restricted to values. Generaliz-
ing it to arbitrary terms is not correct if there are effectful terms, as evidenced by the
requirement of a value restriction in most systems. Albeit not strictly speaking dependent
type theory, this is the path followed by PML [4].

Call-by-name In this setting, substitution always holds by construction. However, as al-
ready noticed in [6], dependent elimination is now lost in general. If there are effectful
terms, knowing the behaviour of a predicate on boolean values is not enough to know
the behaviour of the predicate in general, as there is a desynchronization between effects
performed in the term and effects performed in the type during pattern-matching. This
is what BTT [6] is all about.

Boom It is possible to satisfy the premises of the theorem, at the expense of consistency. The
exceptional type theory [7] is such an instance. While seemingly concerning at first, one
can argue that this is a paradigm shift from a dependent type theory to a dependently-
typed programming language, where consistency is not relevant.

We will give more in-depth insights about these paradigms, and advocate for an encompass-
ing theory called ∂CBPV [8]. This is a generalization of call-by-push-value to dependent types
allowing for a uniform setting in which describe these effectful theories.
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