
An Effectful Way to Eliminate Addiction to Dependence
P.-M. Pédrot1 and N. Tabareau2

1 University of Ljubljana
2 Inria Rennes - Bretagne Atlantique

The gap between dependent type theories such as CIC and mainstream programming lan-
guages comes to a large extend from the absence of effects in type theories, because of its
complex interaction with dependency. For instance, it has already been noticed that inductive
types and dependent elimination do not scale well to CPS translations and classical logic [1, 3].
Furthermore, the traditional way to integrate effects from functional programming using mon-
ads does not scale to dependency because the monad leaks in the type during substitution,
preventing any straightforward adaptation.

To solve this conundrum, we propose Baclofen Type Theory (BTT), a stripped-down version
of CIC, together with a family of syntactic models of BTT that allows for a large range of
effects in dependent type theory, amongst which exceptions, non-termination, non-determinism
or writing operation. By syntactic models, we mean a model directly expressed in a type theory
through a program transformation, as advocated in a previous paper [2].

The key feature of BTT lies in the fact it has a restricted version of dependent elimination
to overcome the difficulty to marry effects and dependency. Essentially, the restriction appears
as a side-condition on the return predicates of dependent pattern-matching, which must be
linear, in the sense of Munch-Maccagnoni [7]. For instance, the elimination rule for booleans is
of the following shape.

Γ ⊢ M : B
Γ ⊢ N1 : P{b := true}
Γ ⊢ N2 : P{b := false} Γ, b : B ⊢ P : □ P linear in b

Γ ⊢ if M as b return P then N1 else N2 : P{b := M}

Linearity is a property of functions in an ambient call-by-name language. Intuitively, it captures
the fact that a function is semantically call-by-value, or alternatively, in a more categorical
parlance, that it is an algebra homomorphism. As showed by Levy in a recent paper [5], it is
possible to provide syntactic underapproximations for linearity, so that the above side-condition
can be understood as a guard condition similar to the one used for fixpoint productivity in
practical CIC implementations. This guard condition is totally oblivious of the ambient effect
and does not mention it at all. Furthermore, this restriction is a generalisation of the one we
required for the call-by-name forcing translation [4], which was based on storage operators.
It turns out that, at least in the non-recursive case, storage operators syntactically turn any
predicate into a linear one.

The syntactic models are given by the weaning translation of BTT into CIC, using a
variant of the traditional monadic translation. The need for this variant can be explained
by analyzing the call-by-push-value (CBPV) decomposition of call-by-value and call-by-name
reduction strategies. Indeed, the key observation is that the traditional monadic interpretation
dating back to Moggi [6] is call-by-value whereas type theories such as CIC are fundamentally
call-by-name because they feature an unrestricted conversion rule. Therefore, any effectful
model of CIC ought to factor through a call-by-name decomposition in CBPV.

In fact, the weaning translation is somehow dual to the forcing translation through this
decomposition, in the sense that they respectively trivialize the U and F functors which de-
compose the ambient monad T as an adjunction. Most notably, the weaning translation can



An Effectful Way to Eliminate Addiction to Dependence Pédrot and Tabareau

be thought of as a variant of the Eilenberg-Moore construction on steroids, where types are
translated as plain algebras (i.e. without coherence requirement), which can be easily expressed
by the dependent sum

□□i = ΣA : □i. T A → A.

But in CIC, universes satisfy a kind of self-enrichment expressed as □i : □i+1. Thus, to get a
correct interpretation of universes, the monad needs to satisfy the additional requirement that
the type of algebras needs to be itself an algebra of the monad. A monad satisfying this property
is said to be self-algebraic. We then show how very common monads satisfy this property and
thus give rise to effects that can be integrated to BTT. In particular, all free monads are also
self-algebraic.

The exception monad is in particular self-algebraic, which allows us to adapt Friedman’s
A-translation to CIC. We recover the following theorem, which shows that Markov’s rule is
admissible in CIC, a fact which was, to the best of our knowledge, not known.

Theorem 1. If ⊢CIC t : ¬¬A and A is a first-order type, then there exists ⊢CIC t• : A.

As a matter of fact, in addition to weaning, BTT is also the source theory of our previ-
ous forcing translation, even though the two translations sit on two extreme points of CBPV
decompositions. This leads us to postulate the following thesis.

BTT models effectful type theories.

As it is the case for other syntactic models [4, 2], it is possible to implement the wean-
ing translation as a Coq plugin, thanks to the fact that it is a program translation preserv-
ing amongst other things conversion. The plugin is available at https://github.com/CoqHott/
coq-effects, and allows to give the impression to the user that she lives in an impure theory
while everything she writes is compiled on the fly to actual Coq terms.

References
[1] G. Barthe and T. Uustalu. Cps translating inductive and coinductive types. In Proceedings of

Partial Evaluation and Semantics-based Program Manipulation, pages 131–142. ACM, 2002.
[2] S. Boulier, P.-M. Pédrot, and N. Tabareau. The next 700 syntactical models of type theory. In

Proceedings of Certified Programs and Proofs, pages 182–194. ACM, 2017.
[3] H. Herbelin. On the degeneracy of sigma-types in presence of computational classical logic. In

P. Urzyczyn, editor, Seventh International Conference, TLCA ’05, Nara, Japan. April 2005, Pro-
ceedings, volume 3461 of Lecture Notes in Computer Science, pages 209–220. Springer, 2005.

[4] G. Jaber, G. Lewertowski, P.-M. Pédrot, M. Sozeau, and N. Tabareau. The definitional side of the
forcing. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS ’16, New York, NY, USA, July 5-8, 2016, pages 367–376, 2016.

[5] P. B. Levy. Contextual isomorphisms. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, pages 400–414, New York, NY, USA, 2017. ACM.

[6] E. Moggi. Notions of computation and monads. Information and Computation, 93(1):55–92, July
1991.

[7] G. Munch-Maccagnoni. Models of a Non-Associative Composition. In A. Muscholl, editor, 17th
International Conference on Foundations of Software Science and Computation Structures, volume
8412, pages 396–410, Grenoble, France, Apr. 2014. Springer.

2

https://github.com/CoqHott/coq-effects
https://github.com/CoqHott/coq-effects

