
Université Paris Diderot — Paris VII
Sorbonne Paris Cité

École Doctorale Sciences Mathématiques de Paris Centre

THÈSE
en vue d’obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ PARIS DIDEROT
en Informatique Fondamentale

Une Dialectica Matérialiste
U

A Materialist Dialectica

Présentée et soutenue par
Pierre-Marie PÉDROT

le 17 septembre 2015

devant le jury composé de :
Hugo Herbelin Directeur de thèse
Alexis Saurin Directeur de thèse
Alexandre Miquel Rapporteur
Thomas Streicher Rapporteur
Andrej Bauer Examinateur
Delia Kesner Examinatrice
Colin Riba Examinateur

Acknowledgements

« À celle-là seule que j’aime et qui le
sait bien. »
Dédicace commode, que je ne saurais
trop recommander à mes confrères.
Elle ne coûte rien, et peut, du même
coup, faire plaisir à cinq ou six person-
nes.

Alphonse Allais about acknowledgements.

La maîtrise du subtil art des remerciements ne faisant, hélas ! pas partie des cordes
de mon fusil-mitrailleur, je commencerai diplomatiquement en recourant à la logique, et
dédierai donc cette thèse à toutes les personnes auxquelles elle n’est pas dédiée. C’est
ma foi une dédicace tout aussi commode que celle d’Alphonse Allais, sinon plus, et je
la recommande tout autant à la palanquée de confrères confrontés au même dilemme :
mêmes causes, mêmes effets. Cette adresse générale étant expédiée, tournons-nous dès à
présent vers les remerciements, attentions et autres hommages personnels. Autem P = NP, cujus

rei demonstrationem
mirabilem sane
detexi. Hanc marginis
exiguitas non caperet.

Il me faut commencer par remercier chaleureusement Alexis, directeur de thèse sans
précédent pour un doctorant du même. Je lui suis infiniment1 gré de sa bonne humeur, de
sa capacité à supporter les pires adversités, de sa volonté infaillible et de son dévouement
sans bornes. Sans présumer du fait qu’il a réussi à me supporter quatre longues années
durant, exploit périlleux qui immanquablement confine au suicide ou à l’homicide chez
toute personne raisonnable2. De là à conclure ce que l’on veut en conclure, il y a un
fossé ravineux dans lequel aurait pu se noyer le régiment des désillusions du couple d’un
thésard fraîchement émoulu et de son directeur primo-directant. D’où, théorème, π est
rationnel. Non, je déconne. Le plus sérieusement du monde cette fois, j’affirmerai haut
et fort, la main3 posée sur la poitrine du côté où palpite le myocarde que je ne serais
probablement pas arrivé là où je suis sans lui. Asylum asylum invocat. Je ne pourrais
jamais le remercier à la hauteur de ce qu’il m’a donnné.
Constatant avec une certaine suspicion que cet hommage commence à avoir de faux

airs d’éloge funèbre, je propose au lecteur lassé de lire de longues louanges au lyrisme
lénifiant de se tourner vers la personne d’Hugo Herbelin, deuxième directeur de thèse et
troisième mousquetaire de cette bande des quatre4. Expert ès arts arcanes de la théorie

1Conjecturons hardiment au moins le cardinal du continu.
2On entend évidemment par là toute personne qui satisfait aux prémisses du théorème d’incomplétude
de Gödel.

3Gauche, what else.
4Alexis, Hugo, moi-même et la Science. Ou les neuroleptiques. Je ne suis pas encore bien fixé.

3

des types, disciple chevronné du Curry-Howard et maniant le λ-terme comme nul autre,
Hugo Herbelin est un aventurier des temps modernes qui s’ignore, malmené par notre
monde gris et post-moderne qui exalte le banquier voleur de peuples et conchie l’intègre
homme de science. Il m’a transmis un vaste savoir qui s’étend de la compréhension des
modèles de Kripke mais pas que, à la capacité de survivre à une exposition aiguë au
entrailles de Coq qui exhalent des effluves de pourriture capables de tuer un thésard
imprudent à dix mètres. Je m’efforcerai de réduire cette connaissance au kôan suivant.

Un thésard demanda à Hugo Herbelin : « Coq est-il cohérent ? »
Anomaly: Uncaught exception Mu.

Par malheur, l’histoire omet de raconter si l’étudiant fut illuminé ou bien s’il l’était
déjà à l’instant même où il songea à passer un doctorat d’informatique fondamentale5.

Il convient de remercier Alexandre Miquel et Thomas Streicher d’avoir accepté de lire
avec attention ma prose, torture à laquelle je ne me serais assurément pas soumis si
d’aventure je m’étais trouvé à leur place. Grâce leur en soit rendue. Profitons au passage
pour remercier en particulier Alexandre qui, à force de coups de pied dans une partie
charnue que la décence défend de nommer expressément, sut me convaincre de trouver
un directeur de thèse en ce lointain été de l’an I du Canapé6.J’espère que le lecteur

apprécie les notes en
bas de page et dans la

marge. Sinon, tant
pis pour lui.

Un grand merci aux personnes qui ont accepté d’être membre de mon jury avec bien-
veillance : merci à Delia, à Colin qui sans le savoir m’a lancé sur le sujet de ma thèse au
cours de cette fameuse soirée de TYPES 2013, et à Andrej dont la prose m’a inspiré et
qui a bien voulu m’inviter à Ljubljana.

Mention spécialement remarquable et remarquablement spéciale à quelques perma-
nents de PPS qui durant ces quatres années m’ont croisé bien trop souvent rôdant dans
les couloirs, l’air hagard du sociopathe en quête de victime flottant sur le visage, et qui
n’ont pas contacté les autorités compétentes malgré l’apparente imminence du danger.
Je remercierai donc Yann, l’homme à la journée de 48 heures, vaillant Achille qui sut
tenir tête à ceux du laboratoire d’en haut dont-on-ne-doit-pas-prononcer-le-nom et fin
connaisseur des rouages fangeux de l’implacable machine administrative. Coup de cha-
peau à Pierre L., Sisyphe de la gestion du système Coq et du reste, et qui sous des
atours ulmiotes cache une personne de plus haute confiance. Merci à Pierre-Louis, diplo-
mate devant les diplomates et roc cartésien qui a su préserver l’équipe πr2 des petits
caprices de l’Inria. Mes excuses à Matthieu, dont j’ai pourri le rebase de sa branche des
univers polymorphes un certain nombre de fois. Révérence à Jean, agent double faisant
de l’entrisme chez les biologistes avec maestria. Salutations à Juliusz mot-compte-triple,
prestidigitateur capable d’apparaître à loisir dans les bureaux des thésards et de semon-
dre le principe glandesque7 hors du néant éthéré. Remerciements à Paul-André d’être

5Par contre, l’histoire précise bien que le rapport de bug qui s’en suivit fut marqué WontFix par un
certain kgoedel. Ce n’est pas dans le privé qu’on verrait ça.

6GOTO 6.
7Il est de notoriété publique que le principe glandesque se manifeste le plus souvent sous la forme d’un
liquide ectoplasmique pétillant et riche en esprit éthylique.

4

Paul-André8.

Merci à Odile pour sa gentillesse, pour son efficacité et pour sa résistance aux tourments
qu’a pu lui donner un gougnafier tel que moi.

Il me faut maintenant remercier la nuée de thésards désabusés et la horde d’innocents
stagiaires qui ont dû un jour ou l’autre supporter mes délires verbiageux et ma logorhée
généralement peu diplomatique. Je pense tout particulièrement aux différentes personnes
qui se sont vues dans l’obligation horrifiée de partager mon bureau, c’est-à-dire pas
mal de populace l’air de rien : Matthias, Pierre B., Lourdes, Guillaume C., Philipp,
Iovana, Cyprien, Hugo, Béa, et avec probabilité 1 d’autres gens dont l’identité a été
garbage collectée trop promptement par ma mémoire défaillante. Je plains sincèrement
le noyau dur formé de Pierre, Lourdes et Guillaume qui ont très certainement fomenté à
un moment ou à un autre un complot d’assassinat sur ma personne. Je remercie aussi
les thésards des bureaux d’à côté et apparentés. Merci donc à Guillaume M., maître de
la petite remarque acerbe, Shahin, générateur de bruit aléatoire dans les couloirs sans
fin, Ioana, d’une patience sans fond, Flavien, compagnon d’infortune, Étienne, demi-
frère de sang, Hadrien, au moins aussi bringue que moi, Thibaut, spectateur impuissant,
Matthieu, sauvé des eaux, Pierre V. « où suis-je », Charles l’inénarrable, Marie Ar Ruz,
Amina, demi-sœur de sang de l’autre côté, Yann les-balles-sont-des-dollars, Ludovic,
Cyrille et Maxime, collectivement connus sous le nom du « bureau qui fait des maths »
et tous les autres dont j’ai la flemme de citer le nom. Toute personne se trouvant dans
cette dernière catégorie a effectivement le droit moral de m’envoyer un petit colis chargé
en poudre de bacille du charbon, sous réserve d’être affranchi selon les tarifs en vigueur9.

Je remercie l’immortel groupe de travail logique dans toute sa généralité et plus partic-
ulièrement, en sus des déjà nommés, Marc, Adrien, Gabriel et Aloïs et la triple Karmeliet
du Pantalon, compagnons de route d’une époque que les moins de vingt ans ne peuvent
pas connaître.

Outre les personnes déjà citées, je tiens à remercier l’équipe de développement de Coq
au sens large, qui a su m’apporter une certaine forme d’amusement aussi bien à travers
les gros teuyaux de l’interweb que par les nombreuses occasions de se rencontrer. Merci à
Arnaud Spiwack, Maxime Dénès, Enrico Tassi, Guillaume Melquiond, Yves Bertot, Assia
Mahboubi, Pierre Courtieu, Jason Gross... Je remercie aussi les grands anciens d’avoir
donné la vie à un logiciel si fantastique.

Même si cela les laissera prouvablement de marbre, je voudrais remercier Jean-Yves et
Jean-Louis, mythiques fondateurs de paradigmes dont cette thèse est une continuation
toute linéaire10.

8UIP or not UIP, that is the question.
9Paris et Seine-et-Oise, 1 fr. Départements, 1 fr 50. Étranger, 2 fr.

10Celui qui me dira que cet hommage est trop classique recevra mon pied dans le fondement de
l’informatique.

5

Merci à Inria d’être l’inventeur du monde numérique. S’il eût été plus court, toute la
face de la terre aurait changé.

Merci à l’Université Paris Diderot pour leurs innovations architecturales audacieuses.
Je gage que d’ici peu, quarante siècles nous contempleront du haut du bâtiment Sophie
Germain.

Passons à l’instant à des remerciements plus personnels.

Bien évidemment, je remercie mes parents de ne pas m’avoir jeté aux ordures à la
naissance, acte puni trop sévèrement par la loi que j’aurais par ailleurs tout à fait compris
et pardonné a posteriori. Il est bien probable qu’ils le regrettent fortement après toutes
ces années passées à résister à la tentation régulière de pratiquer la strangulation sur
leur fils indigne. Je leur tiendrais donc grâce de tant d’endurance, et les remercie de leur
affection renouvelée.

Je souhaiterais dédier ce paragraphe à Daniel Hirschkoff, un enseignant comme il en
existe trop peu et sans lequel je ne serais probablement pas en train d’écrire des remer-
ciements aussi stupides. Car les fonctions sont des valeurs, bordel. Plus généralement,
je voudrais étendre cet hommage ému à toutes les personnes qui ont eu une influence
décisive sur ma passion pour les sciences. Un merci ineffable à Joël, et un salut cordial
à des enseignants qui m’ont marqué, de Patrice à M. Duval en passant par M. Morize.

Merci à Sarica, sans nul doute la meilleure prof d’espagnol du monde.

Je remercie les colocataires qui ont survécu à la cohabitation avec votre serviteur.
Chante ô déesse, le courroux du Poulyide Amaury, à propos de la vaisselle non faite.
Ainsi fis-tu, Mikaël, du sac de poissons. Philippe, je sais où tu te caches. Laure, allegro
ma non troppo. Hélène, qui déteste Paris. Et puis les autres, Alex, Proux, Tim, ombres
fugitives du sauna. Ô temps, suspends ton vol !

High-five lolz pour les membres remarqués d’Impega, la mailing-liste ultime, fière et
noble descendante très select de la liste L3IF. Salut donc bien bas à Gaupy « Sac-à-vin »,
J.-M. « Mad » Madiot, Gallais « la Rage », Sylvain « Qu’elle était belle ma Berjalie »,
Matthieu « Pipe au miel », Val « le Cylon », Hugo « la Pute », Marthe « Mangez des
pommes », Richard « Caca » Griffon, Yann « l’Entrepreneur », et à notre totem « le
pigeon qui mange du caca », déité trop souvent méprisée mais pourtant ô tant porteuse
de sens dans un monde à la dérive qui se cherche.

Je voudrais finir en remerciant l’univers, grand oublié des longues litanies des remer-
ciements qu’on trouve usuellement en préface des thèses. Il est clair que sans lui, on
s’emmerderait ferme.

6

Contents

1 Introduction 13

2 Prolegomena 21
2.1 The λ-calculus . 21

2.1.1 The archetypal λ-calculus . 21
2.1.2 Reductions and strategies . 23
2.1.3 Typing . 24
2.1.4 Datatypes . 26

2.2 A minimalistic taste of logic . 28
2.2.1 The programmer’s bar talk . 29
2.2.2 Propositional logic . 29
2.2.3 First-order logic . 31

2.3 The Curry-Howard isomorphism . 32
2.3.1 A significant insignificant observation 32
2.3.2 From proofs to programs . 34
2.3.3 From programs to proofs . 36

2.4 Abstract machines . 37
2.4.1 The Krivine machine . 37
2.4.2 Krivine realizability . 38

3 Linear Logic 41
3.1 Syntax . 41

3.1.1 Formulae . 41
3.1.2 Proofs . 42

3.2 Polarization . 44
3.3 A bit of category theory . 45
3.4 Intuitionistic and classical decompositions 49

3.4.1 The call-by-name decomposition 49
3.4.2 The call-by-value decomposition 50
3.4.3 Classical-by-name . 52

4 Dependent type theory 55
4.1 Term in types: a bird’s-eye notion of dependency 55
4.2 The issue of universes . 57
4.3 Dependent elimination . 58

5 Effects and dependency 59
5.1 Dependent Monads: a naive generalization 59

7

Contents

5.2 Indexed CPS . 62

6 Logical by need 67
6.1 An implicit tension . 67
6.2 Linear head reduction . 68

6.2.1 A brief history of the unloved linear head reduction 68
6.2.2 The old-fashioned linear head reduction 69

6.3 Lazy evaluation . 70
6.4 Linear head reduction versus call-by-need 71
6.5 A modern reformulation of linear head reduction 73

6.5.1 Reduction up to σ-equivalence . 73
6.5.2 Closure contexts . 74
6.5.3 The λlh-calculus . 75
6.5.4 LHR with microscopic reduction 76

6.6 Towards call-by-need . 77
6.6.1 Weak linear head reduction . 77
6.6.2 Call-by-value linear head reduction 78
6.6.3 Closure sharing . 79
6.6.4 λwls is a call-by-need calculus . 80
6.6.5 From miscroscopic LHR to Ariola-Felleisen calculus 80

6.7 Classical Linear Head Reduction . 81
6.8 Classical by Need . 84

6.8.1 Weak classical LHR . 84
6.8.2 Call-by-value weak classical LHR 85
6.8.3 Call-by-Need in a Classical Calculus 86
6.8.4 Comparison with existing works . 86

7 Dialectica: a historical presentation 91
7.1 Intuitionistic arithmetic . 91
7.2 System T . 92
7.3 HA + T . 93
7.4 Gödel’s motivations . 96
7.5 Gödel’s Dialectica . 97

7.5.1 Sequences . 97
7.5.2 Witnesses and counters . 99
7.5.3 Interpretation . 100
7.5.4 Soundness theorem . 102

7.6 A bit of classical logic . 122
7.6.1 Irrelevant types . 122
7.6.2 Markov’s principle . 123
7.6.3 Independence of premise . 125

8 A proof-theoretical Dialectica translation 127
8.1 Down with System T . 127

8

Contents

8.2 A proof system over λ×+ . 128
8.3 Dialectica with inductive types . 130

8.3.1 Witnesses and counters . 131
8.3.2 Orthogonality . 131
8.3.3 Interpretation . 132

8.4 Linear Dialectica . 137
8.4.1 The linear decomposition . 137
8.4.2 Factorizing . 139

8.5 A not-so proof-theoretical translation . 140

9 A realizability account 143
9.1 Introducing multisets . 143

9.1.1 Motivations . 143
9.1.2 Formal definition . 144
9.1.3 A taste of déjà-vu . 145
9.1.4 The whereabouts of orthogonality 146

9.2 The call-by-name translation . 146
9.2.1 Type translation . 147
9.2.2 Term translation . 148
9.2.3 Typing soundness . 149
9.2.4 Computational soundness . 150

9.3 KAM simulation . 157
9.3.1 Stacks as first-class objects . 157
9.3.2 Realizability interpretation . 162
9.3.3 When Krivine meets Gödel . 167
9.3.4 An unfortunate mismatch . 168
9.3.5 A quantitative interpretation? . 170

10 Variants of the Dialectica translation 173
10.1 Call-by-name positive connectives . 173

10.1.1 Dynamics . 174
10.1.2 Extended KAM . 174
10.1.3 Type translation . 175
10.1.4 Term translation . 176
10.1.5 Computational soundness . 179
10.1.6 Stack translation . 181
10.1.7 Extended KAM simulation . 183
10.1.8 Recursive types . 184

10.2 A glimpse at the resulting logic . 185
10.2.1 Dialectica as a side-effect . 185
10.2.2 Markov’s principle . 187
10.2.3 Independence of premise . 190

10.3 Classical-by-name translation . 192
10.3.1 The λµ-calculus . 192

9

Contents

10.3.2 Classical KAM . 193
10.3.3 Type translation . 194
10.3.4 Term translation . 197
10.3.5 Computational soundness . 198
10.3.6 KAM simulation . 201

10.4 Call-by-value translation . 201
10.4.1 Call-by-value . 201
10.4.2 Type translation . 202

11 A dependently-typed Dialectica 209
11.1 A simple framework: λΠω . 209
11.2 The target system . 210

11.2.1 Dependent pairs . 211
11.2.2 Multisets . 212

11.3 The dependent Dialectica translation . 213
11.3.1 Rationale . 213
11.3.2 The dependent Dialectica . 215

11.4 Practical feasibility . 217
11.4.1 Church-style encoding . 217
11.4.2 Actual multisets . 218

11.5 Towards dependent elimination . 218

12 Decomposing Dialectica: Forcing, CPS and the rest 223
12.1 Overview . 223
12.2 The simplest forcing: the reader monad 224

12.2.1 Pseudo-linear translation . 224
12.2.2 Call-by-name reader translation . 225
12.2.3 Call-by-value reader translation . 227

12.3 Forcing in more detail . 229
12.3.1 Linear translation . 229
12.3.2 Call-by-name decomposition . 230
12.3.3 Call-by-value decomposition . 234
12.3.4 Forcing you to repeat: a computational stuttering 236

12.4 A proto-Dialectica: the silly stack reader 237
12.4.1 A first step into linearity . 237
12.4.2 Call-by-name translation . 238
12.4.3 Reading the stacks . 240
12.4.4 Handling positive connectives . 241
12.4.5 An attempt at call-by-value . 243

12.5 From forcing to CPS . 244
12.5.1 Summary of the issues . 245
12.5.2 Call-by-name . 246
12.5.3 Call-by-value . 251

12.6 Towards Dialectica . 252

10

Contents

13 Conclusion 255

11

1 Introduction
— If she weighs the same as a duck...
— She’s made of wood.
— And therefore?
— A witch!

Monty Python about the consistency of arithmetic.

Who could have thought that Aristotle’s rules of reasoning would have found their
way to the tools ensuring that planes do not crash because of a programming bug?
This simple anecdote shows how highly theoretical works may eventually apply to very
concrete problems, even if this requires to wait for two millenia and a half.
With the advent of an ubiquitary computerization of the human society, logic is one

of those research fields that have been deeply transformed. Its metamorphosis is not
so much due to the increased computing power at our disposal, that makes possible to
perform instantly tasks that would have taken ages a few decades ago, as this is the case
for physical simulations for instance. It is rather because logic turned out to share an
essential kinship with computer science, up to the point that one could safely assert that
computer science is the fabric of logic. This is not a vacuous claim, and we will support
it with evidence.

From the syllogisms of Aristotle to the bug-free programs, there is quite a journey,
that we would like to sketch here. As for any science, it is not a regular-paced trip where
discoveries would take the rôle of evenly placed milestones. Rather, this is the story of
a sudden explosion fueled by a convergence of ideas that would have not been possible
any time before.
Alas! Poor reader! For we shall not spare her from the overused but necessary ety-

mological recollection of the word logic, which dangerously wanders on the fringes of the
realm of clichés! Still, we believe that recalling that it stems from the Greek word logos,
meaning in turn word, is an important starting remark. This renders explicit the fact
that logic is, in the first place, the science of language. This is how Greek philosophers,
amongst who Aristotle, thought of it, and this is even more obvious in Aristotle’s mag-
num opus, the Organon, whose purpose was to provide clear rules justifying the truthness
of discourses.
We should acknowledge here that Greek philosophers did realize that language was

not so amenable as it looked like at first sight. The liar’s paradox, for instance, can be
traced back to the 4th century BC. In its rawest form, it can be presented as the following
sentence.

This sentence is false.

13

1 Introduction

If this sentence were to be true, then it would imply that it is false, and conversely. This
is indeed paradoxical, and demonstrates that one should distrust the expressive power of
languages when coming to consistency.

Notwithstanding the advances in logic for more than two millenia, that were chiefly
achieved for philosophical or theological purposes, let us fast-forward until the birth of
logic as a true science, by the end of the 19th century. While up to then, mathematicians
were working in a mostly informal parlance, mathematics underwent a drastic change in
the course of a handful of decades. Concerned about the scientific rigor of their object
of study, mathematicians sought to provide it with a firm, irrefutable ground, in what
would turn out to be the quest for the foundations of mathematics. This quest mobilized
the efforts of dozens of scholars for more than half a century. Acknowledging them all
would be impossible here, so that, apologizing in advance for our unfairness, we will only
recall some of them whom we find peculiarly representative.

We should start by naming one of the most important member of this then-nascent
trend, Georg Cantor. He bestowed mathematics with the so-called paradise of set theory1,
an axiomatic system allowing for a formal presentation of the objects manipulated by
the mundane mathematician [26]. Unluckily for him, his original presentation proved
to be flawed, and let pass through various proofs of the absurdity. One of the simplest
such paradoxes is due to Russell [99], and is actually a set-theoretical variant of the liar
paradox, which arises when considering the set

X := {x | x 6∈ x}

because it is easy to see that both X ∈ X and X 6∈ X, leading to a contradiction.
Exactly as for the liar’s paradox, this is a case of careless self-reference. Fixing these
issues required quite an amount of work and led, amongst others, to the modern set
theory as we know it [2].

While set theory aims at describing the mathematical objects in a formal way, it is
somehow agnostic about the underlying logic, and in particular about what a proof is.
This question, although pertaining to the same foundational quest, is clearly distinct.
Albeit already present in germ in Aristotle’s syllogisms, the issue would not be tackled
formally until Boole and later Frege.
Boole, some three decades before the proper beginning of the foundational quest, pro-

posed a system based on what we would call today Booleans [22]. It would assign to each
proposition a truth value, reduced to two possibilities, either true or false, paving the way
for electrical circuits. Instead, Frege devised a graphical system, the Begriffsschrift [42],
allowing to represent a proof as a tree-like structure, in a fashion close to the modern
proof theory. The two approaches are sharply different. In Boole’s system, proofs do
not exist as proper objects, and the logical content of a formula is amalgamated to its
validity. In this respect, Frege’s Begriffsschrift is more fine-grained, because it makes

1This expression is due to Hilbert.

14

explicit the proof justifying a formula as a first-class object, emphasizing the notion of
provability over validity. This contrasted the opposition between truth, a semantical
notion, and provability, a syntactical one.

At the very beginning of the 20th century, Hilbert proposed to the world his now famous
twenty-three problems for the next hundred years to come. They were open problems of
that time whose importance was deemed sufficient enough to be considered as landmarks
for the dawning century. Most notably, the second problem was to prove that arithmetic
was consistent. In Hilbert’s mind, proving it would have somehow marked the end of
the quest for the foundations, because arithmetic was then thought to be a complete
basis for all mathematics. This was at the core of the so-called Hilbert’s program for
the refoundation of mathematics, embodied by his claim: “In mathematics there is no
ignorabimus”.
Much to Hilbert’s dismay, things went awry thirty years later, when Gödel formally

proved that this hope was a chimera. Elaborating on the evergreen liar’s paradox, Gödel
showed that any reasonable consistent logical system featured a formula which was not
provable in this system, nor was its negation. As arithmetic fitted the requirements of
reasonableness, this theorem washed ashore the idea that arithmetic would encode all
mathematics. Such a formula Φ, neither provable, nor disprovable, called independent
from the system, can be built just like the Greek liar.

Φ := “Φ is not provable.”

The exact construction of the above formula relied on a trick that was novel at that time,
but that would seem nowadays obvious to a computer scientist. Indeed, Gödel needed to
turn formulae into numbers, a process which we would call in modern terminology digi-
tizing and which is at the heart of our everyday’s computers. The notion of reasonable,
which we did not define, is also worth discussing from the computer scientist’s point of
view. Informally, a system is reasonable if its proofs can be mechanically checked by a
computer. It is quite remarkable that Gödel’s proof, published in 1931, even predates
the formalization of what a computer is, due to Turing in 1936!

Actually, the picture is even worse. Gödel also proved that the consistency of a rea-
sonable system was independent from this system. This was a hard stroke. To prove the
consistency of arithmetic thus required a system strictly more powerful than arithmetic
itself. But the consistency of that system would require in turn a more powerful one,
and so on, effectively requiring consistent systems all the way down.
It seems that Gödel tried to work around this inherent limitation of logic by shifting

its point of view over consistency. This is particularly visible in his subsequent work,
including the double-negation translation [50] (1933) and the Dialectica translation [51]
(published in 1958, but designed in the 30’s). Both translations were trying to reduce
consistency of arithmetic to a computational property. These results were drawing from
the intuitionism that Brouwer had been advocating. Rather than a purely formal game
consisting in applying trusted rules, Brouwer opposed to Hilbert and defended the fact
that logic needed to be rooted in a constructivist approach, effectively building up the

15

1 Introduction

objects it described. Brouwer rejected in particular the principles of classical logic that
allowed to create objects that could not be made explicit.
Instead of relying on abstract, static logical principles, this allowed to base the logical

content of a proof on the dynamics of an effective procedure hidden inside the latter.
Contrarily to axioms, algorithms are objects one can handle and run, giving much more
insight on what is going on in the proof. This eventually led to the so-called realizability
techniques, as developed by Kleene for instance [65].

The final step of this history needed a few years to fully mature, and is in part due to
the growth of programming languages on actual computers from the end of the first half of
the 20th century onwards. In 1958, Curry, and then Howard in 1969, realized that a well-
chosen representation of proofs of intuitionistic logic was in one-to-one correspondence
with a typed subset of programs from the λ-calculus, a programming language that had
been designed by Church in the 30’s [29], and the common ancestor of the phylum of
functional languages. Pushing forward the ideas sketched by intuitionism, it showed that
not only programs could be extracted from proofs through realizability, but also that the
proofs were already programs in their own right. This observation, now known as the
Curry-Howard correspondence, sparkled an important paradigmatic shift.
It materialized in several occasions, by the independent discovery of the same object

twice, once by a logician, and once by a computer scientist. One of the earlier example
postdating the explicitation of the Curry-Howard isomorphism may be found in the
parallel definition of Girard’s System F [48] and Reynolds’s Polymorphic λ-calculus [98].
The two objects are exactly the same, except that System F stems from second-order
logic while the Polymorphic λ-calculus was constructed as a programming language.
This identity allowed for the design of objects that were at the same time a program-

ming language and a proof system. Such languages allow to write programs and prove
them in one go, ensuring programming developments that fully respect their specifica-
tion, and thus, bug-free2. In addition, the efficiency of computers on tedious tasks allows
to tackle problems that were unthinkable of half a century ago, and mathematics will
probably be deeply transformed from such a systematical mechanization, enlarging the
boundaries of tractability.
One of the first practical implementation of such a hybrid system was the Coq proof

assistant [33] which is nowadays used to write critical software as well as proving com-
plicated mathematical statements.
Another consequence of this equivalence, maybe more surprising, manifested itself by a

chance remark due to Griffin [53]. Trying to type a programming primitive called call/cc
from the Scheme programming language, he realized that this primitive actually granted
the expressiveness of classical logic. Thus the Curry-Howard correspondence was not
restricted to intuitionistic logic, and could be extended by providing extraneous primitives
that retained a computational content. Following this discovery, Krivine started to try
to implement well-known axioms in a computational way, spawning a fruitful research
program, the so-called classical realizability.

2As long as the specification itself is correct, of course.

16

The understanding of mathematical axioms as new programming constructs opened
the door to a brand new world. Logic had finally found the reality it was the model of:
more than the science of language, logic is the science of programming languages.

We consider ourselves to be in the wake of this bicephal tradition, that merges ideas
coming from computer science with principles originating in logic. This paradigmatic
standpoint allows for an interdisciplinary look at objects from both worlds, and can
often give many enlightening hindsights from the other side of the bridge. The central
contribution of this thesis is actually an instance of such a methodological manifesto. It
consists in looking at a well-known object, Gödel’s Dialectica, with a Curry-Howard era
computer scientist’s look, based on the pioneering work by De Paiva and Hyland [92, 93,
58].
Their work provided a firm categorical framework to synthetize Dialectica-like trans-

lations. Strangely enough, the Dialectica translation by itself did not benefit from this
categorical apparatus. In particular, a clear understanding of the computational effects
at work in the translation remained to be found. What does the program corresponding
to the translation of a proof actually do? We would like the present thesis to fill this
gap.

If it were to be reduced to a dozen of words, we would like this thesis to be summarized
by the following claim.

“All the while, Gödel’s Dialectica translation was a classical realizability pro-
gram translation, manipulating stacks as first-class objects and treating sub-
stitution in a computationally relevant way, ultimately allowing to observe
those stacks at variable access time.”

Buried under a hefty crust of technicalities inherited from a time where the λ-calculus was
but a toy and Howard was not even a teenager, the Dialectica translation actually turns
out to be a jewel of the finest kind, exhibiting constructions that are elegantly explained
in the classical realizability realm. It features in particular a first-class notion of stacks
as concrete objects, while also dealing with such a subtle thing as delayed substitution,
as found in the Krivine machine for example. These notions were virtually unknown at
the time the Dialectica translation was published, let alone designed, effectively making
the work of Gödel even more awing.

The main contributions of this thesis can be stated as follows.

1. A reformulation of the Dialectica translation as a pure, untyped, program trans-
lation that respects the underlying operational semantics of the λ-calculus. While
the work of De Paiva and Hyland was an important step into this direction, they
were not based on computational objects and relied both on an underlying cate-
gorical structure and an explicitly typed language. To the best of our knowledge,
the issue of the lack of preservation of β-equivalence in the original Dialectica was
never even clearly stated as such.

17

1 Introduction

2. A computational description of the translation, in terms of new side-effects de-
scribed in the Krivine machine. This presentation is heavily inspired by the work
of Krivine in classical realizability, and draws many of the folklore ideas of this
research topic. This is a novel approach, and it raises actually more questions than
it solves, for we now have a new range of intuitions arising from this description.

3. A new formulation for on-demand computation (the call-by-need family of reduc-
tions) rooted in logical considerations rather than ad-hoc hypotheses. This problem
is related to the representation of variable substitution in λ-calculus, and echoes
with the clever encodings of substitutions in the Krivine machine by means of
closures that play an important rôle in the Dialectica translation.

4. An extension of the Dialectica translation to the dependently-typed case, and a
study of its limitations. Contrarily to double-negation translations, the Dialectica
translation can be adapted easily to cope with type-dependency, as long as the
preservation of β-equivalence has been solved. This is not the case though for
dependent elimination, and this hints at new variants of the Dialectica.

5. Various relatives of the Dialectica translation appearing when considering distinct
linear decompositions. Many of them are folklore, but presenting them in the same
place in the style of Oliva [89] allows to highlight interesting common patterns, as
well as possible new variants.

The chapters making this thesis up themselves are roughly divided according to the
above classification. Let us give here a broad description of their respective contents.
Chapters 2, 3 and 4 are introductory and recall the necessary basis to understand the

developments that follow, together with pervasively used objects and notations. More
precisely,

• Chapter 2 describes the λ-calculus and related topics, as well as the minimum
amount of logic that will be needed in the course of this thesis;

• Chapter 3 introduces linear logic, that we will use as a valuable tool throughout
the later developments, and a bit of category theory to grasp the basic concepts of
effects in the λ-calculus;

• Chapter 4 deals with the introduction of dependent types from a very high-level
standpoint.

Chapter 5 is a short summary of the problems that occur whenever trying to add
effects into a dependently-typed system. While it does not provide any real result by
itself, it eases the understanding of the implications of a dependent Dialectica, which is
given later. It could therefore be considered as an extended introductory chapter.
Chapter 6 explores a fresh presentation of call-by-need λ-calculi through the lens of

logic, and in particular linear logic. We show how a new type of contexts, closure con-
texts, mimicking the analogous closures from the Krivine machine, allows to derive in

18

a straightforward fashion various call-by-need calculi. This presentation is more canon-
ical and easily lifts to classical settings. This chapter is quite self-contained and mostly
independent from the following ones.
The remaining chapters revolve around the Dialectica translation.
Chapter 7 recalls the Dialectica translation as presented by Gödel, although we do it in

a slightly modernized way. Its main goal is to show that the translation soundly interprets
Heyting’s arithmetic, as well as a few additional semi-classical axioms. Although not
yielding new results, it features a more proof-theoretical savvy that is often absent from
the presentations of the historical Dialectica.
Chapters 8 and 9 are morally part of the same semantical unit. The former attempts to

adapt the historical presentation of Dialectica to a Curry-Howard paradigm, but unluckily
fails to fulfill all the expected properties of such a presentation. The latter analyzes the
reasons for this failure, and fixes them by drawing ideas from De Paiva and Hyland. It
then turns to the explanation of the content of the resulting translation by describing
its operational behaviour in the Krivine machine. In light of these findings, much of the
historical presentation is scrutinized with new programming intuitions in mind.
Chapter 10 discusses variants of the translation obtained through linear logic. It also

provides new explanations for the realizers of the semi-classical axioms of Dialectia seen
as programming primitives.
Chapter 11 describes how a dependently-typed Dialectica would look like. It explains

to which extent the Dialectica translation is naturally dependent, and also where it
cannot account for some principles. Typically, the Dialectia readily accommodates the
negative fragment, but fails at encoding the dependent elimination rules.
Finally, Chapter 12 aims at giving a partial reconstruction of the Dialectica translation

by putting in perspective with related translations, such as forcing. In the course of
this chapter, we show that a variant of the Lafont-Reus-Streicher CPS can be naturally
obtained by tweaking a call-by-name forcing translation according to the ideas developed
by Miquel and Krivine. This observation paves the way for potential future work on the
Dialectica.

19

2 Prolegomena

Attention ! Ce flim n’est pas un flim
sur le cyclimse.

Georges Abitbol about the flim.

We will review in this introductory chapter the basic tools and concepts that we will
be at the heart of the remaining of this document. It will be the occasion to recall the
definition of the often copied but never equaled λ-calculus, as well as giving a rudimentary
look at logic seen through the prism of proof-theory. The exposition of both will lead us
to the formulation of the Curry-Howard isomorphism, an observation that proved itself
to be an incredibly fruitful discovery both for computer science and logic and from which
this thesis proceeds.

2.1 The λ-calculus

Our choice to start with the definition of the λ-calculus, the great ancestor of functional
programming language, rather than with the basic principles of logical reasoning in a
thesis greatly inspired by the works of Gödel may have sounded a bit odd to him, and
this may be still be the case for some modern logicians. While we acknowledge this fact,
we also advocate that computation is at the heart of logic, up to the point that we even
claim that logic is a corollary of computation.
The fact that the λ-calculus was designed by a logician, Alonzo Church, is not here to

invalidate this statement [29]. The fact that he designed it even before the formulation of
Turing completeness does not validate it either. In any case, the λ-calculus was a logical
system that turned out to be a full-fledged programming language as well [104]. This
duality is deeply rooted in our research field since the dawn of modern proof-theory, and
is a constitutive element of our cultural horizon.

2.1.1 The archetypal λ-calculus

In its rawest form, the λ-calculus can be defined by a three-case inductive structure and
one reduction rule. This conciseness makes it an object rather simple to manipulate
mathematically.

Definition 1 (λ-calculus). The terms of λ-calculus t, u are defined by the following
inductive grammar

t, u := x | t u | λx. t

21

2 Prolegomena

where x stands for a variable, and where the variable x is bound in λx. t. This means
that we implicitly quotient terms by the so-called α-equivalence, i.e.

λx. t[x] ≡ λy. t[y]

where x and y are fresh variables and t[·] stands for a term depending on a given variable.
The term λx. t is called λ-abstraction while t u is an application. We will often group

abstractions together under the same λ for readability, and use the _ placeholder to
stand for variable bindings that do not appear in the body of the term they bind.

The λ-calculus is endowed with a rewriting system, called β-reduction, which is gen-
erated by the congruence closure of the following rule:

(λx. t) u→β t[x := u]

where t[x := u] stands for the capture-free substitution of x by u in t. The equivalence
generated by this oriented reduction is called β-equivalence, and is written as ≡β .
A term is said in normal form whenever it does not reduce.

Designing precisely and correctly what we mean by capture-free substitution is not
as easy as it sounds, and many modern programming languages still get it despairingly
wrong 1. There is a plentiful literature on this topic, but for our purpose, it is sufficient
to consider that in the substitution

t[x := u]

one renames by α-equivalence all bound variables of t and u to fresh instances before
actually performing the substitution. From now on we will simply forget about these
issues and reason implicitly up to α-renaming.
There is a vast quantity of theorems about the λ-calculus. We will quickly state a few

ones we believe to be fundamental.

Theorem 1. The λ-calculus is Turing-complete, that is, it can compute any algorithm.

Proof. The proof of its Turing-completeness is actually simultaneous to the very defini-
tion of Turing-completeness by Turing [104].

Theorem 2. The β-reduction is confluent, i.e. if t→∗β r1 and t→∗β r2 then there exists
r such that r1 →∗β r and r2 →∗β r.

Proof. A standard proof is Tait’s one, found amongst others in Barendregt’s book [17].

1The Python programming language is a famous case.

22

2.1 The λ-calculus

2.1.2 Reductions and strategies

When considering the λ-calculus as a programming language, it is quite usual to restrict
the β-equivalence according to a given set of constraints. The resulting systems are often
called calculi, together with a qualificative. There are two standard such restrictions, the
so-called call-by-name and call-by-value λ-calculi.

Definition 2 (Call-by-name). The call-by-name λ-calculus is simply defined by the
unrestricted β-reduction.

Definition 3 (Call-by-value). The call-by-value reduction relies on the notion of value.
For the time being, a value v is simply a λ-abstraction, that is, v := λx. t.
The call-by-value λ-calculus is then defined by the congruence closure of the call-by-

value →βv rule, given below.

(λx. t) v →βv t[x := v]

The equivalence generated by these rules is written ≡βv.

The only difference between by-name and by-value reduction is that, in the latter,
only values get substituted. This effectively forces the computation of the argument of a
function before applying the β-rule. The two reductions are sharply distinct, as witnessed
by the following term

(λx. λy. y) ((λx. x x) (λx. x x))

which is equivalent to λy. y in call-by-name, but not in call-by-value where it does not
have any normal form.

The fact that we qualify the usual β-reduction as by-name may startle the reader used
to actual programming. Indeed, what is the point of giving two distinct names to one
object? The answer comes from the fact that the two become distinct when adding the
constraint that the reduction system is a strategy.

Definition 4 (Strategy). A strategy s is a deterministic reduction rule →s, that is, for
any t→s r1 and t→s r2, we have r1 = r2.

A strategy can be considered as a particular implementation of a reduction: it orders
the places where the reduction is to happen in a predictable fashion. The by-name and
by-value calculi can be adapted into strategies. A simple way to present their strategy
variants is to define them using reduction contexts.

Definition 5 (Context). A context is a term E with a special free variable written [·]
that appears once and exactly once in E. We will write E[t] for E where the hole variable
has been substituted by t.

Definition 6 (By-name and by-value strategies). The call-by-name strategy is defined,
using the inductive context En below:

En := [·] | En t

23

2 Prolegomena

by the following reduction rule.

En[(λx. t) u]→n En[t[x := u]]

The left-to-right call-by-value strategy is defined, using the inductive context Evlr
below:

Evlr := [·] | Evlr t | (λx. t) Evlr
by the following reduction rule.

Evlr[(λx. t) v]→vlr Evlr[t[x := v]]

The right-to-left call-by-value strategy is defined, using the inductive the context Evrl
below:

Evrl := [·] | Evrl v | t Evrl
by the following reduction rule.

Evrl[(λx. t) v]→vrl Evrl[t[x := v]]

Proposition 1. The reductions given in the previous definition are indeed strategies.

2.1.3 Typing

In the presentation given in Section 2.1.1, the λ-calculus is presented as a mere (higher-
order) rewriting system. It is nonetheless usual to restrict the expressive power of this
λ-calculus by subjecting it to a typing discipline. The resulting calculi are therefore
called typed λ-calculus, while the original calculus is called untyped.
In the more abstract and general way, a type is a syntactic datum that restricts the

uses one can make of a λ-term. There are various notions of types in the literature, but
we will essentially focus here on the simply-typed variant.
Before going further, it is worth to mention that there are two main fashions to present

the typing of λ-terms.

• An intrinsic style, where terms carry the typing information in their syntactical
structure. This representation, called Church-style, has various benefits. The most
notable one, in general, lies in the fact that it allows for the decidability of typing.
Its main drawback is that it forces the term to live in a given type and makes
coercion involved.

• An extrinsic style, where terms do not carry any typing information. Such a pre-
sentation, called Curry-style, exchanges the benefits and drawbacks of the Church-
style, that is, it usually renders typing undecidable while allowing to freely separate
computationally relevant terms from their typing derivations.

Most of the time, we will be inclined towards the Curry-style for its simplicity, although
the results we present can be adapted to the Church-style.

We recall here one of the simplest typing systems for the λ-calculus, the so-called
simply-typed system.

24

2.1 The λ-calculus

Definition 7 (Simple types). The simple types are built over the following grammar:

A,B := α | A→ B

where α ranges over a fixed set of base types.

The typing property is based on a notion of sequent, which associates a type to a term
assuming that its free variables are also typed.

Definition 8 (Sequents). An environment Γ is a list of pairs of variables and types,
defined by the following inductive grammar.

Γ,∆ := · | Γ, x : A

We will be writing Γ1, . . . , Γn for each type at position i in Γ.

A typing sequent is a triple of the form Γ ` t : A where Γ is an environment, t a term
and A a type. As for λ-terms, we will be considering that variables in environments are
bound, and thus we will freely apply α-equivalence whenever needed.

Finally, typing is defined in terms of typing derivations, which are trees of sequents
representing decoration of the underlying term. It is usual to define the typing relation
by means of typing rules of the form

∆1 ` u1 : A1 . . . ∆n ` un : An

Γ ` t : A

where the sequent below the line is called conclusion of the rule, and the (possibly empty)
list of sequents above the line are called premises of the rule. Several side-conditions can
also be present, in general related to the management of free variables.

Definition 9 (Simply-typed λ-calculus). The simply-typed λ-calculus is defined by the
following typing rules.

Γ ` t : B

Γ, x : A ` t : B Γ, x : A ` x : A

Γ, x : A ` t : B

Γ ` λx. t : A→ B

Γ ` t : A→ B Γ ` u : A

Γ ` t u : B

We will often use implictly the following property.

Proposition 2. The following derivation is derivable:

x : A ∈ Γ

Γ ` x : A

25

2 Prolegomena

where x : A ∈ Γ has the expected meaning.

The main interest of typing systems is that, while being purely static objects, they are
compatible with the dynamics of the underlying term, viz. the reduction rules, in the
sense that they enjoy a subject reduction property.

Theorem 3 (Subject reduction). If Γ ` t : A and t→β r then Γ ` r : A.

This allows to ensure a handful of properties on well-typed normal forms. For instance,
any closed normal term of type A→ B must be a λ-abstraction.

The simply-typed λ-calculus is not Turing-complete, and its expressiveness is very
weak. For the sake of completeness, we present here Girard’s System F, a.k.a. Reynold’s
polymorphic λ-calculus, that allows for quantification over types with a minimal amount
of additional material. In Curry-style, it chiefly consists in one supplementary type
constructor, no new term constructor and two additional typing rules.

Definition 10 (Polymorphic types). The grammar of polymorphic types is given below.

A,B := α | A→ B | ∀α.A

Here, α is bound in ∀α.A, so the usual α-equivalence tricks apply.

Definition 11 (System F). System F is made of the simply-typed rules together with
the two additional rules below.

Γ ` t : A α fresh

Γ ` t : ∀α.A
Γ ` t : ∀α.A

Γ ` t : A[α := B]

It is well-known, since Girard’s thesis, that System F is strongly normalizing, and thus
the simply-typed λ-calculus as well.

Theorem 4. For any term t such that ` t : A in System F, then t has a normal form.

Proof. See for instance the Girafon [47].

2.1.4 Datatypes

The simply-typed λ-calculus is not very expressive, and for programming purposes, it
is usual to add base datatypes, allowing to build up more complicated types. We will
consider two families of such datatypes, sums and products, by adding their nullary and
binary variants, namely:

• For the products, the singleton 1 and pair types A×B;

• For the sums, the empty 0 and binary sum A+B types.

They require us to extend both the types and the terms to manipulate them. The
resulting calculus, that we will call the λ×+-calculus, will be used extensively.

26

2.1 The λ-calculus

Definition 12 (λ×+-calculus). The λ×+-calculus terms are the ones from the usual
λ-calculus, extended with the following additional structure:

t, u := . . . | (t, u) | match t with (x, y) 7→ u

| inl t | inr t | match t with [x 7→ u1 | y 7→ u2]

| () | match t with () 7→ u | match t with [·]

Reduction rules are made of β-equivalence extended to the other connectives.

match () with () 7→ t→β t

match (t, u) with (x, y) 7→ r →β r[x := t, y := u]

match inl t with [x 7→ u | y 7→ r]→β u[x := t]

match inr t with [x 7→ u | y 7→ r]→β r[y := t]

Types are taken from the simply-typed λ-calculus together with inductive datatypes.

A,B := . . . | 1 | A×B | 0 | A+B

Typing rules are the ones from the simply-typed λ-calculus, extended with the rules
below.

Γ ` () : 1

Γ ` t : A Γ ` u : B

Γ ` (t, u) : A×B

Γ ` t : A

Γ ` inl t : A+B

Γ ` t : B

Γ ` inr t : A+B

Γ ` t : 1 Γ ` u : C

Γ ` match t with () 7→ u : C

Γ ` t : 0

Γ ` match t with [·] : C

Γ ` t : A×B Γ, x : A, y : B ` u : C

Γ ` match t with (x, y) 7→ u : C

Γ ` t : A+B Γ, x : A ` u1 : C Γ, y : B ` u2 : C

Γ ` match t with [x 7→ u1 | y 7→ u2] : C

The match terms are called pattern-matching terms, and the other ones are called
constructors.

Remark 1. Note that the λ×+-calculus does not feature truly recursive datatypes, in
particular natural numbers, even though it would not be difficult to add syntactically.

27

2 Prolegomena

We would need to take some care if we wanted to remain strongly normalizing, but
that would be about that. Nonetheless, we will tend to call any algebraic datatype an
inductive type, be it recursive or not.

We define now some useful terms that will be used pervasively.

Definition 13. We define the following constants.

fst := λp. match p with (x, y) 7→ x
snd := λp. match p with (x, y) 7→ y

We will also be using the following useful macros defined below

λ(). t := λp. match p with () 7→ t
λ(x, y). t := λp. match p with (x, y) 7→ t
λ [·] := λp. match p with [·]
λ[x 7→ u1 | y 7→ u2] := λp. match p with [x 7→ u1 | y 7→ u2]

where p is fresh.

For the sake of completeness, one should mention that System F is powerful enough
to represent those datatypes through the famous impredicative encoding. The trick is to
encode a term living in an inductive datatype as any pattern-matching one could apply
to it, universally quantifying the return type of this pattern-matching. We give the type
encoding below.

0 := ∀α. α
1 := ∀α. α→ α
A+B := ∀α. (A→ α)→ (B → α)→ α
A×B := ∀α. (A→ B → α)→ α

The term encoding is straightforward. We will only expose the pair case here to give
the flavour of this encoding.

(t, u) := λk. k t u
match t with (x, y) 7→ u := t (λx y. u)

2.2 A minimalistic taste of logic

We detail here the basic requirements of the remaining of this document regarding logic.
We will stick to a very syntactical approach here, and will mainly present the inference
systems we need for our purposes. Before presenting the technical content, we would like
to take a step back and look at our perception of logic from a computer scientist’s point
of view.

28

2.2 A minimalistic taste of logic

2.2.1 The programmer’s bar talk

For centuries, logic has been thought of as the way to justify the validity, in terms of
truth, of a given discourse. While the notion of inference rules was already present in
Aristotle’s Organon, it would not be until Frege’s Begriffsschrift [42] that logic would
have been provided with a truly formal reasoning system. In the wake of this tradition,
we will tend to consider logic through the angle of syntactical objects, namely sequents
derivations, rather than semantical structures such as models.
The derivation notation allows one to concisely express a succession of deduction steps

that would be otherwise clumsy to write out in a more informal language. Compare
for instance the two following presentations of the same object, a variant of the modus
ponens rule.

All men are mortal.
Socrates is a man.
Thus Socrates is mortal.

` A→ B ` B → C

` A→ C

As famously shown by Gödel [52], the syntactical approach suffers from an inherent
limitation that deeply disturbed the mathematicians of that era. Indeed, he demon-
strated that any such derivation system, with a computational proof-checking, and ex-
pressive enough to model arithmetic was either inconsistent, i.e. proved all formulae, or
incomplete, i.e. featured some undecidable formula, which the system neither proved nor
disproved. Even worse, the consistency of the system was precisely an instance of such
undecidable formulae.
This issue arises from an intrinsic limitation of logic, but to be understood in its

rawest, linguistic form. As soon as we get to manipulate infinite enough objects, we hit
an expressiveness wall: our language, be it mathematical or not, is finitistic, in the sense
that the set of all sentences that mankind will ever utter in some form or another is
bound to be denumerable.
This may have sounded terrible to the logicians of the eve of the twentieth century,

but we programmers are not afraid anymore of such a limitation. Our programming
languages are Turing-complete, and for any logical system reasonable enough, by Gödel’s
incompleteness theorem, one can find a program whose termination cannot be proven by
this system. Somehow, programming won.
This is why we claimed that logic was a corollary of computation. From our computer

scientist look, logic is the delicate art of formulating systems rich enough to prove that
the program we are looking at is indeed correct, but weak enough not to be inconsistent.

2.2.2 Propositional logic

Propositional logic is a very simple family of logic where formulae are restricted to the
well-named propositional fragment, which is defined below.

Definition 14 (Propositional formulae). Propositional formulae A,B are inductively
defined as follows:

A,B := α | > | ⊥ | A→ B | A ∧B | A ∨B

29

2 Prolegomena

where α ranges over propositional variables.

The even smaller fragment only made of variables and arrow connective is called the
minimal fragment, and it will turn out to be important in the next section.

Even before choosing a particular set of rules for our formulae, there are various ways
to present the deduction steps of the logic. For a reason that will appear obvious later
on, we will stick to the natural deduction presentation.

Definition 15 (Natural deduction). An environment Γ is a list of formulae, defined by
the following inductive grammar.

Γ,∆ := · | Γ, A

A natural deduction sequent is a pair of the form Γ ` A where Γ is an environment
and A a formula.

We now proceed to give the deduction rules. We will stick to the intuitionistic set of
rules, resulting in the proof system known as LJ, the intuitionistic natural deduction.

Definition 16 (LJ). The LJ system has the following deduction rules.

Γ, A ` A
Γ ` A

Γ, B ` A
Γ, A ` B

Γ ` A→ B

Γ ` A→ B Γ ` A
Γ ` B

Γ ` >
Γ ` A ∧B

Γ ` A
Γ ` A ∧B

Γ ` B
Γ ` A Γ ` B

Γ ` A ∧B

Γ ` ⊥
Γ ` A

Γ ` A
Γ ` A ∨B

Γ ` B
Γ ` A ∨B

Γ ` A ∨B Γ, A ` C Γ, B ` C
Γ ` C

Rules featuring a connective absent from the premises in the conclusion are called
introduction rules for this connective (possibly with an additional qualificative to distin-
guish them). Dually, rules featuring a connective in a premise that disappears from the
conclusion are called elimination rules. Two rules are not covered by this categorization,
the so-called structural rules. Those are the two first rules, called respectively axiom and
weakening.
Minimal logic is the fragment that only uses the structural rules together with the

introduction and elimination rules for the arrow.

Notation 1. We will write ¬A for A→ ⊥.

30

2.2 A minimalistic taste of logic

Usually, mathematicians use classical logic, which is an extension of intuitionistic logic
with an additional axiom featuring some form of classical reasoning. Amongst them,
let us cite the excluded-middle and the double-negation elimination, whose schemes are
formulated below.

` A ∨ ¬A ` ¬¬A→ A

We call them schemes because these axioms are morally universally quantified over A,
but as we lack such a way to express it in LJ, we rather choose to do so externally, by
providing an axiom for each instance of the formula A.
Those two axioms are logically equivalent in LJ, and we will call LK the system LJ

equipped with one of those two classical axioms.

In minimal logic, the lack of a notion of falsity prevents us from being able to write
negation, so that the preferred way to introduce classical logic in this setting is by means
of Peirce’s law, which is the following axiom scheme.

` ((A→ B)→ A)→ A

This axiom is close to the double-negation axiom, where each instance of ⊥ would have
been replaced by A and B respectively.

2.2.3 First-order logic

First-order logic is an extension of propositional logic where one is allowed to reason
about a given set of terms. Those terms are defined through a signature.

Definition 17 (Signature). A signature is a set of pairs of symbols and nonnegative
integers, where such an integer is called the arity of the corresponding symbol.

We will tend to qualify the signature according to the intended nature of the symbols
it contains. In particular, we will consider in this section term signatures and predicate
signatures.

Definition 18 (First-order terms). Assuming a signature, first-order terms are defined
by the following inductive grammar:

t, u := x | f t1 . . . tn

where in the first case, x ranges over variables, and in the second case, f is a symbol and
n its arity from the signature.

Similarly to the term construction, formulae of first-order logic are built as an extension
of propositional formulae upon another signature, the predicate signature.

31

2 Prolegomena

Definition 19 (First-order formulae). Assuming a term signature and a predicate sig-
nature, the formulae of first-order logic are those from propositional logic extended with
the following structure:

A,B := . . . | ∀x.A | ∃x.A | P t1 . . . tn

where x is bound in ∀x.A and ∃x.A, n is the arity of P in the predicate signature, and
the t1 . . . tn are terms built from the given term signature.

The base logic is an extension of LJ to the first-order setting.

Definition 20 (First-order logic). The inference rules of first-order logic are simply
the ones from LJ, enriched with the additional rules below to handle the first-order
quantifications.

Γ ` A x fresh in Γ

Γ ` ∀x.A
Γ ` ∀x.A

Γ ` A[x := t]

Γ ` A[x := t]

Γ ` ∃x.A
Γ ` ∃x.A Γ, A ` C x fresh in Γ, C

Γ ` C

This specification allows one to describe a vast range of different logical systems by
choosing a particular pair of term and predicate signatures, and by considering a par-
ticular set of axioms over the resulting formulae. This provides a great flexibility and
extensibility. We will nonetheless only focus on the Heyting arithmetic, which is one of
the most standard theory of natural integers.

The system we presented is, as LJ, an intuitionistic system. One can recover a classical
system by adding one of the axioms mentioned before.

2.3 The Curry-Howard isomorphism

The Curry-Howard isomorphism is a revolutionary discovery that was made indepen-
dently first by Curry and then about ten years later by Howard [57]. Stemming from
a seemingly innocuous observation, it paved the way for a deep paradigm shift in logic,
effectively bringing together two worlds that did not seem to have so close bounds at
first sight: theoretical computer science and the foundations of mathematics.

2.3.1 A significant insignificant observation

The observation from which sprouted all this is somehow obvious, once we know where
to look at. Rather than convoluted explanations, we prefer to let the reader glance at the
objects below, which are already spelt out derivation rules of minimal logic and typing
rules of λ-calculus, put in the same place.

32

2.3 The Curry-Howard isomorphism

Γ, A ` A
Γ ` A

Γ, B ` A
Γ, A ` B

Γ ` A→ B

Γ ` A→ B Γ ` A
Γ ` B

Γ, x : A ` x : A

Γ ` t : A

Γ, x : B ` t : A

Γ, x : A ` t : B

Γ ` λx. t : A→ B

Γ ` t : A→ B Γ ` u : A

Γ ` t u : B

It is now time to point at the elephant in the room.

Theorem 5. Minimal logic derivations are in one-one correspondence with simply-typed
λ-calculus derivations (up to α-equivalence).

This historical observation is the Rosetta Stone of modern proof theory. Each property
from one side can be put in regard with another one from the other side.

Proposition 3. The β-reduction from the simply-typed λ-calculus is known under the
name of cut elimination on the logical side.

Famous soundness theorems that are a corollary of cut-elimination are therefore no
more than variants on the strong normalization property of typed λ-calculi.
Minimal intuitionistic logic is not really expressive. Luckily, the Curry-Howard iso-

morphism can be lifted to more general systems. For the sake of comprehensiveness, we
list a few alias names below, even though we will not present all of the systems.

Calculus Logical system

Simply-typed λ-calculus Minimal logic

λ×+-calculus Propositional logic

λΠ-calculus First-order logic

System F Second-order logic

The above system equivalences are mostly based on the following equivalence between
programming structures and logical features.

Computation Logic

0 ⊥

1 >

A+B A ∨B

A×B A ∧B

A→ B A→ B

reduction cut-elimination

normal form cut-free proof

There would be already a lot to say about all of these equivalences, but we would lack
of time. We rather carry on towards the consequences of such a discovery.

33

2 Prolegomena

2.3.2 From proofs to programs

Many interesting properties coming from logic can be revisited through this correspon-
dence. We will focus on the seminal case of translations allowing to recover classical
logic, for they played an important rôle in the development of the comprehension of the
Curry-Howard isomorphism.
Intuitionistic logic does not prove the classical principles exposed before, namely the

double-negation elimination or the excluded middle. Yet, since Glinvenko [49] and
Gödel [50], it is a well known fact that one can transform LK proofs into LJ proofs
through a family of translations known as double negation translations to recover classi-
cal provability. Let us give an instance of such a translation in minimal logic.

Definition 21 (Double-negation translation). Let R be a formula from minimal logic.
We define the translation (−)N from minimal logic into itself as follows.

αN := α

(A→ B)N := AN → (BN → R)→ R

Sequents are then translated as follows.

(Γ ` A)N := ΓN ` (AN → R)→ R

The following theorems are close to the historical formulation given by Gödel, and
would stay as-is until the Curry-Howard revolution.

Theorem 6 (Soundness). If Γ ` A is derivable in minimal logic, then (Γ ` A)N is also
derivable in minimal logic.

Theorem 7 (Classical logic). The sequent (` ((A→ B)→ A)→ A)N is derivable in
minimal logic.

Theorem 8 (Correction). Assuming we trivially lift the translation to LJ and take
R := ⊥, then the two sequents

Γ ` A and (Γ ` A)N

are equiprovable in LK.

With our Rosetta Stone at hand, we can give a complete rereading of these theorems
in terms of program translations, and shed a new light on their actual content. To this
end, it is sufficient to look at the details of the soundness proof to recover a λ-term out
of it.

Definition 22 (CPS translation). Given a λ-term t, we define the term tN by induction
as follows.

xN := λk. k x

(λx. t)N := λk. k (λx. tN)

(t u)N := λk. tN (λf. uN (λx. f x k))

34

2.3 The Curry-Howard isomorphism

The soundness theorem is no more that a typing preservation of our λ-term.

Proposition 4. Assuming Γ ` t : A, then ΓN ` tN : (AN → R)→ R.

Proof. By induction on the typing derivation.

The proof of Peirce’s law can also be understood as a λ-term.

Proposition 5. The term

λk. k (λf k. f (λx_. k x) k)

has the type of Peirce’s law through the sequent translation.

Proof. By unfolding of the definition.

The intriguing part of this result is that the corresponding term translation is rather
well-known from the programming side. Indeed, it is the continuation-passing style
which is used pervasively in some settings, such as event-based programming as found in
JavaScript for instance. The term that allows to prove Peirce’s law is in particular used
to provide backtrack, giving hindsights into what a classical proof is.

The explicitation of the underlying program has another consequence. What about
the relative semantics of translated programs? This question is hard to formulate when
the proof terms are hidden by the typing derivation, and may not even make any sense if
the translation relies on types. Actually, the (−)N translation is also well-behaved w.r.t.
to the equivalence of programs.

Proposition 6. For any term t and any value v, the following equivalence holds

(t[x := v])N ≡β tN [x := vV]

where vV is defined by case analysis on v below.

xV := x

(λx. t)V := λx. tN

Proof. By induction on t.

Theorem 9. For any t and r, if t ≡βv r then tN ≡β rN .

Proof. Direct consequence of the above lemma.

This is much richer than the mere preservation of typing. The above translation has
thus both a logical and a computational content, a fact which was difficult to highlight
when working with derivations only. Moreover, this theorem holds even if the terms are
untyped!

35

2 Prolegomena

2.3.3 From programs to proofs

If the Curry-Howard isomorphism were to be used only to justify a posteriori that a
logical translation can be understood computationally, it would not be that useful. The
most interesting direction is the reverse one, when applying ideas from programming
languages in a logical setting.
It is probable that one of the works that spawned most long-term derivatives is the

now famous article of Griffin [53] on the typing of the call/cc primitive from the Scheme
programming language. This is maybe one of the most striking examples were the proof-
as-program equivalence was taken the other way around, and it inspired many subsequent
lines of work.

The call/cc operator, there after written cc for brevity, originates in the Scheme
programming language, which is itself a close descendant of the untyped λ-calculus.
Literally call with current continuation, its computational behaviour can be summarized
as follows.

Definition 23 (cc reduction). The cc operator has the following operational semantics

En[cc t]→ t (λx.A En[x])

where En stands for the call-by-name contexts from Section 2.1.2, and where the A
operator itself has the following reduction.

En[A t]→ t

Scheme being a untyped language, the typing of cc remained unstudied until Griffin
decided to tackle the issue. The constraints were to give it a type so that the reduction
rules of Definition 23 would preserve subject reduction in call-by-name. It turned out
that the result was much more far-reaching as it initially seemed.

Proposition 7. The following typing rules are sound w.r.t. the operational semantics
of Definition 23.

Γ ` cc : ((A→ B)→ A)→ A Γ ` A : A→ B

This was kind of unexpected. The otherwise innocent-looking cc operator was therefore
a program implementing Peirce’s law in the λ-calculus, and thus the first step into giving
a computational content to classical logic.
This discovery had another deep consequence. It was the paradigmatic shock that

shifted our point of view on proof theory. Indeed, instead of trying to prove additional
axioms through logic (or program) translations, one could try to get them in a direct-
style fashion. This means that instead of relying on a heavy modification of the source
terms, one could simply add an operator to the source language, together with the right
operational semantics so as to realize the desired formula. This led to the following new
entry in our Rosetta Stone.

36

2.4 Abstract machines

Computation Logic

side-effects new reasoning principles

There are indeed many effects in the wild that the λ-calculus simply does not acknowl-
edge, amongst which one can cite the following.

• Global state.

• Exceptions.

• Threads.

• Non-determinism.

This revamped Curry-Howard isomorphism allows us to look at those effects from a
fresh logical point of view. The ongoing work of Krivine [70] in classical realizability, for
instance, focuses on trying to give a computational content to the axiom of choice in a
classical setting, and heavily relies on such a correspondence [81].
We place ourselves in this trend of work, and an important part of this thesis is

dedicated to the understanding of the Dialectica translation as a side-effect.

2.4 Abstract machines

Abstract machines are a family of structures dedicated to the computation of the normal
form of a λ-term according to some strategy. There are many kind of machines, each
one implementing its own calling convention. Let us cite, amongst others, the SECD
machine [38] and the ZINC [75], which are both call-by-value machines. As we will focus
chiefly on the call-by-name strategy, we present here the Krivine abstract machine, which
is probably the most well-known implementation of a call-by-name machine.

2.4.1 The Krivine machine

The Krivine machine, as its name hints at, due to Krivine, is a call-by-name abstract
machine for the λ-calculus [68]. For brevity, we will name it by its acronym, the KAM.
The machine is described by reduction rules acting on processes, which are made of

a pair of a closure and a stack. Stacks play the role of contexts in strategies, as the
relationship between those two objects can be made formal. Closures are terms with
delayed substitutions. They are made up of a usual λ-term, together with an environment
that allows to retrieve the contents of the free variables of that term on-demand.

Definition 24 (Krivine machine processes). We define below in a mutually inductive
fashion the various components that constitute the machine: processes p, environments
σ, closures c, stacks π and usual λ-terms t.

37

2 Prolegomena

p := 〈c | π〉
c := (t, σ)
σ := · | σ + (x := c)
π := ε | c · π

Definition 25 (Krivine machine rules). The reduction rules of the machine are written
below.

〈(x, σ + (x := c)) | π〉 −→ 〈c | π〉 (Grab)
〈(x, σ + (y := c)) | π〉 −→ 〈(x, σ) | π〉 (Garbage)

〈(t u, σ) | π〉 −→ 〈(t, σ) | (u, σ) · π〉 (Push)
〈(λx. t, σ) | c · π〉 −→ 〈(t, σ + (x := c)) | π〉 (Pop)

Proposition 8. The Krivine machine implements a call-by-name reduction.

Proof. See Krivine’s article on the topic [68].

The fact that the KAM is call-by-name can be observed in the structure of its stacks.
Indeed, if we forget about the closures, the stacks and the call-by-name contexts En
follow the same inductive structure.

En := [·] | En t
π := ε | t · π

The rule Push is transparent from the point of view of the strategy, because its only
task is to find the next redex in the context by destructuring it applicationwise. This
explicitation is precisely what distinguishes strategies from abstract machines.
The Krivine machine is nonetheless slightly more fine-grained that the usual call-by-

name reduction, because it uses closures to delay substitutions of variables. This fact
will be discussed more lengthily at Chapter 6.

2.4.2 Krivine realizability

While we are studying the KAM, we cannot help presenting at the same time Krivine
realizability, also known as classical realizability. It is a model construction technique
stemming from a clever use of the KAM, and is at the heart of Krivine’s program aiming
at realizing axioms such as the full axiom of choice [70, 71], as well as a handy tool to
explain the computational content of Cohen’s forcing translation [30, 81] that earned the
latter the Fields medal. Even though it will not be used as such in the remaining, most
of the idea we will develop are ultimately inspired by this technique, so that we believe
it deserves to be at least written out once.
Krivine realizability is, as witnessed by its name, a realizability, that is, a member

of the family of techniques that interpret logical formulae as a set of computational ob-
jects, called realizers. In this precise case, those programs are going to be written in
the λ-calculus extended with some additional primitives. The main specificity of Krivine
realizability over other types of realizability is the fact it defines not only terms, but
also co-terms, which are going to be materialized by stacks in the KAM. The realiza-
tion property of terms is then defined in an intertwined way, making appearing stacks

38

2.4 Abstract machines

explicitly in there. One of the key points of this definition is that it is made in terms
of an orthogonality relation, which is the set-theoretic equivalent of the double-negation
construction.

Definition 26 (Orthogonality). Assume two sets A and B, and R a subset of A × B.
For any α ⊆ A, we define αR ⊆ B the orthogonal of α as

αR := {b ∈ B | ∀a ∈ α. (a, b) ∈ R}

and symmetrically for any β ⊆ B we define βR.

As we explained, this construction behaves in a way similar to the double-negation
construction.

Proposition 9. Assume A, B and R fixed as in the definition. Then for any α, α′ ⊆ A
we have the following.

• α ⊆ αRR.

• αRRR ⊆ αR.

• If α ⊆ α′, then α′R ⊆ αR.

This construction is used a lot in models that feature some form of classical reasoning,
which is the case for Krivine realizability. We can also mention constructions based on
double-glueing [60].
For now, we turn to the proper definition of classical realizability. There are several

variants, though. We will concentrate on the interpretation of second-order logic, for the
balance between its technical simplicity and its expressive power. For us, a formula of
second-order logic will be no more than a type of system F, which we already defined
above.

Definition 27 (Krivine realizability). Assume a set of KAM processes ‚ closed by anti-
reduction, i.e. for all processes p and q, if p → q and q ∈ ‚ then p ∈ ‚. We call such
sets saturated.
For any System F type A and any assignation of variables ρ into sets of stacks, we

mutually define ‖A‖ρ the falsity value of A and |A|ρ the truth value of A as follows.

‖α‖ρ := ρ(α)

‖A→ B‖ρ := |A|ρ · ‖B‖ρ
‖∀α.A‖ρ :=

⋃
a⊆Π‖A‖ρ,(α:=a)

|A|ρ := (‖A‖ρ)
‚

Here, Π stands for the set of stacks, and the · notations stands for the pointwise ap-
plication of the corresponding stack constructor. Note that we abused the orthogonality
notation a bit, by identifying a process with a set-theoretic pair of a closure and a stack.
The ‚ set is often known as a pole in the literature.

39

2 Prolegomena

We say that a closure c realizes A, written c A, whenever c ∈ |A|ρ for any assignation
ρ covering the free variables of A. If in addition c realizes A for any choice of saturated
‚, we say that it universally realizes A.

The main theorem is the following one. It allows to freely consider typed terms as
universal realizers.

Theorem 10 (Soundness). Assume a particular choice of saturated set of processes ‚.
For any term t such that Γ ` t : A in System F, then for any choice of closures ci Γi,
we have (t, (~xi := ~ci)) A.

Proof. The proof goes by induction on the typing derivation. We will not give the details
here, but all the cases have the following form: assume a stack in the falsity value of the
resulting type, apply at most one step of reduction, use the saturated property of ‚ if
needed and conclude by the induction hypothesis. This works because the truth value is
defined by orthogonality.
The important remark to do in this proof is that one does not rely on a particular set

of reduction rules. The proof goes through if there is at least the rules described before,
but adding any supplementary reduction does not interfere with the proof.

Because of this openness property, one can enrich the λ-calculus with new operators to
prove more than just second-order intuitionistic logic. Typically, one can enrich it with
a variant of the aforementioned call/cc operator fitted to the KAM to recover classical
logic.

Definition 28 (Call with current continuation). We extend our λ-calculus with the
following constructions.

t, u := . . . | cc | kπ
We also add the following new reductions to the KAM.

〈(cc, σ) | c · π〉 → 〈c | (kπ, σ) · π〉
〈(kπ, σ) | c · ρ〉 → 〈c | π〉

Proposition 10. The closure (cc, ·) universally realizes Peirce’s law.

Proof. By a mere unfolding of the interpretation of Peirce’s law and repeated application
of the saturation property of the pole.

We will not continue in this direction, for it would lead us too far from the core of this
thesis. Nonetheless, Krivine realizability is a fascinating object and is a renewed source of
surprises. For instance, Scherer and Dagand showed that the soundness theorem itself,
seen through the Curry-Howard isomorphism, was no more than an interpreter [100]
written in a continuation-passing style which turns out to be the Lafont-Reus-Streicher
decomposition [72]. Likewise, Girard’s original proof of normalization of System F [48]
by reducibility candidates can be seen as a variant of the soundness theorem [86].

40

3 Linear Logic

Dis-toi qu’il est tellement plus mieux
d’éradiquer les tentacules de la dérélic-
tion.

Tranxen 200 about structural rules.

Linear logic (henceforth abbreviated as LL) is a logic introduced by Girard [44], from
the study of coherent spaces. It is essentially a refinement of intuitionistic logic where the
intuitionistic arrow A ⇒ B is decomposed into two more atomic components: a linear
arrow(and an exponential modality ! according to the call-by-name decomposition of
the arrow:

A⇒ B := !A(B (3.1)

Several other such decompositions exist, allowing for the encoding of various calling
conventions into linear logic. We will be giving some of them later on.
This short chapter is a quick summary of the guiding principles of linear logic, allowing

us to define the necessary vocabulary and conventions of this domain.

3.1 Syntax

3.1.1 Formulae

Let us start the definition of linear logic by describing the formulae that make up the
language of formulae.

Definition 29 (Linear formulae). The formulae of LL are defined by the inductive
grammar given below.

A,B := X | X⊥ | ⊥ | > | 1 | 0 | A`B | A&B | A⊗B | A⊕B | !A | ?A

From a purely logical point of view, linear connectives can be seen as coming from
the duplication of the connectives from usual classical propositional logic into two fam-
ilies, the so-called multiplicative and additive connectives. The two remaining unary
connectives !(−) and ?(−) are named exponentials.

41

3 Linear Logic

Classical Multiplicative Additive
true 1 >
false ⊥ 0

and ⊗ &

or ` ⊕

One defines a notion of duality on the formulae, in the following way.

Definition 30 (Linear duality). Let A be a LL-formula, we define the LL-formula A⊥

by induction on A.

X⊥ := X⊥ (X⊥)
⊥

:= X

⊥⊥ := 1 1⊥ := ⊥

>⊥ := 0 0⊥ := >

(A`B)⊥ := A⊥ ⊗B⊥ (A⊗B)⊥ := A⊥ `B⊥

(A&B)⊥ := A⊥ ⊕B⊥ (A⊕B)⊥ := A⊥ &B⊥

(!A)⊥ := ?A⊥ (?A)⊥ := !A⊥

The linear duality is similar to the De Morgan’s duality in classical logic, and it shares
with it the fact that it is an involution.

Proposition 11. For any LL-formula A, (A⊥)
⊥

= A.

Proof. By induction on A.

The multiplicative (resp. additive, exponential) fragment is stable by duality, so it is
usual to consider fragments made up of a given set of formula families, named according
to that set (M for multiplicative, A for additive and E for exponential).

Notation 2. The linear arrow is defined as A(B := A⊥ `B.

3.1.2 Proofs

Although several attempts at a term language for linear logic were made, all of them
resulted partly unsatisfactory. Amongst the various families of term languages, one can
mention the following ones.

• The historical syntax of proof-nets [64]. Proof-nets feature a convenient syntax
with the right amount of quotients, but they are only really elegant in the MLL
fragment without units, and mostly satisfactory in the MELL one without units.
They tend to become fairly intricate when extended to larger fragments.

• Syntaxes based on the dual-intuitionistic presentation of linear logic (DILL [16]).
While these syntaxes are usable seamlessly in a modified λ-calculus, they do not
feature the fundamental duality at work in LL, so we do not really consider them
as a syntax for LL.

42

3.1 Syntax

• Modern syntaxes based on dualities of sequent calculus [35]. While these syntaxes
stem from classical sequent calculus, they are a promising way to handle linearity
as well. For now they only treat well polarized logic [74] and LC [43] rather than
the whole linear fragment, so they are not an option yet.

The fact we lack a good term syntax for LL explains why we usually present it as a
sequent calculus. We will stick to this standard approach here, for the sake of simplicity.

Definition 31 (Sequents). Linear contexts are defined as lists of formulae.

Γ,∆ := · | Γ, A

Sequents are then simply given by a linear context, of the form ` Γ. For the sake
of readability, we will sometimes use bilateral sequents made of two contexts, of the
form Γ ` ∆. This is just eye-candy for the sequent ` Γ⊥,∆ where (−)⊥ is interpreted
pointwise. We will often write Γ1, . . . ,Γn to explicit the types that make up the sequent
Γ.

Definition 32 (Inference rules). The rules of linear logic are given below.

` A,A⊥
` σ(Γ) σ permutation

` Γ

` Γ, A ` ∆, A⊥

` Γ,∆

` Γ

` Γ,⊥
` Γ, A,B

` Γ, A`B ` 1

` Γ, A ` ∆, B

` Γ,∆, A⊗B

` Γ,>
` Γ, A ` Γ, B

` Γ, A&B

` Γ, A

` Γ, A⊕B
` Γ, B

` Γ, A⊕B

` Γ, ?A, ?A

` Γ, ?A

` Γ

` Γ, ?A

` Γ, A

` Γ, ?A

` ?Γ, A

` ?Γ, !A

As one can witness, the linear logic restricts the use of the structural rules (weakening
and contraction) to the formulae of the form ?A for some A. This is actually the source
of the linear qualificative: hypotheses are used linearly, and one needs to resort to expo-
nentials to retrieve the usual structural rules. This also explains why linear logic is often
branded as a resource-sensitive logic.

Theorem 11 (Cut-elimination). Linear logic enjoys cut-elimination.

Proof. See for instance [44]. A semantic proof that we find particularly elegant is based
on the use of phase spaces, a structure which can be roughly understood as a collapse of
classical realizability, where all proof-terms have been identified [88].

43

3 Linear Logic

Given a commutative monoid M and a pole ‚ ⊆ M, we interpret a formula A as
a set of elements [[A]] of the monoid closed by the orthogonality generated by the pole.
Indeed, for any set X ⊆M we can define

X‚ := {y ∈M | ∀x ∈ X. xy ∈‚}
and say that a set X is closed whenever X = X‚‚. The formulae are then interpreted
inductively as given below.

[[>]] := M [[0]] := ∅‚‚

[[A&B]] := [[A]] ∩ [[B]] [[A⊕B]] := ([[A]] ∪ [[B]])‚‚

[[⊥]] := ‚ [[1]] := {1}‚‚

[[A`B]] := ([[A]]‚ · [[B]]‚)
‚

[[A⊗B]] := ([[A]] · [[B]])‚‚

[[?A]] := ([[A]]‚ ∩ {1}‚‚ ∩ I)
‚

[[!A]] := ([[A]] ∩ {1}‚‚ ∩ I)
‚‚

Here, I stands for the submonoid of idempotents elements of M and X · Y for the
pointwise monoidal product of elements of X and Y . The interpretation is adapted to
sequents by considering the comma to represent a ` connective.
It is then easy to show by induction the following soundness theorem: for any choice

ofM and ‚, if there is a proof of the sequent ` Γ, then 1 ∈ [[Γ]].
The existence of cut-free sequents is retrieved by applying this soundness theorem to

the syntactic monoid S whose elements are sequents Γ quotiented by the equivalence
relation ∼= generated by the two following rules.

• For any permutation σ, Γ ∼= σ(Γ).

• For any formula A, ?A ∼= ?A` ?A.

The monoidal product is then simply concatenation, and the unit is the empty sequent.
By taking ‚ to be the set of sequents which admit a cut-free proof, the soundness

theorem gives a straightforward way to recover a cut-free proof from any starting proof.

Corollary 1. Linear logic is consistent, i.e. there is no proof of the empty sequent.

3.2 Polarization

Rather than the syntactic requirement of linearity, what strikes us in the very nature
of LL is that it exhibits polarization. There are distinct ways to understand or even
define polarization: more than a precise notion, it is a family of properties enjoyed by
the connectives of linear logic.
First, we can discriminate two classes of connectives, that are related by duality.

Definition 33 (Polarized connectives). We say that the connectives ⊥,>,` and & are
negative, and by duality, that the connectives 1, 0,⊗ and ⊕ are positive.

44

3.3 A bit of category theory

There is a simple syntactic criterion that distinguishes negative connectives.

Definition 34 (Invertibility). A n-ary connective F is invertible if for all sequent `
Γ, F (A1, . . . , An), there is a proof of this sequent iff there is a proof of this sequent that
starts by introducing F .

Proposition 12. Negative connectives are invertible.

This is a very coarse characterization, and we prefer to think of polarity as a more
proof-theorical feature related to a computational behaviour. To describe this formally,
we would first need to explain the linear decompositions of intuitionistic logic into LL,
be it call-by-name or call-by-value. Yet, we give here a global picture of what we mean
by polarization.

• Positive connectives are described by their values. This is not very obvious for
now because we presented LL as a sequent calculus, but we can already perceive
it somehow. All normal-form proofs of a sequent of the form ` P where P starts
with a positive connective must begin with an introduction rule for P describing its
shape. In programming languages, one can observe in a similar way how positives
can be observed through pattern-matching, thus effectively describing the shape of
the considered term. Algebraic datatypes are the archetypal positive objects.

• Negative connectives are defined by the way they react to values. They have no
definite shape and cannot be observed per se. In the usual programming languages,
this is why functions, the negative objects by excellence, are opaque objects whose
only rôle is to be applied. A nice way to think of them may be to consider them as
thunks hiding some existentially-quantified closures, making them unobservable.

This gloss can be made formal, see for instance Zeilberger [107] or Munch [85]. Actu-
ally, such a duality could have already been highlighted in the proof of cut-elimination.
The interpretation of positive connectives is always of the form (A�B)‚‚ (for binary
connectives) where � embodies the way we build values of that type (by union for the
sum, and by product for the tensor) while negative are conversely defined by orthogo-
nality over those values. The cut-elimination theorem is a way to normalize a proof to
recover the values it was hiding.

Polarization thus provides good insights into the operational behaviour of program-
ming language, and in turn, decompositions into linear logic give a finer description of
programming constructions. Rather than linearity, we will therefore be more interested
in the resulting polarization.

3.3 A bit of category theory

Category theory is a widely used framework to expose the semantics of a first-order
language. We will therefore briefly use it in this section to describe the semantics of
effects in general and linear logic in particular.

45

3 Linear Logic

Definition 35 (Categories). A category C is given as a set1 of objects ObjC, and for each
pair of objects A,B a set of morphisms C(A,B) equipped with the following structure:

• for each object A, a morphism idA : C(A,A)

• for any three objects A,B,C, any morphism f : C(A,B) and g : C(B,C), a
morphism f ; g : C(A,C)

subject to the following equalities.

• For all objects A and B, and any morphism f : C(A,B), idA ; f = f .

• For all objects A and B, and any morphism f : C(A,B), f ; idB = f .

• For all objects A, B, C and D, and all morphisms f : C(A,B), g : C(B,C) and
h : C(C,D), (f ; g) ; h = f ; (g ; h).

It is usual to write equality of morphisms in category theory as commutative diagrams,
which we will be partially doing to explicit the types of the considered objects.
The almost immediate thing one wishes to do with categories is to put some structure

on top of it. It turns out that categories themselves form a category, where morphisms
between two categories are precisely the functors between them. Functors are actually
the natural2 morphisms over categories, and are defined below.

Definition 36 (Functors). Let C and D be two categories. A functor F from C to D,
written F : C→ D is given by two components.

• For all object A in ObjC, an object FA in ObjD.

• For all objects A,B ∈ ObjC and any morphism f : C(A,B), a morphism Ff :
D(FA,FB)

This must be compatible with the underlying categorical structure, that is:

• For all object A ∈ ObjC, F idA = idFA.

• For all objects A,B,C ∈ ObjC, and all morphisms f : C(A,B) and g : C(B,C),
F (f ; g) = Ff ; Fg.

Functors whose source and target categories coincide are called endofunctors.

Example 1. For any category C, the identity functor 1C is trivially defined as follows.

1CA := A
1C f := f

We can push the morphization forward, by defining the proper notion morphisms
between functors, which are named natural transformations.

1We will not be discussing fundation problems in this definition, so think of any loosely-defined set
theory as the ambient metatheory.

2Still no categorical meaning intended.

46

3.3 A bit of category theory

Definition 37 (Natural transformations). Let F and G be two functors from C to
D. A natural transformation α from F to G is given by an ObjC-indexed family of
D-morphisms

αA : FA −→ GA

such that, for all f : C(A,B),

FA

αA
��

Ff
// FB

αB
��

GA
Gf
// GB

We will now recall here the notion of monad. Altough monads originated in category
theory, since the seminal work of Moggi [83], they are used pervasively in purely functional
programming languages (most notably Haskell) to encode impure side-effects.

Definition 38. Let C be a category. A monad over C is a triple (T, η, µ) where T : C→
C is an endofunctor on C, and η : 1 → T and µ : T 2 → T are natural transformations,
subject to the following laws:

TA

TηA
��

ηTA // T 2A

µA
��

T 2A
µA // TA

T 3A

TµA
��

µTA // T 2A

µA
��

T 2A
µA // TA

The right intuition about the nature of a monad is to think of TA as a computation
yielding some A. The monadic type contains additional data describing how the compu-
tation is evaluated. The η morphism allows to inject pure computations in the monad
(with no additional data) while the µ morphism collapses this additional data in one
chunk, thus performing both effects at once.

Example 2. Here are some standard instances of the monad structure.

• The identity monad TA := A.

• The double negation monad TA := (A→ ⊥)→ ⊥.

• The list monad TA := 1 +A× TA.

Definition 39. A monad (T, η, µ) in a cartesian category C is strong whenever there
exists a natural morphism

σ : C(A× TB, T (A×B))

called a monadic strength, that respects the underlying identity and associativity induced
by the cartesian product.

In practice, we will be working in cartesian closed categories where the monad we will
be working with is internalizable. In those cases, the monad is automatically strong.

47

3 Linear Logic

Definition 40. A strong monad (T, η, µ, σ) is commutative when the two canonical
morphisms

TA× TB 11

--
T (A×B)

coincide.

From the programming point of view, a commutative monad is a monad where the
actual order of effects does not matter, only their presence (or absence) do.

Example 3. There are quite a few commutative monads in the wild. We give below the
main representatives of this tribe.

• Given an object R, the reader monad R→ − is a commutative monad. The order
of reading the value does not matter indeed.

• Given an object W equipped with a commutative monoidal structure, the writer
monad − ×W is a commutative monad. Because the object written to does not
keep track of the order of operations, this monad is obviously commutative.

• The option monad 1 +− is a commutative monad. The one thing that matters is
the fact that the computation is defined or not.

• The multiset monad M (−) is a commutative monad. This is a generalized ver-
sion of the option monad where only the number of occurrences matters (and not
anymore the mere presence or absence).

We will not dwell on the models of linear logic, for it would take us too far from the
point we wanted to insist on. A comprehensive description can be found in the survey
of Melliès [80] It suffices to state that one of the standard model is the linear-non-linear
(LNL) adjunction, due to Benton [19]. To explain it shortly, this class of models is made
up of a pair of categories, one which handles the linear part of the calculus, while the
other one embeds the necessary structure for the exponentials. They are furthermore
related by an adjunction allowing to go from one to the other.

The important remark we wanted to highlight is the following one. Linear logic is
the somehow the syntax for writing commutative effects in direct-style, as stated by the
theorem below.

Proposition 13. Any LNL model of multiplicative linear logic gives rise to a commu-
tative monad. Conversely, any commutative monad in a category with enough structure
(essentially equalizers) can be decomposed in a linear-non-linear adjunction. Note that
this decomposition does not need to be unique.

Proof. See [19] for instance.

48

3.4 Intuitionistic and classical decompositions

Combined with the polarization properties we mentioned before, this is the reason that
makes us think that the relevant core of linear logic is not so much linearity, but rather
the fact it is the perfect direct-style polarized commutative effect-handling language.
The linear side of the model, featuring a comonad, can be thought of as the direct-style

part, where effects are marked in the type with the exponential modalities. As it is seen
through the looking-glass of the adjunction, effects are actually implicit in this world.

3.4 Intuitionistic and classical decompositions

Linear logic is famous for its ability to be seen as a refinement of both intuitionistic
and classical logic, through decompositions. In this section, we recall such well-known
decompositions into linear logic. As we will be using them afterwards, it is indeed useful
to gather them here.

3.4.1 The call-by-name decomposition

This decomposition is the historical one, and was actually at the source of the creation of
linear logic. The main idea at work is that intuitionistic types are translated as negatives,
and we need to sandwich enough bangs at each polarity shift.

Definition 41 (Call-by-name translation). The call-by-name translation [[−]]n from in-
tuitionistic logic to linear logic is inductively defined on types as follows.

• [[0]]n := 0

• [[1]]n := 1

• [[A+B]]n := ![[A]]n ⊕ ![[B]]n

• [[A×B]]n := ![[A]]n ⊗ ![[B]]n

• [[A→ B]]n := ![[A]]n ([[B]]n

Sequents are then translated as given below.

[[Γ1, . . . ,Γn ` A]]n := ![[Γ1]]n, . . . , ![[Γn]]n ` [[A]]n

Proposition 14. If Γ ` A is derivable in LJ, then so is [[Γ ` A]]n in LL.

Proof. Rather than translating the sequents upfront, we prefer to only give the precise
uses of exponential rules for each rule.

• Axiom: weakening and dereliction.

• Arrow introduction: none.

• Arrow elimination: contraction and promotion.

49

3 Linear Logic

• Positive introductions: contraction and weakening (according to the rule) and pro-
motion.

• Positive eliminations: contraction and weakening (according to the rule).

We can consider that only promotion and dereliction are the rules performing effects, if
we think of them as the monadic operations in the dual intuitionistic world. This allows
us to give a precise intuition of this translation: axiom rules performs the effect hidden in
a variable by forcing its content (we are in call-by-name, after all) while arrow elimination
and positive introduction box their arguments into an exponential. It is noteworthy that
arrow introduction is neutral (this explains the validity of η-expansion in call-by-name).

3.4.2 The call-by-value decomposition

This decomposition is a little more involved than the previous one, because we need to
somehow define two translations at once, even though the second one is simply derived
from the second.

Definition 42 (Call-by-value translation). The call-by-value translation [[−]]v is induc-
tively defined on types as follows.

• [[0]]v := 0

• [[1]]v := 1

• [[A+B]]v := [[A]]v ⊕ [[B]]v

• [[A×B]]v := [[A]]v ⊗ [[B]]v

• [[A→ B]]v := !([[A]]v ([[B]]v)

Sequents are then translated as

[[Γ1, . . . ,Γn ` A]]v := [[Γ1]]v, . . . , [[Γn]]v ` [[A]]v

In call-by-value, there is a sharp difference between values and computations. This is
somehow reflected in the translation. The ! connective boxes the computations hidden
in an arrow, rendering it inert, thus, a value.

Remark 2. This is not the unique presentation of this decomposition. Indeed, we could
also interpret sequents as usually, that is, seeing Γ ` A as Γ1 → . . . → Γn → A.

Definition 43 (Alternative decomposition). The following alternative decomposition
can be used. The [[−]]v decomposition on types is defined as before, but now, sequents
are translated as

[[Γ ` A]]v := ` !(Γ1 (!(. . . (!(Γn(A)))

50

3.4 Intuitionistic and classical decompositions

The right way to think about it is to think of the ! connective as a thunking primitive:
it encapsulates terms of negative type, potentially effectful, into a pure positive type,
somehow turning them into values.
We can discriminate a special class of types, hereafter named hereditarily positive type,

on this particular behaviour.

Definition 44 (Hereditarily positive types). Hereditarily positive types P+ are the types
generated by the following inductive grammar.

P+, Q+ := 0 | 1 | P+ ⊕Q+ | P+ ⊗Q+ | !A

In call-by-value, appending a bang modality to hereditarily positive types (in particu-
lar, all value types in our translation) is useless, because we know that they are pure. In
particular, the soundness of the encoding relies on the following lemma.

Proposition 15 (Monadic run). For all hereditarily positive type P+, the following
sequent is derivable.

` P+ (!P+

Proof. By induction on P+ and case analysis on the considered value.

From the computational point of view, the above term allows one to purge an inhabi-
tant of a hereditarily positive type from its effects, by recursively forcing its subcompo-
nents. This lemma is the linear equivalent of Krivine’s storage operators [69].

Proposition 16. If Γ ` A is derivable in LJ, then so is [[Γ ` A]]v in LL.

Proof. As in the call-by-name case, we list the required exponential rules at each intu-
itionistic rule. When we write run + X, we mean that we apply the monadic run, the
X rule and then dereliction on all run types. The global result of this operation is that
we can transparently use exponential rules in the types as if there were bang modalities
on the whole context.

• Axiom: run + weakening.

• Arrow introduction: run + promotion.

• Arrow elimination: run + contraction, and dereliction.

• Positive introductions: run + contraction and run + weakening (according to the
rule).

• Positive eliminations: run + contraction and run + weakening (according to the
rule).

51

3 Linear Logic

Once again, as for the call-by-name translation, this interpretation gives intuitions
about the effects occurring in the source calculus. We should underline the fact that
the run + X operation by itself can be seen as a mere typing artefact, because in the
categorical models, run followed by dereliction amounts to identity. Let us comment a
bit on these rules. The one rule performing effects is the arrow elimination, which is what
the programming intuition gives us. Contrarily to call-by-name, arrow introduction is
not free: it adds a packing layer to its argument through promotion. And once again,
this is reflected by the fact that in call-by-value, η-expansion is not valid, because it
transforms a computation into a (functional) value.

3.4.3 Classical-by-name

This is actually a variant of call-by-name rather than a proper translation. This is also the
first translation that features a ?(−) modality without duality. Classical-by-name logic is
essentially call-by-name where the computational power of terms have been extended to
continuation-handling. Indeed, the equational theory is similar to the one call-by-name.
From the linear point of view, this corresponds to adding ?(−) connectives under each
!(−) connective, as well as at outside the return type of arrows.

Definition 45 (Classical-by-name translation). The classical call-by-name translation
[[−]]Cn is inductively defined on types below.

• [[0]]Cn := 0

• [[1]]Cn := 1

• [[A+B]]Cn := !?[[A]]Cn ⊕ !?[[B]]Cn

• [[A×B]]Cn := !?[[A]]Cn ⊗ !?[[B]]Cn

• [[A→ B]]Cn := !?[[A]]Cn (?[[B]]Cn

Sequents are then translated as

[[Γ1, . . . ,Γn ` A]]Cn := !?[[Γ1]]Cn, . . . , !?[[Γn]]Cn ` ?[[A]]Cn

Proposition 17. If Γ ` A is derivable in LK, then so is [[Γ ` A]]Cn in LL.

Proof. Very similar to the one of call-by-name, save for a lot of dull administrative
exponential steps to accommodate the pervasive presence of ?(−).
Let us rather look at a classical principle such as double-negation elimination to taste

the particular flavour of this translation. We have

[[¬¬A→ A]]Cn ≡ !?(!?(!?[[A]]Cn (?0)(?0)(?[[A]]Cn

52

3.4 Intuitionistic and classical decompositions

We should put forward the fact that ?0 is linearly equivalent to⊥, so that the expression
A(?0 is actually linearly equivalent to A⊥. Applying this simplification twice, we only
have to show that

` ?!?!!?[[A]]Cn (?[[A]]Cn

which is in turn easily proved.

53

4 Dependent type theory

Parce ce que je vais vous dire, vous êtes
un type dans mon genre.

Louis Jouvet about stratification.

In this chapter, we give a high-level introduction to the dependent type theory, the
benefits it provides, as well as the specificities that raise interesting issues absent from
the non-dependent systems. We would like to insist in particular on the dependent
elimination in presence of inductive types, which are in our opinion an essential expressive
gap that dependency alone does not really bring.

4.1 Term in types: a bird’s-eye notion of dependency

In a nutshell, dependency can be described as the property that types can contain terms.
This is a serious departure from the simple types, and even from second-order types,
because this blurs the boundaries between terms and types. Indeed, usual terms do com-
pute, so dependent types lift this computation inside types, resulting in the requirement
of term reduction while type checking.
A significant fragment of potentially dependently-typed systems can be represented

by the formalism of so-called pure type systems [18] (often abridged PTS). The main
construction allowing terms to flow into types is the Π-type Πx : A.B, which is a gen-
eralization of the usual arrow. The bound variable x can indeed appear in B. This
construction is naturally introduced by the λ-abstraction, thus generalizing the simply-
typed arrow, in a rule of the shape

Γ, x : A ` t : B

Γ ` λx : A. t : Πx : A.B

The fact that x may appear in B in the type Πx : A.B has important consequences
that one may not think about at first sight. First, that imposes a linear structure on the
hypotheses that was not present in absence of dependency. Indeed, while x : A, y : B[x]
is a well-formed context, where B[x] insists on the fact that B contains x, one cannot
reorder it as they would do if B was not depending on x, as y : B[x], x : A does not
make any sense. Nonetheless, some reorderings are possible as long as they do not break
the variable dependencies. This actually gives a rich structure to contexts. The well-
formedness of contexts must be ensured by its own statement in the typing rules, usually
written `wf Γ.
This has logical consequences on the expressiveness as well. While the two types

55

4 Dependent type theory

A→ B → C B → A→ C

are isomorphic in a pure calculus, and thus essentially the same, the presence of depen-
dency makes the two following types

Πx : A.Πy : B[x]. C[x, y] Πy : B.Πx : A[y]. C[x, y]

incomparable. Similarly, many reorderings do not even make sense. This gives additional
constraints, potentially unsatisfiable, when trying to lift program transformations in a
dependent case.
Note that the non-dependent arrow can nevertheless be retrieved from the dependent

one, by simply taking A→ B := Πx : A.B where x does not appear in B.

Second, eliminating an arrow results in the introduction of a term in a type, as the
standard dependent rule for application is of the form

Γ ` t : Πx : A.B Γ ` u : A

Γ ` t u : B[x := u]

As mentioned before, this has the consequence that we need to handle reduction of
terms in types to perform type-checking. Such a requirement is embodied in the inference
rules as a rule usually called conversion, of the form

Γ ` t : B A ≡β B
Γ ` t : A

While one could stop here, and end up with a calculus only handling dependency per
se (usually called λΠ [18]), it is natural to go all the way up to PTS and the Barendregt
cube, by also adding second and higher-order types, thus making effectively collapsing
the dyke between term and types. To this end, we need to represent the type of types
as a term. Usually, it is denoted by �. We then type types with this particular type.

We conclude this introductory section by giving an archetypal dependently-typed sys-
tem CC0, to settle the ideas.

Definition 46 (CC0). The terms of CC0 t, u,A,B are inductively defined by the gram-
mar below.

t, u,A,B := x | t u | λx : A. t | Πx : A.B | �

Context are defined as a list of named formulae.

Γ := · | Γ, x : A

Reduction rules are taken from the usual λ-calculus and extended with the expected
congruence closure rules.

56

4.2 The issue of universes

`wf ·
Γ ` A : �

`wf Γ, x : A

Γ ` t : B Γ ` A : �

Γ, x : A ` t : B

Γ ` A : �

Γ, x : A ` x : A

`wf Γ

Γ ` � : �

Γ ` A : � Γ, x : A ` B : �

Γ ` Πx : A.B : �

Γ, x : A ` t : B Γ ` Πx : A.B : �

Γ ` λx. t : Πx : A.B

Γ ` t : Πx : A.B Γ ` u : A

Γ ` t u : B[x := u]

Γ ` t : B Γ ` A : � A ≡β B
Γ ` t : A

Note that we added some side-conditions w.r.t. the naive rules described in the body
of the text. They are mainly there to ensure well-formation of types.
As for the expressiveness, CC0 is a superset of such a rich system as Fω, thus allowing

to write quite a lot of functions.

4.2 The issue of universes

All would be well and good in our system, except for one slight defect.

Theorem 12. CC0 is inconsistent, i.e. there exists a closed term t such that

` t : ΠA : �. A

Proof. See for instance [32].

The issue stems from the rule typing types, because ` � : � is inconsistent in general.
It allows to encode type-theoretic variants of the Burali-Forti or Russel paradoxes. A
rough set-theoretic equivalent of this typing rule would state that the set of all sets is a
set, which is known to lead to trouble.
Usually, this is worked around by imposing a hierarchy discipline on the universes.

For instance, the historical Calculus of Constructions [33] (CC) distinguishes between a
universe of types ∗ and the type of ∗, �. The faulty typing rule is turned into ` ∗ : �
and the type-forming rules are adapted accordingly. In particular, � has no type.
Quite often, for expressiveness purposes, universes are assigned an ordinal (ranging on

the natural integers in practical implementations) i.e. type �α is now indexed by an
ordinal α, and the aforementioned typing rule is bound to respect the induced ordinal
order, along the lines of ` �α : �β only whenever α < β. We will be using such an
integer-based hierarchy in chapter 11.
As we are not claiming to give a comprehensive description of the phenomena at work

in dependent type theory, but rather a quick overview, we will not be describing anymore
the complex consequences of the various design choices described above, and simply carry

57

4 Dependent type theory

on. We will also forget about universe issues most of the time, because we are not taking
profit of complex impredicative encodings to do what we are describing, and we will thus
hide this unneeded complexity under the carpet in high-level descriptions.

4.3 Dependent elimination

Dependent elimination is the adaptation of the usual elimination of positive types in a
dependent setting, and it is, according to us, the real killer feature of dependent types.
We will therefore give a quick overview of dependent elimination in this section.
We recall that in the simply-typed λ-calculus, inductive types are manipulated through

introduction and elimination rules which take the following form

Γ ` t : A

Γ ` inl t : A+B

Γ ` t : B

Γ ` inr t : A+B

Γ ` t : A+B Γ, x : A ` u1 : C Γ, y : B ` u2 : C

Γ ` match t with [x 7→ u1 | y 7→ u2] : C

for the sum type, for instance. As usual, introduction rules are materialized as construc-
tors application and elimination rules by pattern-matching.

Dependent elimination is based on the observation that head normal forms of terms
inhabiting inductive types can be merely described by their head constructor. For in-
stance, any term t : A + B is convertible either to inl u1 or to inl u2 for some u1 : A
and u2 : B. Note that this is only true in purely intuitionistic settings; in presence of
side-effects such as continuations or non-termination, it is well-known that the above
observation is false. As our systems are pure, it is therefore legit to add this principle
built-in, in the logic. A simple way to do this is to add an induction principle whose type
would be

ΠP : A+B → �. (Πx : A.P (inl x))→ (Πy : B.P (inr y))→ Πp : A+B.P p

together with the expected reduction rules.
There is actually a much more elegant way to deal with it, though. As in the simply-

typed case, the (dependent) induction principle can be seen as an instance of a (depen-
dent) pattern-matching. To achieve this, one simply need to make the C return type of
the previous rule depend on the term being pattern-matched, resulting in the following
rule.

Γ ` t : A+B Γ, x : A ` u1 : C[z := inl x] Γ, y : B ` u2 : C[z := inr y]

Γ ` match t with [x 7→ u1 | y 7→ u2] : C[z := t]

where z is fresh and x, y are not free in C. Indeed, we statically know in each branch
the shape of the term t, so that if it was present in C, we can refine its value in each of
the branches.

58

5 Effects and dependency

Ça dépend, ça dépasse.

Katia about dependent effects.

In this short chapter, we give a quick presentation of the issues that arise when consid-
ering effectful programming in a dependently-typed programming language, in particular
in presence of dependent elimination. Conversely, we also sketch some nice properties
recovered thanks to the additional expressiveness of the considered systems.
We suppose from now on that we have fixed an expressive enough dependent type

theory that fits our needs. We will not dwell on details though, because we do not
aim at applicability, but rather at a high-level description. We will thus forget about
any hierarchy of universes, and just write � for any universe, actually embracing the
typical ambiguity. Luckily, the constructions given in the remaining of this chapter can
be expressed in almost any sufficiently enough expressive system, such as the Coq proof
assistant for instance. Likewise, we will omit some easily inferable arguments and mark
them with the _ wildcard.

5.1 Dependent Monads: a naive generalization

We fist have a look at the notion of monads in a dependent setting. As they represent
the usual way to encode effects in otherwise pure languages, it is natural to see how well
they perform with a little bit of dependency.
The main issue that appears when mixing a monad (T, η, µ) with dependent types is

precise interaction between the type constructor T (−) and the universal quantification
Πx : A.B. To further explain this interaction, let us state more formally what we mean
by a monad in a type-theoretical rather than categorical realm.

Definition 47 (Type-theoretical monad). A monad is given by the four following closed
terms:

• T : �→ �

• map : ΠA : �.ΠB : �. (A→ B)→ T A→ T B

• return : ΠA : �. A→ T A

• join : ΠA : �.T (T A)→ T A

subject to the equivalences of Definitions 37 and 38.

59

5 Effects and dependency

The first two terms correspond to the functor structure of T , while the two latter
ones are exactly the η and µ natural transformations. Note that we do not want to
insist on the actual equivalences those terms need to comply with. Indeed, we willingly
leave totally undisclosed their nature, be it definitional (i.e. mere β-equivalence) or
propositional equalities, or even more complex relations described in the theory. If that
were the case, we would fall in an awing pitfall of technicalities that would lead us far
from the high-level description we want to stick to here.
Even though it does not matter that much, we will pretend that they are implemented

as definitional equalities, because the monads considered here will be totally opaque
objects.

Remark 3. In programming languages that feature monads, it is usual to consider another
presentation where the map and join operators have been merged into another one, the
bind operator of the following type.

bind : ΠA : �.ΠB : �.T A→ (A→ T B)→ T B

The two presentations are equivalent as soon as we have higher-order functions, because
we can interdefine them.

bind := λ(AB : �) (x : T A) (f : A→ T B). join A (map A (T B) f x)

map := λ(AB : �) (f : A→ B) (x : T A). bind A B x (λx. return (f x))

join := λ(A : �) (x : T (T A)).bind A A x return

We will not use this combinator in this section, but we recall it for the sake of com-
prehensiveness.

Assume some monad given by the quadruple described above. Now, if one wants to
make the dependent arrow interact with the monad, she needs to generalize the only
term that features a higher-order construction, that is:

map : ΠA : �.ΠB : �. (A→ B)→ T A→ T B

We would like to make the function argument dependent, so that we get a dependent
function acting over monads in the end. This dependent map would therefore have the
following form

map : ΠA : �.ΠB : A→ �. (Πx : A.B x)→ Πx̂ : T A. ?

where ? stands for some well-chosen type depending on x̂. Alas, we face a somehow
expected problem: in general, there is no way to escape T and thus we cannot state
anything about x̂, let alone plugging it into B which is expecting some x : A.

There are two ways to work around this issue. The probably most obvious one is to
give a way to lift indexed families B : A→ � into B∗ : T A→ � in a similar fashion to

60

5.1 Dependent Monads: a naive generalization

the bind operator that lifts term-level arrows. The problem is that there is no automatic
way to do so, given a particular monad. Intuitively, if we see T A as a box containing A
plus additional information, B∗ should be the type defined on the content of that box.
Yet, it is not possible in general to create a type out of a boxed element.

Rather than restricting ourselves to the case of monads that feature such a (−)∗ op-
erator, we propose here a generic way to handle dependency when dealing with monads.
It only requires the language to feature a dependent sum type, which is quite standard.

Definition 48 (Dependent sum). We extend our type theory with the following terms
and typing rules.

t, u,A,B := . . . | Σx : A.B | (t, u) | match t with (x, y) 7→ u

Γ ` A : � Γ, x : A ` B : �

Γ ` Σx : A.B : �

Γ ` Σx : A.B : � Γ ` t : A Γ ` u : B[x := t]

Γ ` (t, u) : Σx : A.B

Γ ` t : Σx : A.B Γ, x : A, y : B ` u : C[z := (x, y)] z fresh

Γ ` match t with (x, y) 7→ u : C[z := t]

We also consider the usual reduction rule for pairs.

(match (t, u) with (x, y) 7→ r)→ r[x := t, y := u]

The dependent sum features an adjunction with the dependent arrow akin to the one
relating the usual product and arrow, namely:

(Πp : (Σx : A.B). C) ∼= (Πx : A.Πy : B.C[p := (x, y)])

We take advantage of this adjunction to work around the dependency issue, by em-
bedding the term on which the return type depends in a sum. That is, we want a term

dmap : ΠA : �.ΠB : A→ �. (Πx : A.B x)→ T A→ T (Σx : A.B x)

which acts as a dependent version of the usual map operator. It is actually easily derived
from the non-dependent version, which also gives its semantics for free. We can pose
indeed

dmap := λAB (f : Πx : A.B) (m : T A).map A (Σx : A.B) (λx. (x, f x)) m

Likewise, we can generalize the notion of monadic strength of Definition 39 to the
dependent setting as follows.

61

5 Effects and dependency

dstr : ΠA : �.ΠB : A→ �. (Σx : A.T (B x))→ T (Σx : A.B x)
:= λAB p. match p with (x, y) 7→ join _ (map _ _ (λy. return _ (x, y)) y)

By using this simple scheme, we can use a bit of effects in our dependent type theory.
Any first-order program potentially dependent can be lifted seamlessly. There are some
important limitations though.
The main limitation of this straightforward use of dependent monads lies in the fact

that there is no way to make effects flow at the level of types. Indeed, if we wish to
create a type depending on effects, we will recover a term of type T �. Without further
structure on our monad, there is no way to recover anything like a type from it. As we
will see, in some cases this is actually possible, most notably when T is some form of a
reader monad. Even with a term run : T �→ �, it is not obvious to come up with the
conditions over it that would make it useful.
A direct consequence of this lack of effectful types is that one cannot state anything

about the contents of a monadic type. Indeed, given a proposition of type A → � for
some A, there is no way to construct a proposition of type T A → � that would make
sense without further knowledge of the innards of the monad. Therefore, this generic
construction is not really useful in practice.

Although this construction is automatic and does not depend on the actual monad
used, it is not satisfactory from the point of view of program proving. We exposed it
here it to give a rough idea of the consequences of monadic encodings in dependent type
theory.
We give in Chapter 11 a translation adding side-effects in a dependent setting that does

not arise from a monadic encoding, and that performs well for the negative fragment. The
problem of monadic escaping is washed away there thanks to the fact that the resulting
term is essentially intuitionist and does not require any additional running operation. In
Chapter 12, we present some translations that do arise from monadic decompositions,
while still retaining a way to be adapted into a dependent system. This comes from the
fact that the monad they are based on is a very special one, namely the reader monad.
Those two cases may give further ideas on how easily one can monadify a dependent
calculus.

5.2 Indexed CPS

We study in this section an interesting property featured by the dependent elimination
in a specific case of side-effects, namely delimited continuations. Delimited continuations
are provided by a generalization of the usual continuation-passing (or double-negation)
monad, but contrarily to it, they allow the computation to escape the monad and return
an effective value. This contrasts with the first-class continuations resulting from the use
of the callcc operator which never return.

We recall that the usual double-negation monad is defined as

T A := (A→ R)→ R

62

5.2 Indexed CPS

for some fixed R. We generalize it by parameterizing the monad by two types as follows.

Definition 49 (Indexed CPS). For any types I and O, we define the type TO
I A as:

TO
I A := (A→ I)→ O

We will call I the input type of the monad, and O its output type.

This finer-grained presentation allows to refine the types given to the usual monadic
combinators.

Proposition 18. The monadic combinators can be given the following types.

return := λx k. k x
: A→ TR

R A

bind := λmf k.m (λx. f x k)
: TO

M A→ (A→ TM
I B)→ TO

I B

The finer type of those combinators gives us a little insight into their computational
behaviour. Indeed, the return operator constructs a computation that has the same input
and output types, hinting at the fact it is pure. Dually, the type of the bind operator
highlights the fact that it composes two effects, as their is an intermediate type appearing
in the arguments that get erased in the resulting computation. The control flow is thus
more explicit.

The interest of this additional typing information can be found in the new combinators
it allows us to write and type.

Definition 50 (Delimited combinators). We can define the following combinators.

run := λm.m (λx. x)
: TR

A A→ R

abort := λx k. x
: O → TO

I A

catch := λmk.m k k

: T
TOI A

I A→ TO
I A

The run operator allows us in particular to escape the monad, provided the input
index agrees with the parameter type of the monad. Such a property is heavily used to
build delimited continuations, where run actually plays the rôle of the delimiter.

We will not digress too much on the nice properties of delimited continuations, but
there is a rich literature on this topic. In particular, it is known since Filinski [41] that
direct-style delimited continuations allow to give a direct style encoding of any monad in
call-by-value. The underlying idea is to hide the monadic types in the input and output

63

5 Effects and dependency

types of the monad, resulting in the illusion that there is no monadic encoding involved.
The monadic operations do appear, but at the time of the delimitation only. We give in
Chapter 12 a practical instance of this phenomenon, but in a call-by-name presentation,
where continuations have more structure than just functions with a parameterized return
type.

Instead, we will have a look at the interaction of indexed CPS with dependency, and
in particular positive datatypes. Those subtle interactions should advocate for a look at
effect handling in the light of dependency.

Definition 51 (Commutation morphism). Given a n-ary connective F , we call a com-
mutation morphism for F any term of type

F (¬¬A1, . . . ,¬¬An)→ ¬¬F (A1, . . . , An)

for any A1, . . . , An where ¬A stands for A→ R for some fixed R.

Note that ¬¬A is a degenerate instance of the indexed CPS, because ¬¬A ≡ TR
R A.

When considering the usual double-negation translation, there are a few commutations
morphisms for the usual positive connectives.

Definition 52. We have the following commutation morphisms.

θ0 := λm. match m with [·]
: 0→ ¬¬0

θ1 := λm. match m with () 7→ λk. k ()
: 1→ ¬¬1

θA+B := λm. match m with [x 7→ λk. x (λx. k (inl x)) | y 7→ λk. y (λy. k (inr y))]
: ¬¬A+ ¬¬B → ¬¬(A+B)

θlA×B := λm. match m with (x, y) 7→ λk. x (λx. y (λy. k (x, y)))
: ¬¬A× ¬¬B → ¬¬(A×B)

θrA×B := λm. match m with (x, y) 7→ λk. y (λy. x (λx. k (x, y)))
: ¬¬A× ¬¬B → ¬¬(A×B)

As one can witness, there are two distinct natural way to make the product commute
with the double negation. It corresponds to the two evaluation choices for the strict pair,
that is, either forcing the left element first (θlA×B) or the right one first (θ

r
A×B). Because

the return type R is unspecified, there is no other way to write these commutations,
and we are forced to commit ourselves to an evaluation strategy for the commutation
of products. We will see in Chapter 12 a clever way to get around this restriction, by
delimiting each term under a constructor.
For now, let us look at these terms when enriching the double-negation with type

indexes, i.e. we turn ¬¬A into TO
I A for some I and O. We trivially generalize the

64

5.2 Indexed CPS

notion of commutations to the indexed case, and we immediately manage to recover the
following.

Definition 53. We have the following indexed commutation morphisms.

θ̂0 := λm. match m with [·]
: 0→ TO

I A

θ̂1 := λm. match m with () 7→ λk. k ()
: 1→ TR

R 1

θ̂A+B := λm. match m with [x 7→ λk. inl (x (λx. fst (k (inl x)))) | y 7→ λk. inr (y (λy. snd (k (inr y))))]
: TO

I A+ TP
J B → TO + P

I × J (A+B)

θ̂lA×B := λm. match m with (x, y) 7→ λk. x (λx. y (λy. k (x, y)))
: TO

M A× TM
I B → TO

I (A×B)

θ̂rA×B := λm. match m with (x, y) 7→ λk. y (λy. x (λx. k (x, y)))
: TM

I A× TO
M B → TO

I (A×B)

There are quite a few things to comment about these new combinators, even before
trying to get them dependent.
First, the combinators for the unit and product types remain computationally identical,

only their type is modified. Indeed, for the unit type, one must choose a arbitrary return
type for the continuation. Meanwhile, for the product types, the order of evaluation is
hard-written in the type of the combinators. The input type of one side matches the
output type of the other side, thus indicating which is to be evaluated first.
For the empty and sum types, the situation is even harsher. The empty commutation

morphism needs to answer an indexed CPS type totally arbitrarily, and the combinator
for the sum type is distinct from its unindexed counterpart. There is no way indeed to
statically discriminate in which case we are, so that the input type must be the product of
both arguments’ input type to be able to recover each projection in both cases. Likewise,
the output type can be one of the output types of the two arguments, so that we need
to return a sum.

In presence of dependent elimination, we can actually type the two unindexed com-
mutation morphisms for the empty and sum types so that they also behave well in an
indexed setting. They can be given the following fairly dependent types:

θ0 := λm. match m with [·]
: Πp : 0. match p with [·]

θA+B := λm. match m with [x 7→ λk. x (λx. k (inl x)) | y 7→ λk. y (λy. k (inr y))]
: Πp : (TO

I A+ TP
J B). (Πp : A+B. match p with [x 7→ I | y 7→ J])→

match p with [x 7→ O | y 7→ P]

65

5 Effects and dependency

The idea behind those types is that, because they make commute a positive type with
a monadic modality, they can observe the value they are being fed with. In particular,
they can discriminate statically which branch is going to be taken (if any). Likewise,
because the inner computation will be provided with a value, it can discriminate which
type it will return.
In order to make these morphisms fit into our framework of indexed CPS, we need

to generalize them a little to cope with the supplementary dependency. It is a simple
matter of adding the possibility that the input type may depend on the value taken by
the continuation. That is, instead of taking A→ I in TI

A O as a simple arrow, we rather
consider it to be a telescope, i.e.

Πx1 : A1.Π :Πxn : An. I

where I depends on x1, . . . , xn and each Ai depends on the preceding xj . Our commuta-
tion morphisms naturally extend to this generalization, and in particular the term θA+B

can be made dependent by simply considering that I and J depend respectively on x
and y, and by making explicit those variables in the arrows A→ I and B → J .

This hints at the fact that there exists a generalization of CPS translations that behave
better in presence of dependency. In particular, as witnessed by the commutation of the
sum types, dependent elimination allows to type terms that lost typability in an indexed
setting, at a low cost. Indeed, we do not require any fancy higher order system, but
only look at a extension of the simply-typed calculus that features a very weak form of
dependency. Delimited control arising from such monadic encoding may therefore require
a form of dependent elimination to be fully satisfactory.

66

6 Logical by need

From each according to his ability, to
each according to his need.

Marx about computation sharing.

We propose in this chapter a presentation of the so-called call-by-need calling con-
vention based on considerations stemming from linear logic. Contrarily to historical
presentations of the family of call-by-need calculi, the one we describe here is more uni-
form and shares strong bounds with other computation systems, most notably the KAM.

We will note ∆ for λx. x x, I for λy. y and we will write →cbn (resp. →cbv) the
strategies associated with call-by-name (resp. by-value). The redex which is involved in
a reduction will be emphasized by showing it in a grey box.

6.1 An implicit tension

Executing computations which may not be used to produce a value may obviously lead
to unnecessary work being done, potentially resulting in non-termination even when a
value exists. An alternative is to fire a redex only when it happens to be necessary to
pursue the evaluation towards a value.
For instance, it is well-known that call-by-value may trigger computations that could be

completely avoided, resulting in potential non-termination, while call-by-name evaluates
programs on demand. This is examplified in:

t ≡ (λx. I) (∆ ∆)→cbn I
t ≡ (λx. I) (∆ ∆)→cbv t→cbv . . . →cbv . . .

In this example, call-by-value reduction will reduce ∆ ∆ again and again when the
redex is of no use for reaching a value while call-by-name simply discards the argument.
Call-by-name, and more precisely weak head reduction thus realizes a form of demand-

driven computation: a redex is fired only if it contributes to the weak head normal form,
usually abbreviated as whnf.
On the other hand, while call-by-name is more parcimonious than call-by-value in

terms of which parts of a program will be evaluated, call-by-value will happen to be more
parcimonious when it comes to arguments which are actually used in the computation:
they are evaluated only once, before substituting the value, while call-by-name discipline
will redo the same computation several times, as in:

67

6 Logical by need

u ≡ ∆ (I I)→cbn I I (I I)→cbn I (I I)→cbn I I →cbn I
u ≡ ∆ (I I)→cbv ∆ I →cbv I I →cbv I

In the above example, call-by-name reduction duplicates the computation of I I while
call-by-value only duplicates value I, resulting in a shorter reduction path to value.
Interestingly, demand-driven computation resulted in two lines of works, one motivated

by theoretical purposes and rooted in logic, Danos and Regnier’s linear head reduction,
the other being motivated by more practical concerns and resulting in the study of lazy
evaluation strategies for functional languages.

6.2 Linear head reduction

6.2.1 A brief history of the unloved linear head reduction

As far as we can trace it back, linear head reduction was first described by Regnier [96] in
his 1992 PhD thesis, albeit under the name of spinal reduction. It arose from the study of
the computational correspondance between proof-nets and the call-by-name λ-calculus.
In this work, Regnier showed that linear head reduction was essentially an extension of
the usual head reduction up to a relation called σ-equivalence that allowed to permute
morally irrelevant but blocking redexes for the head reduction.
The proper name linear head reduction appears in print two years later in an article

due to Mascari and Pedicini [79] that sums up and extends the results of Regnier on the
natural relation between linear head reduction and proof-nets. They proved in particular
that this reduction was the equivalent of the proof-net reduction through the call-by-
name decomposition of linear logic, which is one of the reasons for the use of the linear
adjective, the other one being that the substitutions are non-destructive, contrarily to
what happens in the usual β-reduction. Likewise, the head qualificative can be justified
by its closeness to head reduction, as exposed by Regnier.
This peculiar notion of reduction then made very scarce appearances in the literature

for fifteen years, seemingly falling into oblivion except for the original authors. Indeed,
it is the object of study in an article by Danos, Regnier and Herbelin [36], as well as in
an unpublished note by the two former authors [37]. They build in them an abstract
machine implementing this reduction, the Pointer Abstract Machine (PAM) that relies
on a notion of pointers into subterms of a λ-term to cope with the linear substitution
feature. As for the proof-net reduction, those documents show a strong relationship
between the PAM (and thus linear head reduction) and game semantics [59].
Although at first sight it looked like linear head reduction had slowly faded away,

it made a surprise comeback by the beginning of the 2010’s through a research line
initiated by Accattoli and Kesner [6]. Their seminal article describes the so-called struc-
tural λ-calculus, featuring explicit substitutions and at-distance reduction, taking once
again inspiration from the computational behaviour of proof-nets and revamping the
σ-equivalence relation in this framework.
The at-distance reduction in particular contrasts sharply with the usual treatment of

explicit substitutions which generally require a set of rules allowing the substitutions to

68

6.2 Linear head reduction

commute with the various contexts. In their system, blocks of explicits substitutions are
instead stuck to the place where they were created and are considered transparent for all
purposes but the rule of substitution of variables.
This is practically done by splitting the usual λ-calculus reduction in two phases,

paralleling what happens in the proof-net reduction: multiplicative steps, corresponding
to the creation of explicit substitutions, and exponential steps, corresponding to the
effective substitution of a variable by some term. Linear head reduction then naturally
arises from the call-by-name flavour of those two rules as described, and indeed the
connection with the historical linear head reduction is made explicit in many articles
from the subsequent trend [8, 6, 4] and is furthemore used to obtain results ranging from
computational complexity to factorization of rewriting theories of the λ-calculus [9, 5,
10, 7].
Such a vast array of results suggests that linear head reduction deserves more attention

and ought to be studied in more details. In this chapter, we will give a new alternative
presentation of it, based on the novel use of a unusual class of term contexts.

6.2.2 The old-fashioned linear head reduction

From an abstract point of view, linear head reduction allows to synthesize similar obser-
vations made amongst different computational paradigms, namely the Krivine abstract
machine [68], proof-nets [44, 96], and game semantics [59].
The basic claim is that the core of these systems does not implement the usual head

reduction as thought commonly, but rather use some more parcimonious reduction, which
they define under the name of linear head reduction, which realizes a stronger form
of computation-on-demand than call-by-name: the argument of a function cannot be
said to truly contribute to the result if it never reaches head position; in such a case,
the corresponding redex may only contribute to the (w)hnf in a non-essential way; for
instance by blocking other redexes as in (λx y. y) t u. Linear head reduction makes this
observation formal.
Linear head reduction has two main features:

• first it reduces only the β-redex binding to the leftmost variable (therefore the head
from its name);

• secondly it substitutes for the argument only the head occurrence of the variable
(therefore the linear from its name) without destroying the fired redex.

A third noticeable point is that linear head reduction is not truly a reduction in that
it does not reduce only redexes (at least not only β-redexes), but also sorts of hidden
β-redexes that are true β-redexes only up to an equivalence on λ-terms induced by their
encoding in proof nets, namely σ-equivalence. This point shall be made clear later on.
We now recall Danos and Regnier’s definition of linear head reduction:

Definition 54. The spine of a λ-term t is the set � t of λ-terms inductively defined as:

t ∈ � t
r ∈ � t
r ∈ � t u

r ∈ � t
r ∈ �λx. t

69

6 Logical by need

� t always contains exactly one variable by construction, written hoc(t), for head oc-
currence.

Stated another way, the spine of t is nothing more than the set of left subterms of t,
hoc(t) being its leftmost variable.

Definition 55 (Head lambdas, Prime redexes). Let t be a λ-term. The head lambdas
λh(t) and the prime redexes p(t) of t are mutually defined by induction on t as follows.

λh(x) := ε p(x) := ∅

λh(λx. t) := x :: λh(t) p(λx. t) := p(t)

λh(t u) :=

{
ε
`

p(t u) :=

{
p(t) if λh(t) = ε

p(t) ∪ {x← u} if λh(t) = x :: `

Remark 4. To understand head lambdas and prime redexes, it is convenient to consider
blocks of applications. We have indeed the following equalities.

λh((λx. t) u ~r) ≡ λh(t ~r)
p((λx. t) u ~r) ≡ {x← u} ∪ p(t ~r)

Head lambdas are precisely lambdas from the spine which will not be fed with argu-
ments during head reduction. Now that we are equipped with the above notions, we can
formally define the linear head reduction:

Definition 56 (Linear head reduction). Let u a λ-term, let x := hoc(u). We say that u
linear-head reduces to r, written u→lh r, when:

• there exists some term t s.t. {x← t} ∈ p(u);

• r is u where the variable occurrence hoc(u) has been substituted by t.

Remark 5. Linear head reduction only substitutes one occurrence of a variable at a time
and never reduces an application node. Likewise, it does not decrease the number of prime
redexes. Thus terms keep growing, hence the name linear taken for linear substitution.
An example of linear head reduction is given in Figure 6.1.

6.3 Lazy evaluation

Wadsworth introduced lazy evaluation [106] as a mean to overcome defects of both call-
by-name and call-by-value evaluation recalled in the above paragraphs. Lazy evaluation,
or Call-by-need, can be viewed as a strategy reconciling the best of the by-value and by-
name worlds in terms of reductions: a computation is triggered only when it is needed
for the evaluation to progress and, in this case, it avoids redoing computations.
The price to pay is that the by-need strategy is tricky to formulate and reason about.

For instance, Wadsworth had to introduce a graph reduction in order to allow sharing
of sub-terms, and the following developments on lazy evaluation essentially dealt with
machines. The essence of call-by-need is summarized by Danvy et al. [39]:

70

6.4 Linear head reduction versus call-by-need

Demand-driven computation & memoization of intermediate results

Designing a proper calculus for call-by-need remained open for about two decades,
until the mid-nineties when, in 1994, two very close solutions to this problem were si-
multaneously presented by Ariola and Felleisen on the one hand, and Maraist, Odersky
and Wadler on the other [14, 11, 78]. Ariola and Felleisen’s calculus can be presented as
follows.

Definition 57. AF-calculus is defined by the following syntax:

Syntax
Term t, u := x | λx. t | t u
Value v := λx. t
Answer A := v | (λx.A) t
Evaluation context E := [·] | E t | (λx.E) t | (λx.E[x]) E

Reductions

(Deref) (λx.E[x]) v → (λx.E[v]) v
(Lift) (λx.A) t u → (λx.A u) t
(Assoc) (λx.E[x]) ((λy.A) t) → (λy. (λx.E[x]) A) t

Intuitively, the above calculus shall be understood as follows:

• The lazy behaviour of the calculus is coded in the structure of contexts: term E[x]
evidences that variable x is in needed position in term E[x].

• Rule Deref then gets the argument, in case it has already been computed and it
has been detected as needed. In that case, the argument is substituted for one copy
of the variable x, the one in needed position. As a consequence, the application is
not erased and a single occurrence of the variable has been substituted. (E is a
single-hole context.)

• Rules Lift and Assoc allow for the commutation of evaluation contexts in order
for deref redexes to appear despite the persisting binders.

We give an example of a reduction sequence in Ariola-Felleisen call-by-need λ-calculus
in figure 6.1. In the last line we highlight the term that would remain after having applied
the garbage-collection rule considered by Maraist et al [78]. Even though this is not part
of the calculus, this convention of garbage-collecting weakening redexes will be used in
the rest of this chapter in order to ease the reading of values.

6.4 Linear head reduction versus call-by-need

Linear head reduction and call-by-need have striking common features:

• call-by-need can be seen as an optimization of both call-by-name and call-by-value
while linear head reduction can be seen as an optimization of head reduction;

71

6 Logical by need

Linear head reduction Call-by-need λ-calculus

∆ (I I)
≡ (λx. x x) ((λy. y) I)
→lh (λx. (λy0. y0) I x) ((λy. y) I)
→lh (λx. (λy0. λz0. z0) I x) ((λy. y) I) ?
→lh (λx. (λy0. λz0. x) I x) ((λy. y) I)
→lh (λx. (λy0. λz0. (λy1. y1) I) I x) ((λy. y) I)
→lh (λx. (λy0. λz0. (λy1. λz1. z1) I) I x) ((λy. y) I)

∆ (I I)
≡ (λx. x x) ((λy. y) I)

→Deref (λx. x x) ((λy. I) I)
→Assoc (λy. (λx. x x) I) I
→Deref (λy. (λx. (λz. z) x) I) I
→Deref (λy. (λx. (λz. z) I) I) I
→Deref (λy. (λx. (λz. I) I) I) I

Figure 6.1: Linear head reduction vs. Ariola-Felleisen calculus.

• both rely on a linear, rather than destructive, substitution (at least in Ariola-
Felleisen calculus presented above).

• more importantly, both share with call-by-name the same notion of convergence and
the induced observational equivalences. Being observationally indistinguishable in
the pure λ-calculus, they require instead side-effects to be told apart from call-by-
name.

While it took two decades for call-by-need to be equipped with a proper calculus, the
way linear head reduction is usually defined is intricate and inconvenient to work with.
We actually view this fact, together with the observational indistinguishability, as one of
the reasons for the almost complete inexistence of linear head reduction in literature for
about two decades.
In the present chapter, we aim at remedying this unfairness and making formal the

deep connections between linear head reduction and call-by-need which are not the least
contingent. To this aim, we shall thus redefining here the required notions.

The connections between the two formalisms are striking and actually not the least
contingent. Understanding the precise relationships between the two may be useful to
build call-by-need on firm, logical grounds. While comparing the merits of various call-
by-need calculi in order to evidence one such calculus as being more canonical than the
other may be quite dubious 1, when extending call-by-need with control not only do we
make call-by-name and call-by-need observational equivalences differ, but also can we
distinguish between several call-by-need calculi [12] as evidenced by the work of Saurin
and Herbelin about defining call-by-need extensions of λµµ̃ which are sequent-style λµ-
calculus [35]. In this context, it does make sense to wonder which calculus to pick and
what observational impact these choice may have. Somehow, we can summarize the aim
of the current presentation as integrating logically call-by-need and control operators in a
different way from previous work [12]. While the framework of [35] call-by-need is added

1For instance Maraist, Odersky and Wadler calculus differ in their 1998 journal version from the calculus
introduced by Ariola Felleisen, but in no essential way since both calculi share the same standard
reductions.

72

6.5 A modern reformulation of linear head reduction

to control, we suggest to work the other way around: we want to integrate as cleanly as
possible call-by-need in an intuitionistic setting before lifting it to the classical setting.

We contribute to the theory of linear head reduction and show that it can be made into
calculus. Doing so will allow us to formally connect linear hear reduction to call-by-need,
showing how to systematically derive well-known call-by-need calculi from linear head
reduction. More precisely, we will we will justify the following motto:

Lazy ≡ Demand-driven comp. + Memoization + Sharing
(weak linear head reduction) (by value) (closure sharing)

We will show in Section 6.6 that three steps lead us from linear head reduction to
call-by-need:

1. restriction to a weak linear head reduction by specializing closure contexts,

2. then enforcing memoization of intermediate results by restricting to value passing;

3. and finally implementing some sharing, thanks to closure contexts.

Our results are validated in two ways: first, the resulting calculi correspond to well-
known call-by-need calculi, providing a validation to Chang-Felleisen recent single-axiom
call-by-need calculus [27] with one axiom. Second, we extend our results to the classical
case, defining linear head reduction for λµ-calculus and deriving from it a call-by-need
λµ-calculus.

6.5 A modern reformulation of linear head reduction

In the previous section, we recalled the historical presentation [37] of linear head reduc-
tion. In the present section we give a new formulation of the reduction based on closure
contexts from which we progressively build a call-by-need calculus, but first we recall
some facts about σ-equivalence.

6.5.1 Reduction up to σ-equivalence

It is noteworthy that head linear reduction reduces terms which are not yet redexes for
β, i.e. lh may get the argument of a binder even if it is not directly applied to it. The
third reduction (?) of the example from Figure 6.1 features such a cross-redex reduction.
In this reduction, the λz1 binder steps across the prime redex {y0 ← λz0. z0} in order to
recover its argument x. This kind of reduction would not have been allowed by the usual
head reduction. This peculiar behaviour can be made more formal thanks to a rewriting
up to equivalence, also introduced by Regnier [97, 96].

Definition 58 (σ-equivalence). σ-equivalence is the reflexive, symmetric and transitive
closure of to binary relation on λ-terms generated by:

73

6 Logical by need

(λx. t) u v ∼=σ (λx. t v) u with x fresh for v
(λx y. t) u ∼=σ λy. (λx. t) u with y fresh for u

with the expected freshness conditions on bound variables.

Intuitively, σ-equivalence allows reduction in a term where it would have been forbidden
by other essentially transparent redexes.

Proposition 19. If t ∼=σ u, then p(t) = p(u).

The following proposition highlights the strong kinship relating linear head reduction
and σ-equivalence. Let us recall that a left context L is inductively defined by the
following grammar:

L := [·] | L t | λx. L

Proposition 20. If t→lh r then there exist two left contexts L1 and L2 such that

t ∼=σ L1[(λx. L2[x]) u] and r ∼=σ L1[(λx. L2[u]) u]

The previous result can be slightly refined. The ∼=σ relation is reversible, so that we
can rebuild r by applying to L1[(λx. L2[u]) u] the reverse σ-equivalence steps from the
rewriting from t to L1[(λx. L2[x]) u]. We will not detail this operation here but rather
move to the definition of closure contexts.

6.5.2 Closure contexts

With the aim to give a first-class status to the reduction up to σ-equivalence of Propo-
sition 20, we introduce a new kind of reduction contexts, closure contexts.

Definition 59 (Closure contexts). Closure contexts are inductively defined as:

C := [·] | C1[λx. C2] t

While closure contexts may seem odd at first, they feature all the required properties
that provide them with a nice algebraic behaviour, that is, composability and factoriza-
tion.

Proposition 21 (Composition). Let C1 and C2 be closure contexts, then C1[C2] is also
one.

Proposition 22 (Factorization). Any term t can be uniquely decomposed as a maximal
closure context, in the usual meaning of composition, and a subterm t0.

Actually, we get even more: closure contexts precisely capture the notion of prime
redex.

Proposition 23. Let t be a term. Then {x ← u} ∈ p(t) if and only if there exist a left
context L, a closure context C and a term t0 such that t = L[C[λx. t0] u].

74

6.5 A modern reformulation of linear head reduction

Closure contexts are morally transparent for some well-behaved head reduction: one
can consider that C[λx. [·]] t is a context that only adds a binding (x := t) to the envi-
ronment, as well as the bindings contained in C.
This intuition can be made formal thanks to the Krivine abstract machine (KAM).

As stated by the following result, transitions Push and Pop of the KAM implement the
computation of closure contexts.

Proposition 24. Let t be a term, σ an environment, π a stack and C a closure context.
We have the following reduction

〈(C[t], σ) | π〉 −→∗Push,Pop 〈(t, σ + [C]σ) | π〉

where [C]σ is defined by induction over C as follows:

[[·]]σ ≡ ∅ [C1[λx. C2] t]σ ≡ [C1]σ + (x := (t, σ)) + [C2]σ+[C1]σ+(x:=(t,σ))

Conversely, for all t0 and σ0 such that

〈(t, σ) | π〉 −→∗Push,Pop 〈(t0, σ0) | π〉

there exists C0 such that t = C0[t0], where C0 is inductively defined over σ0.

6.5.3 The λlh-calculus

Owing to the fact that closure contexts capture prime redexes, we will provide an alter-
native and more conventional definition for the linear head reduction. It will result in
the λlh-calculus, based on contexts rather than ad-hoc variable manipulations.

Definition 60 (λlh-calculus). The λlh-calculus is defined by the reduction rule:

L1[C[λx. L2[x]] u]→λlh L1[C[λx. L2[u]] u]

where L1, L2 are left contexts, C is a closure context, t and u are λ-terms, with the
usual freshness conditions to prevent variable capture in u.

Proposition 25 (Stability of λlh by σ). Let t, u and v be terms such that t ∼=σ u→lh v,
then there is w such that t→lh w ∼=σ v.

Theorem 13. The λlh-calculus captures the linear head reduction.

t→λlh r iff t→lh r

Indeed, the x from the rule is precisely the hoc of the term, and because we are reducing
up to closure contexts, Proposition 23 ensures that {x ← u} is a prime radical. Hence
the expected result.

75

6 Logical by need

6.5.4 LHR with microscopic reduction

Instead of providing our calculus with macroscopic rules that work on a whole contextified
term, we can also describe it using microscopic reduction based on atomic, small-step
reductions. To this end, we need to switch to a let-based calculus, whose syntax is
defined below.

t, u := x | λx. t | t u | let x := t in u
E := [·] | E t | let x := t in E

(λx. t) u → let x := u in t (Let)
(let x := u in C[λy. t]) r → let x := u in C[λy. t] r (Lift)
C[let x := u in λy. t] r → C[λy. let x := u in t] r (Dig)
let x := t in E[x] → let x := t in E[t] (Subst)

As it is the norm in such calculi, the let binder allows to track β-redexes by pairing
them whenever they appear as such. This is precisely the rôle of the following rule:

(λx. t) u→ let x := u in t

In the macroscopic calculus, this rôle was devoted to the closure contexts instead. Now
that we have first-class let-s, we need to adapt those contexts. This is easily done by
replacing pairs of prime redexes by a corresponding let, as follows:

C := [·] | let x := t in C

There is a small loss of information though, as the previous closure contexts had a
slightly more complex data structure than the current ones, which are isomorphic to a
plain list of binders.
The σ-equivalence rules can be rewritten to fit into this presentation as follows:

(let x := u in t) v ∼=σ let x := u in t v
let x := u in λy. t ∼=σ λy. let x := u in t

with the usual freshness conditions.
Because of the slight mismatch between usual closure contexts and let-based context

closures, there is a choice to be made in the microscopic reduction rule. While the
original closure contexts made prime redexes appear naturally, in the let-calculus, we
need to explicitly create β-redexes by making the potential redexes commute with the
surrounding context. There are two ways to do so, each one corresponding to a generating
rule of the σ-equivalence:

• Either by pushing the application node inside closure contexts:

(let x := u in C[λy. t]) v → let x := u in C[λy. t] v (Lift).

• Or by extruding applied λ-abstractions from the surrounding context:

C[let x := u in λy. t] v → C[λy. let x := u in t] v (Dig).

76

6.6 Towards call-by-need

Reduction Lift is the most common in literature, probably because it is easier to for-
mulate without a clear notion of closure contexts. It corresponds to the call-by-name
calculus described in [39], where answers A are no more than terms of the form C[λx. t].
Reduction Dig is an alternative choice. The two reductions are not only different, but
also incompatible, in the sense that their left-hand sides are the same while their right-
hand sides are not convertible, thus breaking confluence. Yet, the reduced terms still
agree up to σ-equivalence by construction.
Finally, the last rule performs the linear substitution:

let x := t in E[x]→ let x := t in E[t]

Here, E[x] represents an evaluation context, so that the substitution only replaces
exactly one variable.

6.6 Towards call-by-need

Our journey from linear head reduction to call-by-need will now follow three steps: first
restricting linear head reduction to a weak reduction, then imposing a value-restriction
and finally introducing an amount of sharing.

6.6.1 Weak linear head reduction

The linear head reduction as given at paragraph 6.5.3 is a strong reduction: it reduces
under abstractions. We now adapt λlh-calculus to the weak case. It is easy to give a
weak version of the reduction in the historical setting of Danos-Regnier, which inherits
the same defects as its strong counterpart.

Definition 61 (Historical wlh-reduction). We say that t weak-linear-head reduces to r,
which we will write t→wlh r, iff t→lh r and t does not have any head λ.

On the other hand, the λlh reduction can be denied the possibility to reduce under
abstractions by restricting the evaluation contexts inside which it can be triggered. This
requires some care though. Indeed, the contexts may contain λ-abstractions, assuming
they have been compensated by as many previous applications. That is, those binders
must pertain to a prime redex as in (λz1 . . . zn x.Ew[x]) r1 . . . rn u.
Plain closure contexts are not enough to capture this kind of situation. We need to

split the enclosing context in two parts, applicative and binding contexts inductively
defined as:

C@ := C | C[C@ t] Cλ := C | C[λx. Cλ]

While applicative contexts introduce supernumerary applications, binding contexts
consume them. It would be only possible to consider pairs of context such that their
composition would be balanced.
Somehow, those contexts are the insensibilization of binding (resp. applicative) con-

texts Cλ (resp. C@) to closure contexts by sandwiching each abstraction (resp. applica-
tion) node with as many closures as required.

77

6 Logical by need

We can formally define the filling relation allowing us to define the weak linear head
reduction.

Definition 62 (Filling). We define inductively the size function |·|λ (resp. |·|@) on
binding (resp. applicative) contexts below.

|C|λ := 0 |C|@ := 0
|C[λx. Cλ]|λ := 1 + |Cλ|λ

∣∣C[C@ u]
∣∣
@

:= 1 +
∣∣C@
∣∣
@

We finally pose C@ c Cλ when
∣∣C@
∣∣
@
≥ |Cλ|λ.

For the sake of readability, we will write as Cw an up-to-closure applicative context
that is not expected to be composed with a binding context.

Definition 63 (λwlh-calculus). The weak linear head calculus λwlh is defined by the rule:

C@[C[λx. Cλ[Cw[x]]] u] →λwlv C@[C[λx. Cλ[Cw[u]]] u] if C@ c Cλ

Proposition 26 (Stability of λwlh by σ). Let t, u and v be terms such that t ∼=σ u→wlh v,
then there is w such that t→wlh w ∼=σ v.

Remark 6. If C@ c Cλ, then C@[Cλ] is an up-to-closure applicative context.

For completeness purpose, we can also give an alternative definition of this reduction
in the historical setting of Danos-Regnier. This presentation inherits the same defects as
its strong counterpart.

Definition 64 (Historical wlh-reduction). We say that t weak-linear-head reduces to r,
which we will write t→wlh r, iff t linear-head reduces to r and t does not have any head
lambda.

We can now compare the historical weak linear head reduction with λwlh. Intuitively,
they correspond since not having head lambda is exactly equivalent to having its binding
subcontexts filled. Somehow, the historical presentation of the weak reduction implicitly
deals with binding contexts. Actually, the two notions of weak reduction are the same:

Theorem 14. The λwlh-calculus and the historical wlh-reduction coincide, that is t→λwlh

r iff t→wlh r.

Proof. They correspond since not having head lambda is exactly equivalent to having its
binding subcontexts filled.

6.6.2 Call-by-value linear head reduction

In order to obtain a call-by-value linear head reduction, we will restrict contexts that
trigger substitutions to react only in front of a value. In addition, the up-to-closure
paradigm used so far will also incite us to consider values up to closures defined as

w := C[v]

78

6.6 Towards call-by-need

when v stands for values.
Going from the usual call-by-name to the usual call-by-value is then simply a matter

of adding a context forcing values. Likewise, we just add a context forcing up-to values.
This construction is made in a systematic way according to the standard call-by-value
encoding.

Ev := [·] | Ev u | C@[C[λx. Cλ[Ev1 [x]]] Ev2] | C[Ev] where C@ c Cλ

Let us insist that although we added a dedicated rule C[Ev] to reason up to context,
this is actually only for readability purposes. We could also proceed to the inlined
sandwiching exactly like in the previous section. The call-by-value weak linear head
reduction is then obtained straightforwardly:

Definition 65. The λwlv-calculus is defined by the unique reduction rule:

C@[C[λx. Cλ[Ev[x]]] w] →λwlv C@[C[λx. Cλ[Ev[w]]] w] if C@ c Cλ

It is easy to check that the reduction rule itself was not deeply modified. The essential
difference lies in the clever choice for the contexts.

Proposition 27 (Stability of λwlv by σ). Let t, u and v be terms such that t ∼=σ u→wlv v,
then there is w such that t→wlv w ∼=σ v.

Although we branded this calculus as a call-by-value one, it already implements a call-
by-need strategy since it triggers the reduction of an argument if and only if it was made
necessary by the encounter of a corresponding variable in (call-by-value) hoc position.
We give the reduction on our running example:

∆ (I I) ≡ (λx. x x) ((λy. y) I)
→wlv (λx. x x) ((λy. I) I)
→wlv (λx. (λy1 z1. z1) I x) ((λy. I) I)
→wlv (λx. (λy1 z1. z1) I ((λy. I) I)) ((λy. I) I)
→wlv (λx. (λy1 z1. I) I ((λy. I) I)) ((λy. I) I)

In the first transition, the reduction occurs in the argument required by x, returning
a value (up to closure) that will then be substituted.

6.6.3 Closure sharing

More complex call-by-need reduction schemes from the literature [11] cannot be captured
by the λwlv-calculus. Indeed, the scrutiny of the example from the previous section reveals
a duplication of computation:

C@[C′[λx. Cλ[Ev[x]]] C[v]]→λwlv C@[C′[λx. Cλ[Ev[C[v]]]] C[v]]

In that case, we copied the closure context C, which will end up in recomputing its
bound terms if ever they are going to be used throughout the reduction. While our
running example ∆ (I I) does not feature such a behaviour, this can instead be seen on

79

6 Logical by need

(λx. x I x) (λy z. y) (I I) because while the term to the right of the application node
is already an up-to value, it also uses the argument I I from its closure. During the
substitution, this subterm is copied as-is, resulting in its recomputation at each call to x
in the body of the abstraction.
It is possible to solve this issue in an elegant way akin to the Assoc rule of Ariola-

Felleisen calculus. This is achieved by the extrusion of the closure of the value at the
instant it is substituted. There is no need to refine contexts further, because everything
is already in order. We obtain the calculus below.

Definition 66. The call-by-value linear head calculus with sharing is defined by the
unique reduction rule:

C@[C′[λx. Cλ[Ev[x]]] C[v]] →λwls C@[C[C′[λx. Cλ[Ev[v]]] v]] if C@ c Cλ
with the usual freshness conditions to prevent variable capture in C′.

6.6.4 λwls is a call-by-need calculus

Remarkably enough, the resulting calculus is almost exactly Felleisen and Chang’s call-
by-need calculus [27] (CF-calculus). The main difference lies in the fact that the latter
features the usual destructive substitution, while ours is linear.
It is easy to convince oneself that their answer contexts correspond to our closure

contexts, while the inner and outer variants stand respectively for our binding and ap-
plicative contexts. There are tiny mismatches, relatively to filling in particular. The
filling condition is stated as an equality in CF-calculus, even though the two formalisms
are equivalent. This is essentially a matter of rearranging the context splitting. Moreover,
CF-calculus plugs closures in the reverse order compared to λwls.
The reduction βcfr can be described in our formalism in a straightforward manner.

Theorem 15 (CF-calculus revisited). CF-calculus is given by the reduction rule below.

C@[C′[λx. Cλ[Ev[x]]] C[v]] →cfr C@[C′[C[Cλ[Ev[x]][x := v]]]] if C@ c Cλ
The difference in the order of closure plugging may seem irrelevant in Chang and

Felleisen’s framework because they use non-linear destructive substitutions and both or-
ders are possible: an ad-hoc choice was made there. On the contrary, our design strongly
guided by logic directly led us to a plugging order compatible with linear substitution.

6.6.5 From miscroscopic LHR to Ariola-Felleisen calculus

Notice that we chose to keep a macro, single-axiom, reduction close to the historical
linear head reduction. It is possible though to describe linear head reduction with a
more atomic reduction and the same development as we did can be achieved using the
microscopic presentation from Section 6.5.4.
Any choice between rules Lift or Dig will lead to call-by-need calculi. Still we consider

it is more interesting to opt for Lift since it allows us to recover known calculi. From the
microscopic linear head calculus with Lift, we can apply the same three transformations
as in the macroscopic case.

80

6.7 Classical Linear Head Reduction

1. weak reduction constrain evaluation contexts to be applicative contexts up to clo-
sures:

E := [·] | E t | (λx.E) t

2. restriction to value (up to closure) substitutions, which creates new call-by-value,
evaluation contexts:

E := . . . | (λx.E[x]) E

3. sharing of closures, introducing the rule for commutation of closure contexts and
which happens to be, with the simplified contexts, the usual Assoc rule:

(λx.E[x]) ((λy.A) t)→ (λy. (λx.E[x]) A) t

Proposition 28. The resulting calculus is precisely AF-calculus.

6.7 Classical Linear Head Reduction

Thanks to the intuition provided by the linear substitution, we propose in this section a
classical weak linear head calculus. We hope it to be the inspiration for a more canonical
classical call-by-need calculus.
We present our calculus as a variation of the λµ-calculus [94]. We recall the syntax

and reduction of its call-by-name variant below.

t, u := x | λx. t | t u | µα. c

c := [α] t

(λx. t) u → t[x := u]
(µα. c) u → µα. c[[α] r := [α] r u]
[α]µβ. c → c[β := α]

We will only be interested in the reduction of commands in the remainder of this
section. Our calculus is a direct elaboration of the aforementioned linear weak head
calculus. We dedicate this section to its thorough description.

Definition 67 (Classical LHR). We first define left stack contexts K by induction.

K := [·] | [α]L[µβ.K]

Then we define a classical extension of left contexts and closure contexts as follows.

C := [·] | C1[λx. C2] t | C1[µα.K[[α] C2]]

L := [·] | λx. L | L t | µβ. [α]L

The classical linear head calculus is then defined by the following reduction.

[α]L1[C[λx. L2[x]] t] →clh [α]L1[C[λx. L2[t]] t]

81

6 Logical by need

Definition 68 (Classical σ-equivalence). The σ-equivalence is extended to the λµ-
calculus with the following generators [74].

(λx. µα. [β] t) u ∼=σ µα. [β] (λx. t) u with α 6∈ u
[α] (µβ. [γ] (µδ. c) u) t ∼=σ [γ] (µδ. [α] (µβ. c) t) u with β 6∈ u, δ 6∈ t
[α]λx. µβ. [γ]λy. µδ. c ∼=σ [γ]λy. µδ. [α]λx. µβ. c
[α] (µβ. [γ]λx. µδ. c) t ∼=σ [γ]λx. µδ. [α] (µβ. c) t with x 6∈ t, β 6∈ t

Proposition 29 (Stability by σ). Let t, u and v be terms such that t ∼=σ u → v, then
there is w such that t→ w ∼=σ v.

Lifting the notion of substitution sequences given in [37] from λ-calculus to λµ-calculus,
there is a simulation theorem relating the µ-KAM with the classical LHR. To fully state
it, one must start with a technical remark.

Remark 7. The clh reduction rule is actually abusive. Indeed, in the above reduction
rule, t can be any term. This means that to ensure later capture-free substitution by
preserving the Barendregt condition on terms, one has to rename the variables of t on
the fly, so that the legitimate rule would rather be

[α]L1[C[λx. L2[x]] t] →clh [α]L1[C[λx. L2[# t]] t]

where # t stands for t where bound variables have been replaced by fresh variable in-
stances.

We need to define properly the relation between the original and the substituted terms
in the above rule.

Definition 69 (One-step residual). In the above rule, we say that t is the residual of # t
in the source term.

It turns out that this definition can be extended to a reduction of arbitrary length
thanks to the following lemma.

Proposition 30. For any reduction of the form

[α] t →clh
∗ [α]L1[C[λx. L2[x]] r0] →clh [α]L1[C[λx. L2[# r0]] r0]

there exists a subterm r of t such that r0 ≡ # r. We call it the residual of r0 in t.

Proof. By induction on the reduction. The key point is that all along the reduction, all
terms on the right of an application node are subterms of the original term, up to some
variable renaming.

Definition 70 (Substitution sequence). Given two terms t and t0 s.t. t0 →∗clh t, we
define the substitution sequence of t w.r.t. t0 as the (possibly infinite) sequence St0(t)
of subterms of t0 defined as follows, where α is a fresh stack variable.

• If [α] t 6→clh then St0(t) := ∅.

82

6.7 Classical Linear Head Reduction

• If [α] t ≡ [α]L1[C[λx. L2[x]] r] →clh [α] t′ then St0(t) := r0 :: St0(t′) where r0 is
the residual of r in t0.

We finally pose S(t) := St(t).

The µ-KAM naturally features a similar behaviour w.r.t. residuals.

Proposition 31. If 〈(t, ·) | ε〉 →∗ 〈(t0, σ) | π〉 then t0 is a subterm of t.

Proof. By a straightforward induction over the reduction path.

This proposition can (and actually needs to) be generalized to any source process whose
stacks and closures only contain subterms of t. This leads to the definition of a similar
notion of substitution sequence for the KAM.

Definition 71 (KAM substitution sequence). For any term t, we define the KAM sub-
stitution sequence of a process p as the possibly infinite sequence of terms K(p) defined
as:

• If p 6→ then K(p) := ∅.

• If p ≡ 〈(x, σ) | π〉 → 〈(t, τ) | π〉 then K(p) := t :: K(〈(t, τ) | π〉).

• Otherwise if p→ q then K(p) := K(q).

Finally, the KAM substitution sequence of any term t is defined as K(t) := K(〈(t, ·) | ε〉).

By the previous lemma, K(t) is a sequence of subterms of t. We can therefore formally
relate it to S(t).

Proposition 32. Let t be a term. Then K(t) is a prefix of S(t).

Proof. By coinduction, for each step of S(t), it is sufficient either to construct a matching
step in K(t) or to stop. Let us assume that

[α] t ≡ [α]L1[C[λx. L2[x]] r0] →clh [α]L1[C[λx. L2[# r0]] r0] ≡ [α] tr

There are now two cases, depending on the KAM reduction of K(〈(t, ·) | ε〉). By a
simple generalization of Lemma 24, the normal form of this process in the Grab-free
fragment of the KAM rules can be one of the two following form:

• either 〈(x, σ + (x := (r0, τ)) | π〉 for some σ, τ and π

• or a blocked state of the KAM for all rules

The second case can occur if there are too many λ-abstractions in the left contexts
of the above reduction rule or if there is an free stack variable appearing in a command
part of the left contexts. In this case K(t) = ∅, which is indeed a prefix of S(t).
Otherwise, one has K(t) = r0 :: K(〈(r0, τ) | π〉) and S(t) = r0 :: St(tr). It it therefore

sufficient to show that the property holds for the tail of those two sequences.
It is a noteworthy fact that, when we put tr in the KAM, we obtain a reduction of the

form

83

6 Logical by need

〈(tr, ·) | ε〉 →∗ 〈(# r0, σ + (x := (r0, τ)) + σ0) | π〉

for some σ0, where the Grab rule does not appear. This reduction follows indeed the very
same transitions as the process made of the source term. Moreover, a careful inductive
analysis of the possible transitions shows that σ = τ+σ1 for some σ1, where the variables
bound by σ1 are not free in # r0. Therefore,

K(tr) = K(〈(# r0, σ + (x := (r0, τ)) + σ0) | π〉) = K(〈(# r0, τ) | π〉)

because the KAM reduction is not affected by extension of closure environments with
variables absent from the closure term. By applying the coinduction hypothesis, we
immediately obtain than K(tr) is a prefix of S(tr).
But now, we can conclude, because K(〈(# r0, τ) | π〉) and K(〈(r0, τ) | π〉) (resp. S(tr)

and St(tr)) are the same sequence up to a renaming of the bound variables coming from
r0 which is common to both kinds of reduction. Thus K(〈(r0, τ) | π〉) is a prefix of
St(tr) and we are done.

From this lemma, one can immediately derive the following theorem.

Theorem 16. Let c1 →clh c2 where c1 := [α]L1[C[λx. L2[x]] t], then the substitution
sequence of process c1 is either empty or of the form t :: ` where ` is the substitution
sequence of process c2.

6.8 Classical by Need

To extend our classical LHR calculus to a fully-fledged call-by-need calculus, we follow
the same three-step path that lead us from LHR to call-by-need.

6.8.1 Weak classical LHR

The most delicate point is actually the introduction of weak reduction. Indeed we need
to be able to tell when we did not go through too many λ-abstractions.
In a classical setting, the actual applicative context of a variable may be strictly larger

than it seems, because in commands of the form [α] t, the α variable may be bound
to a stack featuring supplementary applications. That is, we need to keep track of the
supernumerary abstractions applied to a given stack variable.
To this end, we introduce dual stack contexts Kw which correspond to fragments of

stacks which have been fed with enough applications to reduce in a weak setting.

Kw := [·] | [α] Cλ ◦ C@[µβ.Kw]

All Kw contexts are not legal, though. We use an environment Γ to record the number
of supplementary applications bound to each stack variable, which is generated by the
inductive grammar below.

Γ := · | Γ, α : n

84

6.8 Classical by Need

The filling relation from the intuitionistic case is adapted as follows.

Definition 72. We define the classical filling Γ ` Kw relation as follows.

Γ ` [·]

(α, n) ∈ Γ |Cλ|λ ≤ n Γ, β : n− |Cλ|λ +
∣∣C@
∣∣
@
` Kw

Γ ` [α] Cλ ◦ C@[µβ.Kw]

Contrarily to the classical-by-need case, this relation is uniquely defined when it exists.
There is a design choice here. One could indeed extend closure contexts so as to

integrate Kw contexts, i.e.

C := . . . | C1[µα.Kw[[α] C2]]

as we did directly in the classical LHR. This works, but leads to a presentation which is
a bit cluttered, because one still needs to perform µ reductions in a call-by-value setting,
which we will be doing later on. We rather choose to stick to intuitionistic closure
contexts, and integrate this property in the µ reductions.

Definition 73 (Weak classical LHR). The weak classical LHR calculus is defined by the
two following reduction rules, where C := Cλ ◦ C@′ and K0 := Kw[[α]C].

C@ c Cλ ` K0[µ_. [·]]
K0[C@[C1[λx. Cλ ◦ Cw[x]] t]]→ K0[C@[C1[λx. Cλ ◦ Cw[t]] t]]

` K0[µβ.K ′w]

K0[µβ.K ′w[[β] t]]→ K0[µβ.K ′w[[α]C[t]]]

6.8.2 Call-by-value weak classical LHR

We simply adapt the notions of the previous section to a call-by-value-like setting. This
leads to the definitions of stack fragments Kv of the following form.

Kv := [·] | [α] Cλ ◦ Ev[µβ.Kv]

A context Kv is essentially an Ev context interspersed with µ-binders and commands
which may start with a certain number of supplementary λ-abstractions. Indeed, the α
variable in the above definition may be bound to n applications, so that the leading Cλ
can be made of at most n λ-abstractions. The filling relation needs to be upgraded to
acknowledge this fact. Instead of relating an applicative context with a binding context,
it uses an environment Γ to record the number of supplementary applications bound to
each stack variable, which is generated by the inductive grammar below.

Γ := · | Γ, α : n

85

6 Logical by need

Definition 74. The call-by-value weak classical LHR calculus is defined by the two
following reduction rules, where C := Cλ ◦ E′v and K0 := Kv[[α]C].

` K0[µ_. [·]]
K0[C1[λx.Ev[x]] C2[v]]→ K0[C1[λx.Ev[C2[v]]] C2[v]]

` K0[µβ.K ′v]

K0[µβ.K ′v[[β] t]]→ K0[µβ.K ′v[[α]C[t]]]

6.8.3 Call-by-Need in a Classical Calculus

The classical-by-need calculus is essentially the same as the call-by-value weak classical
LHR. It is indeed sufficient to apply the sharing in the β-reduction rule. All the other
definitions are unchanged. This results in the following rules.

Definition 75. We define the classical filling Γ ` Kv relation as follows.

Γ ` [·]
(α, n) ∈ Γ |Cλ|λ ≤ n Γ, β :

∣∣C@
∣∣
@
` Kv

Γ ` [α] Cλ ◦ Ev ◦ C@[µβ.Kv]

(α, n) ∈ Γ |Cλ|λ ≤ n Γ, β : n− |Cλ|λ +
∣∣C@
∣∣
@
` Kv

Γ ` [α] Cλ ◦ C@[µβ.Kv]

In the second and third rule, we take advantage of the fact that C@ contexts are actually
a particular subcase of the Ev grammar. Note that this relation, when derivable, is not
uniquely defined: there may be various ways to decompose the Ev context in the second
rule.

Definition 76 (Classical-by-need). The classical-by-need cwls-calculus is defined by the
two following reduction rules, where C := Cλ ◦ E′v and K0 := Kv[[α]C].

` K0[µ_. [·]]
K0[C1[λx.Ev[x]] C2[v]]→ K0[C2[C1[λx.Ev[v]] v]]

` K0[µβ.K ′v]

K0[µβ.K ′v[[β] t]]→ K0[µβ.K ′v[[α]C[t]]]

6.8.4 Comparison with existing works

We now turn to the comparison of our calculus with another classical-by-need calcu-
lus [12]. We recall here the description of this calculus.

Definition 77 (Ariola-Herbelin-Saurin calculus). AHS reduction for the λµ-calculus is
defined below.

86

6.8 Classical by Need

v := x | λx. t
n := t u
E := [·] | E t
C := E | (λz.C) n |

(λx.C[x]) (E t)

(λx. t) u r → (λx. t r) u
(λx. t) v → t[x := v]
(λz.C[z]) ((λx. t) u) → (λx. (λz.C[z]) t) u
(µα. c) t → µα. c[[α] r := [α] r t]
(λx.C[x]) (µα. c) → µα. c[[α] r := [α] (λx.C[x]) r]
(λx. µα. [β] t) n → µα. [β] (λx. t) n
[α]µβ. c → c[β := α]

Because of the extensional proximity of this calculus with our classical-by-need calcu-
lus, we make the following conjecture.

Conjecture 1. For any command c, there exists an infinite standard reduction in AHS-
calculus starting from c iff there exists an infinite reduction starting from c in cwls-
calculus.

Proving formally the above conjecture reveals to be tricky because AHS is built on
destructive substitution which additionally is plain βv. The reason for such a presentation
of AHS is to be found in its sequent calculus origin [12]. As we did for the comparison
with Chang-Felleisen calculus, we will consider a variant of AHS with a deref rule à la
Ariola-Felleisen and prove that the conjecture holds in this case.
We will actually see that this result is easy to show for the considered variant of the

above AHS-calculus where the derefencing rule has been restricted to needed context,
instead of direct substitution of values bound by let bindings.

We now consider a slightly modified version of the previous calculus from [12]. AHS’-
calculus consists in AHS-calculus where the beta reduction has been replaced by a deref
rule à la Ariola Felleisen (where variables are not values) and the notion of evaluation
context has been adapted accordingly. This calculus has been first described, in sequent
style, in [13].

Definition 78 (Ariola-Herbelin-Saurin modified calculus). AHS’ reduction for the λµ-
calculus is defined below.

v := λx. t
n := x | t u | µα. c
E := [·] | E t
C := E | (λz.C) t |

(λx.C[x]) E

(λx. t) u r → (λx. t r) u
(λx.C[x]) v → (λx.C[v]) v
(λz.C[z]) ((λx. t) u) → (λx. (λz.C[z]) t) u
(µα. c) t → µα. c[[α] r := [α] r t]
(λx.C[x]) (µα. c) → µα. c[[α] r := [α] (λx.C[x]) r]
(λx. µα. [β] t) n → µα. [β] (λx. t) n
[α]µβ. c → c[β := α]

Theorem 17. For any command c, there exists an infinite standard reduction in AHS’-
calculus starting from c iff there exists an infinite reduction starting from c in cwls-
calculus.

Proof. We show this by giving the sketch of a pair of simulation theorems. We will
separate AHS’ reduction rules in three groups:

87

6 Logical by need

• The structural rules (S) which are made of the Lift and Assoc rules, together
with the rule (λx. µα. [β] t) n→ µα. [β] (λx. t) n.

• The performing rules (P) which is only the derefencing rule.

• The classical rules (C) which are the three remaining rules.

Transforming reductions in cwls-calculus into AHS’ is straightforward. First, assuming
a closure stack fragment Kv, one can see that AHS’ will normalize it into a delimited C
context in the following way. For each splice of Kv of the form [α] Cλ ◦ Ev[µβ. [·]], the Cλ
part is actually fed with the corresponding arguments when this splice comes in standard
position, so that the rules (S) will flatten it to an answer context. The Ev context will be
simplified likewise, until the (S) rules cannot be applied anymore. According to the form
of Kv, either the reduction stops (if there is no remaining splice) or it performs a certain
number of (C) rules, until which the normalization procedure recursively applies. The
filling condition on Kv ensures us that the (C) rule will provide the missing applications
to the next Cλ contexts from each remaining splice. A dereferencing cannot occur at
this point because while there are remaining splices, the current needed context cannot
contain variables, as the splices all have a µ binder in needed position. Note that the
resulting normalized context is still a closure stack fragment. By a simple size argument,
this normalization procedure must terminate, so that we will consider it transparent for
the simulation.
Now, assume that

K0[C1[λx.Ev[x]] C2[v]]→ K0[C2[C1[λx.Ev[v]] v]]

with the associated conditions for this rule. The normalization procedure of the K0

transforms it into an needed context [α]C, and then the (S) rules apply to C1 and C2.
This effectively transforms them into answer contexts, so that a derefencing rule can
occur after the Ev has been flattened as well. The important thing to observe is that the
same normalization steps apply to the reduct K0[C2[C1[λx.Ev[v]] v]] so that each step
from cwls is going to be matched by a growing but finite quantity of normalization steps
followed by a derefencing.
Likewise, assume

K0[µβ.K ′v[[β] t]]→ K0[µβ.K ′v[[α]C[t]]]

with the associated conditions. Such a rule is actually directly handled by the normal-
ization procedure for the K0 prefix.

We turn to the simulation of the AHS’ reduction by the cwls-calculus. First, the
standard reduction contexts are a degenerated case of Kv contexts with one splice and
flattened closure contexts, which allows to easily transfer rules from the source to the
target. We actually match each class of reduction (S), (P) and (C) to a given behaviour
in the target calculus.

• The (S) rules are transparent for the clh-calculus, because they are natively han-
dled by closure contexts. So a (S)-reduction does not give rise to a clh-reduction.

88

6.8 Classical by Need

• A group of (C) rules can be matched by an arbitrary number of reductions, includ-
ing none. This depends on the way the corresponding stack variable is used.

• The (P) rule is conversely matched by exactly one rule in the clh reduction.

The trick is to use the fact that (C + S) is normalizing, as we already did in the
previous case. Moreover, such reductions do not change the possibility to perform a
derefencing in the corresponding clh term. So we actually consider groups of reductions
(C + S)∗, P in the source calculus. This is always possible to decompose a sequence
of AHS’ reductions as such thanks to the normalization of (C + S). It it then easy to
witness that the S part will have no effect, each C reduction will be matched by a finite
number of context reductions in clh, and that the final (P) will correspond to exactly
one derefencing reduction in clh.

89

7 Dialectica: a historical presentation

— Hé, les copains, un peu de dialec-
tique.
— C’est la seule façon de casser des
briques, camarades.

René Viénet about the functional interpretation.

The Dialectica transformation, also known as the functional interpretation, was intro-
duced by Gödel in the eponymous journal in 1958 [51], although he had been designing
it since the 30’s [15]. It turns out it was a tentative workaround to the incompleteness
theorem, then perceived as great catastrophe. As classical logic could not be considered
a trustful tool to justify itself anymore, one had to solve the problem of foundations by
using constructive means.
This paradigmatic shift can be considered as one of the foundational stones of modern

proof-theory.
Gödel’s historical presentation of the Dialectica translation uses intuitionistic arith-

metic as the source system, and targets higher-order intuitionistic arithmetic. For the
sake of completeness, we recall its slightly modernized presentation in the following sec-
tion. It is similar to the presentation given by Avigad and Feferman [15], although we
already take from the start a more proof-theoretical standpoint.

7.1 Intuitionistic arithmetic

As the translation is defined in intuitionistic arithmetic, we will recall here how we
define it. This is a first-order logic whose domain covers the integers, and whose unique
predicate is the equality. The complete set of data describing the first-order part was
defined at Section 2.2.3, so we only recall here the relevant extensions.

Definition 79 (Terms and formulae of intuitionistic arithmetic). Terms of arithmetic
are terms built upon the usual signature:

t, u ::= x | 0 | S t | t+ u | t× u

The formulae of intuitionistic arithmetic are the one from first-order logic where the
only predicate is a binary symbol for equality. Expanding the definition gives the follow-
ing inductive grammar.

A,B ::= t = u | A→ B | > | A ∧B | ⊥ | A ∨B | ∀x.A | ∃x.A

91

7 Dialectica: a historical presentation

The deduction rules of HA are the rules of first-order logic, with supplementary axioms
allowing to express the properties of integers.

Definition 80 (Rules of HA). The rules of HA are the usual rules for intuitionistic
predicate logic from Section 2.2, enriched with the following rules allowing to deal with
properties of equality and integers. We assume the usual freshness conditions when
dealing with introduced variables.

Γ ` t = t Γ ` 0 6= S t

Γ ` S t = Su

Γ ` t = u

Γ ` t = u Γ ` A[x := u]

Γ ` A[x := t]

Γ ` A[x := 0] Γ, A ` A[x := Sx]

Γ ` A[x := t]

Γ ` 0 + u = u Γ ` S t+ u = S (t+ u)

Γ ` 0× u = 0 Γ ` S t× u = u+ (t× u)

7.2 System T

Traditionally, the Dialectica interpretation is defined through the use of the so-called
System T. In modern words, System T is a higher-order language, based on the simply-
typed λ-calculus, but extended with inductively defined natural numbers.

Definition 81 (System T). The types of system T are all simple types with the natural
numbers as sole base type.

τ, σ ::= N | τ → σ

Note that in this chapter, we will use Greek letters σ, τ to represent System T types
rather than the letters A,B we were used to, to emphasize the difference between System
T types and HA formulae.

The terms are the simply-typed λ-calculus together with constructors and recursor for
the integers.

t, u ::= x | t u | λx. t | 0 | S t | rec t f g
The typing rules are taken from the simply-typed λ-calculus, with the following sup-

plementary rules for the integer-related constants.

Γ ` 0 : N
Γ ` t : N

Γ ` S t : N
Γ ` t : N Γ ` f : τ Γ ` g : N→ τ → τ

Γ ` rec t f g : τ

Likewise, we extend the usual β-reduction with the following reductions.

rec 0 f g →β f rec (S t) f g →β g t (rec t f g)

92

7.3 HA + T

7.3 HA + T

We now need to allow our meta-logical system to reason about System T terms. To this
end we define the HA +T system. This is a variant of HA where higher-order functions
are allowed in the term syntax. Rather than plain old first-order logic, it is actually
closer to a dependently typed logic, using conversion instead of axiomatic equalities.

Definition 82 (HA + T). We define the system HA + T as HA where terms can now
range over the terms of System T, and extended with the rewriting rules generated by
β-equivalence. A formal definition of this system is presented below.
Because free term variables may now have types other than N, we need to keep track

of their type in a dedicated environment. The sequents are therefore of the following
form

Σ | Γ ` A

where Γ is a list of formulae and Σ a System T typing environment.

Γ := · | Γ, A

Σ := · | Σ, x : σ

The derivation rules are extended accordingly. Note that we must ensure that there
are no ill-formed System T terms in the formulae, so we enforce typing wherever needed.
This forces us to define a well-foundedness property on environments, akin to the one
from dependent types.

Σ `wf ·
Σ `wf Γ Σ `wf A

Σ `wf Γ, A

Σ `wf A Σ `wf B

Σ `wf A→ B

Σ ` t : N Σ ` u : N
Σ `wf t = u

Σ, x : σ `wf A

Σ `wf ∀x : σ.A

Σ, x : σ `wf A

Σ `wf ∃x : σ.A

Σ `wf A Σ `wf B

Σ `wf A ∧B Σ `wf >
Σ `wf A Σ `wf B

Σ `wf A ∨B Σ `wf ⊥

The whole system of derivation rules is defined below.

Propositional logic

93

7 Dialectica: a historical presentation

Σ | Γ ` B A ≡β B Σ `wf A

Σ | Γ ` A

Σ `wf Γ, A

Σ | Γ, A ` A
Σ | Γ, A ` B

Σ | Γ ` A→ B

Σ | Γ ` A→ B Σ | Γ ` A
Σ | Γ ` B

Σ `wf Γ

Σ | Γ ` >
Σ | Γ ` A ∧B

Σ | Γ ` A
Σ | Γ ` A ∧B

Σ | Γ ` B
Σ | Γ ` A Σ | Γ ` B

Σ | Γ ` A ∧B

Σ | Γ ` ⊥ Σ `wf A

Σ | Γ ` A
Σ | Γ ` A Σ `wf B

Σ | Γ ` A ∨B
Σ | Γ ` B Σ `wf A

Σ | Γ ` A ∨B

Σ | Γ ` A ∨B Σ | Γ, A ` C Σ | Γ, B ` C
Σ | Γ ` C

First order

Σ, x : σ | Γ ` A
Σ | Γ ` ∀x : σ.A

Σ ` t : σ Σ | Γ ` ∀x : σ.A

Σ | Γ ` A[x := t]

Σ ` t : σ Σ | Γ ` A[x := t]

Σ | Γ ` ∃x : σ.A

Σ | Γ ` ∃x : σ.A Σ, x : σ | Γ, A ` C
Σ | Γ ` C

Arithmetic

Σ `wf Γ Σ ` t : N
Σ | Γ ` t = t

Σ | Γ ` t = u Σ | Γ ` A[x := u]

Σ | Γ ` A[x := t]

t ≡β u Σ `wf A[x := t] Σ | Γ ` A[x := u]

Σ | Γ ` A[x := t]

Σ `wf Γ, 0 6= S t

Σ | Γ ` 0 6= S t

Σ | Γ ` t = u

Σ | Γ ` S t = Su

Σ ` t : N Σ | Γ ` A[x := 0] Σ, x : N | Γ, A ` A[x := Sx]

Σ | Γ ` A[x := t]

We can see HA as a subtheory of HA+T , because System T already encodes natural
numbers. We can define the previously axiomatized arithmetical operations by proper
λ-terms based on the integer recursor. Typically, we define a translation [[·]] from HA
terms to System T terms by induction as:

94

7.3 HA + T

[[x]] := x

[[0]] := 0

[[S t]] := S [[t]]

[[t+ u]] := rec [[t]] [[u]] (λp r.S r)

[[t× u]] := rec [[t]] 0 (λp r. [[u]] + r)

All HA terms can then be casted as natural numbers in HA + T . We will often use
the interpretation function [[·]] implicitly.

Proposition 33. For any HA term t with free variables ~n, ~n : N ` [[t]] : N.

This allows to lift propositions from HA to HA + T . To any formula A from HA,
we associate a formula [[A]] in HA + T defined by induction, which is A with all terms t
replaced by [[t]] and all quantifications ∀x.A (resp. ∃x.A) relativized to ∀x : N. A (resp.
∃x : N. A). Once again, we will omit the [[·]] translation.

Proposition 34. For any closed formula A, if HA proves A then HA + T proves A.

Proof. By induction on the proof of A. We have to generalize the statement a bit, to
handle free variables and assumptions. The resulting lemma is given as: for all HA-
formula A and hypotheses Γ with free variables ~x, if Γ ` A then ~x : N | Γ ` A.

• Derivations of the propositional and first-order fragments are transported as-is, by
taking care to extend the term environment when introducing fresh variables.

• We only have to check that the arithmetic fragment is preserved. Most rules are
straightforward, as they only require the additional typing of HA terms which
comes for free, as any HA term t admits a typing derivation ~x : N ` t : N when ~x
ranges over the free variables of t.

The only rules that are somehow new are the axioms for the rewriting of × and
+. They are proved by a simple conversion followed by reflexivity of equality
in HA + T . We actually chose these axioms to agree on the primitive recursive
definition of the arithmetical operations.

From now on, we will be implicitly casting terms from HA into HA + T according to
the translation scheme defined above.

Remark 8. For the sake of readability, we will not be using this system as such to reason
about terms, but rather formulate our proofs in a more human-friendly metatheory whose
proofs can still be formalized in HA + T . The main goal of HA + T is to delimit the
expressive power we need, even though it will not be explicit in the demonstrations.

95

7 Dialectica: a historical presentation

7.4 Gödel’s motivations

The goal of Gödel’s Dialectica translation was to realize strictly more than purely intu-
itionistic arithmetic, even though all of its definitions and proofs are made intuitionisti-
cally. There would not be much logical interest otherwise, as HA is the perfect candidate
for a computational intuitionistic arithmetic.
In addition to HA, Dialectica realizes indeed two semi-classical principles, respectively

known as Markov’s principle and the independence of premise. The exact statements of
those formulae are given below.

¬∀x.¬A→ ∃x.A (A→ ∃x.B)→ ∃x. (A→ B)

Such axioms are independent of pure intuitionistic logic, and of HA in particular.
Their constructivist acceptance depends on the formula A considered. In general, one
requires A to be decidable in the case of Markov’s principle, while A should be somehow
computationally irrelevant in the independence of premise. Let us justify them under
these assumptions informally.

• If A is decidable, Markov’s principle can be algorithmically implemented as follows:
start an unbounded loop from n = 0 and incrementally check whether A[x := n]
holds. This is possible because A is decidable. If ever some index satisfies the for-
mula, stop and return it as the result for the existential. Thanks to the assumption
¬∀x.¬A, this loop must eventually terminate even though there is no definite way
to know when. The termination argument is classical but it does not interfere with
the operational behaviour of the algorithm.

• Assume we have a good notion of computationally irrelevant. One can imagine it
as purely logical content1, or in a weaker setting, a subset of types which are not
observable, like purely negative types. Then if A is such a type, the content of the
argument fed to the A→ ∃x.B function does not matter to build the witness. One
may pass it a default value. To ensure consistency, one should assume that the
A type is inhabited. In our arithmetical system, we can safely produce a default
integer when A is not inhabited, and ask the programmer for a subsequent proof
of A, which would be impossible in this case. This actually justifies the above
presentation of this axiom.

Some systems precisely implement the behaviours we just described. See for instance
Herbelin’s work [55], where the return part of Markov’s principle is implemented thanks
to an exception.

It is known that the expressive power of the Dialectica translation is essentially equiv-
alent to Heyting’s arithmetic enriched with these two principles [15]. At the end of this
chapter, we will be review how it interprets these principles, and in particular what
computational content they hide.

1The knowledgeable reader may think of Coq’s Prop values, or HoTT truncations.

96

7.5 Gödel’s Dialectica

7.5 Gödel’s Dialectica

The original presentation of the Dialectica interpretation is a bit abstruse to our modern
eyes. Indeed, System T is lacking some of the structure necessary to an elegant presenta-
tion, and Gödel had to resort to various tricks to make the translation work. The global
picture is the following: take a proof ` A of HA, and translate it into a statement of the
form:

∃~u : ~τ . ∀~x : ~σ.AD

where ~u and ~x range over the terms of System T, and AD is defined by induction over
A.
A careful scrutiny of this formulation reveals that, in our modern phraseology, we

would call this a realizability interpretation: from a proof, extract a computational inter-
pretation in a given programming language, here System T. In order not to disrupt the
mental workflow of a reader already acquainted with the various flavours of realizability,
we will try to stick to this intuition and present the historical transformation according
to our modern understanding.
The translated formula can be seen as a sort of a game, as in game semantics: the

existentially quantified terms ~u are going to be seen as the proponents (or witnesses) of
A, the universally quantified terms ~x as opponents (or counters) of A, and the translated
formula AD as the rules of the game on A. The goal of the witnesses is to defeat any
possible opponent according to the rules of AD.

7.5.1 Sequences

First, as Dialectica works with sequences a lot, we will define some useful constructions
to manipulate them.

Notation 3. Assuming some objects x1, . . . , xn, we will write ~x to represent the sequence
of such objects when the indexing is clear. We will freely write ~x ; ~y for the concatenation
of two such sequences, x for the singleton sequence and ∅ for the empty sequence. We
will also write |~x| for the length of the sequence ~x.
Suppose a sequence of System T types ~σ := σ1 ; . . . ; σn, and a type τ , we will use the

following notations:

~σ → τ := σ1 → . . . → σn → τ is a type

τ → ~σ := τ → σ1 ; . . . ; τ → σn is a sequence of types

This notation may lead to confusion at first sight. Indeed, one may think that the
notation ~σ → ~τ is ambiguous. Actually, it does not matter how one unfolds the notation.
Either way we recover the following sequence of type, where m = |~σ| and n = |~τ |:

~σ → ~τ := σ1 → . . . → σm → τ1 ; . . . ; σ1 → . . . → σm → τn

We will also use the same notation for the HA + T implication arrow.

97

7 Dialectica: a historical presentation

Likewise, we extend term application to the case of sequences of terms, with the
interpretation defined as the unique way that makes sense w.r.t. the typing defined
above, i.e. if t is a term and ~u is a sequence of terms, then:

t ~u := t u1 . . . un is a term

~u t := u1 t ; . . . ; un t is a sequence of terms

As in the case of sequences of types, the notation ~t ~u is not ambiguous, and represents
the sequence of terms

~t ~u := t1 u1 . . . um ; . . . ; tn u1 . . . um

By duality, the very same mechanism goes on for λ-abstraction.

λ~x. t := λx1 . . . xn. t is a term

λx.~t := λx. t1 ; . . . ; λx. tn is a sequence of terms

If in addition ~u has the same length as ~σ, we will write Γ ` ~u : ~σ if each term is
typable with the corresponding type componentwise, and similarly ~x : ~σ will represent
the sequence x1 : σ1 ; . . . ; xn : σn when the length of ~x and ~σ coincide.

Remark 9. If we look at the particular case of empty sequences, we have the following
equalities.

∅ → τ ≡ τ σ → ∅ ≡ ∅
t ∅ ≡ t ∅ u ≡ ∅
λ∅. t ≡ t λx. ∅ ≡ ∅

Remarkably enough, typing can be naturally lifted to sequences without any kind of
problem, as attested by the following lemma.

Proposition 35. The following typing rules are admissible when the notations make
sense, i.e. when |~x| = |~u| = |~σ| and

∣∣~t∣∣ = |~τ |.

Γ, ~x : ~σ ` ~t : ~τ

Γ ` λ~x.~t : ~σ → ~τ

Γ ` ~t : ~σ → ~τ Γ ` ~u : ~σ

Γ ` ~t ~u : ~τ

Sequences also preserve β-reduction, i.e.

(λ~x.~t) ~u ≡β ~t [~x := ~u]

with the same restrictions as above and where ≡β is interpreted pointwise.

Proof. By induction on the length of the sequences considered.

98

7.5 Gödel’s Dialectica

This allows us to reason on sequences almost as if they were plain terms and types.
This works particularly well because we only have one logical connective at the level of
proof-terms, the arrow, and probably explains how Gödel recovered a tractable system.
This becomes sharply more delicate to handle if we wish to add other constructions to
the language. Indeed, we did not define such sequence notations for the integer structures
of System T.
In the following, we will often use sequences implicitly when the context is clear.

7.5.2 Witnesses and counters

We now turn to define the witnesses and counters of a formula A of HA.

Definition 83. Given a formula A of HA, the witnesses W(A) and counters C(A) of A
are defined as a sequence of System T types, by induction on A.

• W(t = u) = C(t = u) = ∅

• W(⊥) = C(⊥) = ∅

• W(>) = C(>) = ∅

• W(A ∧B) = W(A) ; W(B) and C(A ∧B) = C(A) ; C(B)

• W(A ∨B) = N ; W(A) ; W(B) and C(A ∨B) = C(A) ; C(B)

• W(A→ B) =

{
W(A)→W(B) ;
W(A)→ C(B)→ C(A)

and C(A→ B) = W(A) ; C(B)

• W(∀x.A) = N→W(A) and C(∀x.A) = N ; C(A)

• W(∃x.A) = N ; W(A) and C(∃x.A) = N→ C(A)

Notation 4. Witnesses and counters are readily lifted to sequences of types pointwise.

W(A1 ; . . . ; An) := W(A1) ; . . . ; W(An)
C(A1 ; . . . ; An) := C(A1) ; . . . ; C(An)

Interestingly enough, the W(−) and C(−) translations are not sensible to the terms
contained in the formula being translated. This is formally stated below.

Proposition 36. Let A be a HA-formula and x a free variable of A. Then for any
HA-term t, the following equalities hold.

W(A[x := t]) = W(A)
C(A[x := t]) = C(A)

Proof. By induction on A.

This will allow us to freely forget about substitution in type translation, a property
we will be using quite often.

99

7 Dialectica: a historical presentation

7.5.3 Interpretation

The final ingredient we need to define the Dialectica interpretation is the interpretation
matrix, which is a formula in HA + T defined by induction on a given formula in HA,
parameterized by System T term whose types match the witness and counter sequences.

Definition 84 (Interpretation matrix). Assume a formula A of HA. We define its
interpretation matrix AD[~u, ~x], a quantifier-free formula of HA + T by induction, where
~u and ~x a are sequences of fresh variables parameterizing the formula respectively of the
same length as W(A) and C(A). We just write AD when both sequences are empty. We
ensure by construction that the free variables of AD[~u, ~x] are exactly the free variables
of A together with ~u, ~x.
The inductive definition is given below.

• (t = u)D := t = u

• ⊥D := ⊥

• >D := >

• (A ∧B)D[~u ; ~v, ~x ; ~y] := AD[~u, ~x] ∧BD[~v, ~y]

• (A ∨B)D[b ; ~u ; ~v, ~x ; ~y] := (b = 0 ∧AD[~u, ~x]) ∨ (b = 1 ∧BD[~v, ~y])

• (A→ B)D[~ϕ ; ~ψ, ~u ; ~y] := AD[~u, ~ψ ~u ~y]→ BD[~ϕ~u, ~y]

• (∀z.A)D[~u, z ; ~x] := AD[~u z, ~x]

• (∃z.A)D[z ; ~u, ~x] := AD[~u, ~x z]

Note that the binders used in quantifications should match, so that the property that
A and AD share the same free variables up to ~u and ~x is preserved.
Let us step back a bit and look at the system in its entirety before going any further.

There are two interesting cases.

• First, if we consider the translation of the ∨ connective, we can see that it is no more
than an encoding of sum types using pairs. Indeed, its interpretation amounts to
the usual coding of sum types as tagged records in modern programming languages:
here, the tag is an integer used as a boolean discriminating which field of the record
is actually containing something relevant. The other field is, as we are going to
see in the translation of proofs, filled with a dummy argument, amounting to a
garbage placeholder. Gödel had to use such encoding tricks because System T is
indeed lacking true sum types.

• The arrow case is the most complicated one. We will alleviate the perplexity of the
reader by giving a bit of typing of this statement. Recall that

W(A→ B) := W(A)→W(B) ; W(A)→ C(B)→ C(A)
C(A→ B) := W(A) ; C(B)

100

7.5 Gödel’s Dialectica

so that, with the name of the bound variables above, we have:

~ϕ : W(A)→W(B)
~ψ : W(A)→ C(B)→ C(A)
~u : W(A)
~y : C(B)

From this we need to construct a pair of witness and counter for both A and B.
And indeed, the terms used to feed AD and BD have the right type, because:

~ψ ~u ~y : C(A)
~ϕ ~u : W(B)

From a realizability standpoint, the other cases are defined as a plain extraction of the
considered connective.
We will implicitly use the AD translation applied to any System T terms. There is

nothing complicated, but we give the formal definition below nonetheless. Note that we
actually already used this notation in the definition of the interpretation matrix without
insisting on it.

Definition 85. We extend the definition of AD to System T terms by substitution, that
is, for any sequence of terms ~v and ~w of the right length,

AD[~v, ~w] := (AD[~u, ~x])[~u := ~v, ~x := ~w]

where ~u and ~x are fresh variables.

Notation 5. As usual, we define the interpretation matrix of a sequence of HA formulae
as a sequence of HA + T formulae componentwise, that is, if ~u : W(~A) and ~x : C(~A), we
pose:

(A1 ; . . . ; An)[~u, ~x] := A1D[u1, x1] ; . . . ; AnD[un, xn]

Luckily, the interpretation of a HA-formula is a well-formed formula of HA + T .

Proposition 37. Let A be a HA-formula whose free variables are ~n. Then

~n : ~N, ~u : W(A), ~x : C(A) `wf AD[~u, ~x]

for any fresh variables ~u, ~x.

Proof. By induction on A.

Proposition 38. Let A be a HA-formula and z a free variable of A. Assume ~u and ~x
be two sequences of terms such that z is not free in them. Then for all HA-term t, we
have

(A[z := t])D[~u, ~x] = (AD[~u, ~x])[z := [[t]]]

when ~u and ~x have the correct length.

Proof. By induction on A.

101

7 Dialectica: a historical presentation

7.5.4 Soundness theorem

For now, we are going to state and prove the logical soundness of this realizability inter-
pretation. We first need to define formally the realizability relation.

Definition 86 (Realizability). Let A be a formula of HA whose free variables are ~n.
We say that a sequence of System T terms ~u realizes A, written ~u A, if:

• ~n : N ` ~u : W(A)

• ~x : C(A), ~n : N | · ` AD[~u, ~x]

where the ~x variables are fresh. If A is realized by some sequence, we will just write
 A.

We then get to the following soundness result, which states that proofs of HA are
transported to System T realizers.

Theorem 18. Let A be a HA-formula. If ` A, then A.

The proof of this theorem is not that complicated, but we need to base ourselves on
some ancillary lemmas first, because the proof terms involved may be rather complex to
analyse at first sight.

Remark 10. Because we are still sticking to the historical presentation, we will manipulate
whole derivations instead of λ-terms. This has some drawbacks, one of them being the
high verbosity of derivations, but there is nothing to do about it for now. We will need
in particular to give names to derivations. To discriminate them from other objects, they
will be named using the fraktur typeface p, q, etc.
With those conventions, the statement of the theorem we want to prove takes a clearly

more proof-as-program-ish flavour, as it becomes: for all derivation p of ` A, one may
construct a sequence of terms [p] A. We will therefore start to willingly merge the
notions of proofs, sequents and derivations when there is no risk of confusion.

For now, we return to the basic structures we need to define the translation. As men-
tioned before, Gödel used encoding tricks that are available in our arithmetical setting.
One of them relies on the fact that any System T type is inhabited.

Proposition 39. Let σ be a System T type. Then there exists a term zσ, hereafter
called the dummy term of σ, such that ` zσ : σ.

Proof. We build it by induction over σ:

• zN := 0

• zσ → τ := λ_.zτ

102

7.5 Gödel’s Dialectica

Remark 11. The z notation for the dummy term is inspired by ludics, where there exists
what would be the daimon, a canonically aborting term, if ludics were to be written
using terms, following Terui’s presentation [103].
Here, dummy terms serve a similar but distinct purpose, that is, to be some placeholder

a priori unrelated to any orthogonality. Yet, as we will see later, the dummy term can
also be seen as a call-by-name exception, which is precisely the rôle devoted to the
daimon, hence the notation.

Notation 6. As for all the other constructs, we can extend dummy terms to sequences
of types in the obvious way, that is, componentwise.

zσ1 ; . . . ; σn := zσ1 ; . . . ; zσn

Definition 87 (Booleans). We can loosely encode booleans in System T using integers.
Any non-zero integer is going to be considered as true, while 0 will be encoding false.
Using the recursor we can write out the usual boolean connectives. For the sake of
readability, we define the following constants, and write the type B as an alias for N used
as booleans.

true : B := S0

false : B := 0

ifz : N→ A→ A→ A := λn t u. rec n t (λp r. u)

and : B→ B→ B := λt u. rec t 0 (λp r. u)

As their name suggests, true and false will encode the two boolean values, while and is
the logical and of two booleans, and ifz tests whether an integer is zero or not. Likewise,
we can define in System T a term that tests equality of integers, and return a pseudo-
boolean accordingly.

eqb : N→ N→ B := λm. rec m (λn. ifz n true false) (λp r n. rec n false (λq s. r q))

Proposition 40. Let A be a HA-formula with free variables ~n. Then there exists a
System T term

~n : N ` decideA : W(A)→ C(A)→ B

such that the following formula is provable in HA + T :

~n : N, ~u : W(A), ~x : C(A) | · ` (decideA ~u ~x = 1∧AD[~u, ~x])∨(decideA ~u ~x = 0∧¬AD[~u, ~x])

Proof. The decideA term is built by induction on the formula A.

• decidet=u := eqb t u

• decide> := true

• decide⊥ := false

103

7 Dialectica: a historical presentation

• decideA∧B := λ~u~v ~x ~y. and (decideA ~u ~x) (decideB ~v ~y)

• decideA∨B := λb ~u~v ~x ~y. ifz b (decideA ~u ~x) (decideB ~v ~y)

• decideA→B := λ~ϕ ~ψ ~u~y. ifz (decideA ~u (~ψ ~u ~x)) true (decideB (~ϕ ~u) ~y)

• decide∀z.A := λ~u z ~x. decideA (~u z) ~x

• decide∃z.A := λz ~u~x. decideA ~u (~x z)

Remark that decideA shares the same free variables as A, so that as before, we need
the bound variables to agree on their names in the case of quantifiers.

The specification proof is likewise proved by induction on the formula and repeated
case analysis. There is nothing tricky because all of the work is in the term definitions,
so we skip the boring details.

Otherwise stated, this result tells us that AD relation is decidable. Therefore, we may
reason with it as if we were in classical logic. It also allows us to test whether AD[u, x]
holds for some terms u and x in System T itself. In particular, we will be critically using
the following in the Dialectica translation.

Proposition 41. For any HA-formula A with free variables ~n, there exists a sequence
of λ-terms

~n : N ` mergeA : C(A)→ C(A)→W(A)→ C(A)

with the following property:

~n : N, u : W(A), x1 : C(A), x2 : C(A) | · ` AD[u,mergeA x1 x2 u]↔ AD[u, x1]∧AD[u, x2]

Proof. Just take the following sequence of terms for a given A:

mergeA := λx1 x2 u. ifz (decideA u x1) x1 x2

with a little abuse of sequence notation on ifz (it should be a sequence of the same length
as x1). Let us show that this implementation satisfies the specification given above.

• Suppose AD[u,mergeA x1 x2 u]. Because AD is decidable, we can assume that
either AD[u, x1], or ¬AD[u, x1].

In the first case, by the specification of decide, we have decideA u x1 ≡ 1 and hence
mergeA x1 x2 u ≡ x2. Therefore by convertibility, AD[u, x2].

In the second case, we have conversely decideA u x1 ≡ 0 and mergeA x1 x2 u ≡ x1.
This means that AD[u, x1], which is absurd.

104

7.5 Gödel’s Dialectica

• Suppose AD[u, x1] ∧AD[u, x2]. In particular AD[u, x1] holds, hence we have

decideA u x1 ≡ 1.

This also entails mergeA x1 x2 u ≡ x2, from which we get that

AD[u,mergeA x1 x2 u] ≡ AD[u, x2]

which we prove using the second component of our initial assumption.

Notation 7. The merge operation can also be extended to sequences, although it is
slightly more complicated than the usual notations that can be extended componentwise.
Here we have to do a little bit of variable bookkeeping and boolean manipulation, but it
amounts to a boolean conjunction of each pointwise merge.

To finally prove the soundness theorem, we need to generalize a bit its statement to
accommodate the proof of sequents, not only hypothesis-free ones.

Notation 8. We will abuse the realization relation, and write ~u Γ1, . . . ,Γn ` A when-
ever ~u Γ1 ∧ . . . ∧ Γn → A. Note that when the environment is empty, the realizations
of a formula and of a sequent coincide.

Proposition 42. A sequence of terms realizing a proof p of the sequent Γ1, . . . ,Γn ` A
whose free variables range over ~m is equivalently given by n + 1 sequences of terms
(p•, p◦1, . . . , p

◦
n) of the following types:

• ~m : N ` p• : W(Γ1)→ . . . →W(Γn)→W(A)

• ~m : N ` p◦i : W(Γ1)→ . . . →W(Γn)→ C(A)→ C(Γi)

such that the following holds in HA + T :

~m : N, ~u : W(Γ), ~x : C(A) | · ` ΓD[~u, p◦ ~u ~x]→ AD[p• ~u, ~x]

where
p◦ := p◦1 ; . . . ; p◦n

Γ := Γ1 ; . . . ; Γn

Proof. By induction on n, and by simple unfolding of the definitions of W(−), C(−) and
(−)D.

We will freely switch our point of view in the nature of the realizers, for instance from
p◦1 ; . . . ; p◦n to p◦ and vice versa. This will allow a handful of abuses of notation.

We are now equipped with all the necessary material to state and prove the soundness
lemma, which is no more than a generalization of the theorem we wanted to prove.

105

7 Dialectica: a historical presentation

Proposition 43. If p : Γ ` A then there exists a tuple (p•, p◦) such that (p•, p◦) Γ ` A.

Proof. By induction on the proof p. We first define the realizers, and we will show
afterwards that they do realize the given sequent. In order to ease readability, we may
freely annotate the type of bound sequences of variables.
We classify the rules to be interpreted just as we presented them, into propositional

logic, first-order logic and arithmetic. Indeed, the proof arguments tend to be similar
inside each class.

Propositional logic Let us first interpret the propositional part of HA.

• Rule

[
p : Γ1, . . . ,Γn ` Γi

]
:

If we let ourselves be guided by the typing of realizers, the translations for p• and
p◦i are straightforward and amount to a sequence of projections.

p• : W(Γ1)→ . . . →W(Γn)→W(Γi)

p• := λ(x1 : W(Γ1)) . . . (xn : W(Γn)). xi

p◦i : W(Γ1)→ . . . →W(Γn)→ C(Γi)→ C(Γi)

p◦i := λ(x1 : W(Γ1)) . . . (xn : W(Γn)) (w : C(Γi)). w

The reader should not be fooled by the sequence notation for terms. The translation
p• for instance, which seems a proper term, gives something a little less palatable
when fully expanded. Its full definition is actually of the following form:

p• :=

λx1,1 . . . x1,k1 . . . xn,1 . . . xn,kn . xi,1 ;

. . .

λx1,1 . . . x1,k1 . . . xn,1 . . . xn,kn . xi,ki

where kj := |W(Γj)|. Thus, it is not as elegant as it seems at first sight.

Real issues arise when considering p◦j when i 6= j. Indeed, we have to provide
a sequence inhabiting C(Γj) out of thin air, because there is no natural way to
construct it out of the environment. This is precisely the place where we use the
zC(Γj) terms.

p◦j : W(Γ1)→ . . . →W(Γn)→ C(Γi)→ C(Γj)

p◦j := λ(x1 : W(Γ1)) . . . (xn : W(Γn)) (w : C(Γi)).zC(Γj)

106

7.5 Gödel’s Dialectica

Note that the use of zC(Γj) is typically required when there is some weakening
occurring. We will see this pattern appearing in the other rules featuring some
form of weakening.

We now show that the given terms realize the sequent. Let ~u : W(Γ) and x : C(Γi).
We must prove:

Γ1D[u1, p
◦
1 ~u x]→ . . . → ΓnD[un, p

◦
n ~u x]→ ΓiD[p• ~u, x]

But p◦i ~u x ≡β x and p• ~u ≡β ui, while p◦j ~u x ≡β zC(Γj) when j 6= i. So the above
formula is convertible to the one below.

Γ1D[u1,zC(Γ1)]→ . . . → ΓiD[ui, x]→ . . . → ΓnD[un,zC(Γn)]→ ΓiD[ui, x]

Hence we just apply the i-th hypothesis.

One may observe that we did not rely on any property of the dummy terms we
put in the reverse proofs. The realization relation only required the realization
hypothesis recovered from the hypothesis used by the underlying proof.

• Rule

[
q : Γ, A ` B

p : Γ ` A→ B

]
:

We have from q:

q• : W(Γ) ; W(A)→W(B)
q◦A : W(Γ) ; W(A) ; C(B)→ C(A)
q◦Γi : W(Γ) ; W(A) ; C(B)→ C(Γi)

from which we can form:

p• : W(Γ)→W(A→ B)

p• := q• ; q◦A

p◦i : W(Γ)→ C(A→ B)→ C(Γi)

p◦i := q◦Γi

There is essentially nothing to do at the level of proofs apart from rearranging the
components, as types coincide.

Proving the realization property is just as easy. Indeed we must prove that for all
~u : W(Γ), v : W(A) and y : C(B) we have:

ΓD[~u, p◦ ~u v y]→ (A→ B)D[p• ~u, v ; y]

107

7 Dialectica: a historical presentation

But unfolding the arrow relation and the terms within it gives us:

(A→ B)D[p• ~u, v ; y] ≡ AD[~u, q◦A ~u y]→ BD[q• ~u, y]

If we unfold the remaining p◦i , we recover exactly the realization property for q.
We conclude by the induction hypothesis.

• Rule

[
q : Γ ` A→ B r : Γ ` A

p : Γ ` B

]
:

This rule is, as most rules introducing duplications of hypotheses, rather compli-
cated to explain and write out. We will take special care to discuss it, and will pass
on the other rules displaying similar constructions more quickly.
Let us start recalling a bit of typing. From q we recover:

q• : W(Γ)→W(A→ B)
: W(Γ)→ (W(A)→W(B) ; W(A)→ C(B)→ C(A))
: (W(Γ)→W(A)→W(B)) ; (W(Γ)→W(A)→ C(B)→ C(A))

We can therefore extract from q• a first component q+ : W(Γ) ; W(A) → W(B)
from which we can build the translation p•:

p• : W(Γ)→W(B)

p• := λ~x : W(Γ). q+ ~x (r• ~x)

The translation pi is much more involved. Indeed, there are two ways to recover
a sequence of counters C(Γi) from the derivation: one coming from q, the other
one from r. One could just arbitrarily choose one of the two sources and drop the
other. This is acceptable if we are only interested in typing, but as we will see, this
would break the fact that the translated proof realizes the formula. In order for
the translation to work, we need to use the merge term we defined before, so that
we dynamically choose one side over the other.
Let us first give the name q− to the remaining component of the translated proof
q•, which has the following type.

q− : W(Γ)→W(A)→ C(B)→ C(A)

From here, we can construct the two aforementioned counters of C(Γ) from respec-
tively q and r.

cl : W(Γ)→ C(B)→ C(Γ)

cl := λ(~x : W(Γ)) (w : C(B)). q◦ ~x (r• ~x) w

cr : W(Γ)→ C(B)→ C(Γ)

cr := λ(~x : W(Γ)) (w : C(B)). r◦ ~x (q− ~x (r• ~x) w)

108

7.5 Gödel’s Dialectica

As explained before, we only have to merge the resulting counters.

p◦ : W(Γ)→ C(B)→ C(Γ)

p◦ := λ(~x : W(Γ)) (w : C(B)).mergeΓ (cl ~x w) (cr ~x w) ~x

The use of the merge operator is, as hinted above, necessary when there is some
duplication of hypotheses occurring, dually to the z− term which is used when
there is some weakening. We will be keeping seeing these facts occurring in the
next rule interpretations.

Let us prove now that the given term realizes the sequent. This amounts to proving
the following, for any ~u : W(Γ) and y : C(B).

ΓD[~u, p◦ ~u y]→ BD[p• ~u, y]

A little bit of unfolding gives us:

ΓD[~u,mergeΓ (cl ~u y) (cr ~u y) ~u]→ BD[p• ~u, y]

By the property of merge, this is equivalent to:

ΓD[~u, cl ~u y]→ ΓD[~u, cr ~u y]→ BD[p• ~u, y]

If we unfold the remaining definitions, we finally get:

ΓD[~u, q◦ ~u (r• ~u) y]→ ΓD[~u, r◦ ~u (q− ~u (r• ~u) y)]→ BD[q+ ~u (r• ~u), y]

We can now use the induction hypotheses on q and r. Remark that:

x := q− ~u (r• ~u) y : C(A)

so that we can instantiate the hypothesis on r with ~u and x, and get:

ΓD[~u, r◦ ~u x]→ AD[r• ~u, x]

In order to check the realization relation, by applying this implication to the second
hypothesis of our starting point, it is therefore sufficient to prove that:

ΓD[~u, q◦ ~u (r• ~u) y]→ AD[r• ~u, q− ~u (r• ~u) y]→ BD[q+ ~u (r• ~u), y]

Yet, as the careful reader may already have realized2, this is no more than the
induction hypothesis on q instantiated with ~u and r• ~u ; y. Indeed, the above
formula is convertible to:

ΓD[~u, q◦ ~u (r• ~u ; y)]→ (A→ B)D[q• ~u, (r• ~u ; y)]

2No pun intended.

109

7 Dialectica: a historical presentation

Thus we are done.

Remark that, in the proof, the use of the merge term was an absolute requirement.
We needed both hypotheses on q and r for the proof to pass through. Had we
chosen arbitrarily one of the two sequences of counters mentioned before, we would
not have been able to show that the term realized the formula, for we would have
lacked the hypothesis relative either to q or r.

• Rule

[
p : Γ ` >

]
:

In this case, the p• sequence is empty because the W(>) sequence itself is empty.
To construct the reverse proofs p◦i , we simply use the dummy term, as in the axiom
case. This results in the following.

p• := ∅
p◦i := λ(~x : W(Γ)) (w : C(>)).zC(Γi)

Remark that in this case, the sequence of variables w is actually empty. We only
leave it here for uniformity with the other translations.

The realization relation is, in this case, that for all ~u : W(Γ):

ΓD[~u,zC(Γ)]→ >

which is trivially true so that there is nothing special to prove.

• Rule

[
q : Γ ` ⊥
p : Γ ` A

]
:

This is somehow the dual of the previous rule, because W(⊥) = ∅, and therefore
q• = ∅. Hence we need to construct a witness in W(A) out of nothing. Once again
this is done thanks to the dummy term. Conversely, the p◦i translation is essentially
the identity. We get:

p• := λ~x : W(Γ).zW(A)

p◦i := λ(~x : W(Γ)) (w : C(A)). q◦i ~x

The realization relation is then, that for all ~u : W(Γ) and x : C(A):

ΓD[~u, q◦ ~u]→ AD[zW(A), x]

but from q we get:
ΓD[~u, q◦ ~u]→ ⊥

so we conclude by absurdity.

110

7.5 Gödel’s Dialectica

• Rule

[
q : Γ ` A r : Γ ` B

p : Γ ` A ∧B

]
:

This is another instance of a rule featuring duplication. The p• is rather simple to
describe: it amounts to packing the two proofs together. The p◦i is slightly more
complicated because of the duplication at work, but it is handled elegantly thanks
to the merge primitive. We obtain for the p• component:

p• : W(Γ)→W(A) ; W(Γ)→W(B)

p• := q• ; r•

and for the p◦ component:

p◦ : W(Γ)→ C(A)→ C(B)→ C(Γ)

p◦ := λ(~x : W(Γ)) (wl : C(A)) (wr : C(B)).mergeΓ (q◦ ~x wl) (r◦ ~x wr)

We now need to prove that for all ~u : W(Γ), x : C(A) and y : C(B) we have:

ΓD[~u, p◦ ~u x y]→ AD[q• ~u, x] ∧BD[r• ~u, y]

which is convertible to:

ΓD[~u,mergeΓ (q◦ ~u x) (r◦ ~u y) ~u]→ AD[q• ~u, x] ∧BD[r• ~u, y]

As usual, by the merge property, this is equivalent to:

ΓD[~u, q◦ ~u x]→ ΓD[~u, r◦ ~u y]→ AD[q• ~u, x] ∧BD[r• ~u, y]

We conclude by applying the induction hypotheses on q and r, which give respec-
tively:

ΓD[~u, q◦ ~u x]→ AD[q• ~u, x]

ΓD[~u, r◦ ~u y]→ BD[r• ~u, y]

• Rule

[
q : Γ ` A ∧B
p : Γ ` A

]
(and its symmetric):

This rule is straightforward. From

q• : W(Γ)→W(A) ; W(Γ)→W(B)

we can extract the first component ql and use it as the translation for p•:

111

7 Dialectica: a historical presentation

p• : W(Γ)→W(A)

p• := ql

The p◦i component is built out of q◦i by feeding it with a dummy term on the right.

p◦i : W(Γ)→ C(A)→ C(Γi)

p◦i := λ(~x : W(Γ)) (w : C(A)). q◦i ~x w zC(B)

We now need to show that for all ~u : W(Γ) and all x : C(A),

ΓD[~u, p◦ ~u x]→ AD[p• ~u, x]

which is convertible to:

ΓD[~u, q◦ ~u x zC(B)]→ AD[ql ~u, x]

We conclude by using the induction hypothesis on q applied to ~u : W(Γ) and
(x ; zC(B)) : C(A ∧B), which is indeed convertible to:

ΓD[~u, q◦ ~u x zC(B)]→ AD[ql ~u, x] ∧BD[qr ~u,zC(B)]

where qr is the second component of q•.

The symmetric rule is interpreted symmetrically.

• Rule

[
q : Γ ` A

p : Γ ` A ∨B

]
(and its symmetric):

Similarly to the duality between the interpretation of the rules for ⊥ and >, this
rule is up to a certain point the dual of the previous one. Indeed, the p• term must
now provide a certain dummy term for the proof of W(A ∨ B), while the p◦i is no
more than a projection.

p• : W(Γ)→ N ; W(Γ)→W(A) ; W(Γ)→W(B)

p• := λ~x : W(Γ). (false ; q• ~x ; zW(B))

p◦i : W(Γ)→ C(A)→ C(B)→ C(Γi)

p◦i := λ(~x : W(Γ)) (wl : C(A)) (wr : C(B)). q◦i ~x wl

112

7.5 Gödel’s Dialectica

We have to prove that for any ~u : W(Γ), x : C(A) and y : C(B),

ΓD[~u, p◦ ~u x y]→ (A ∨B)D[p• ~u, x ; y]

which is convertible to:

ΓD[~u, q◦ ~u x]→ (0 = 0 ∧AD[q• ~u, x]) ∨ (0 = 1 ∧BD[zW(B), y])

Obviously, we will be proving the left formula, so that the following remains to be
proved:

ΓD[~u, q◦ ~u x]→ AD[q• ~u, x]

but this is precisely the induction hypothesis for q, from which we conclude.

The symmetric rule is also obtained by symmetry.

• Rule

[
q : Γ ` A ∨B r : Γ, A ` C s : Γ, B ` C

p : Γ ` C

]
:

This is one of the most intricate cases, as it features two unrelated phenomena, one
being the duplication of hypotheses (which entails a merge) and the other being
the antique encoding of sum types through dummy values.

The p• translation is recovered by making a case analysis on the pseudo-boolean
contained in the proof q• and emulating a pattern matching on the encoded sum.
First, we give a name to the several components of

q• : W(Γ)→ N ; W(Γ)→W(A) ; W(Γ)→W(B)

as follows:

qb : W(Γ)→ N

ql : W(Γ)→W(A)

qr : W(Γ)→W(B)

We can then write out the pseudo-code explained above just as:

p• : W(Γ)→W(C)

p• := λ~x : W(Γ). ifz (qb ~x) (r• ~x (ql ~x)) (s• ~x (qr ~x))

with the already mentioned abuse of sequence notation for ifz.

The p◦ translation does a similar trick, but also uses merge in addition, dynamically
choosing to merge from r or s according to the value of the boolean. From r◦ and
s◦, we can extract respectively:

113

7 Dialectica: a historical presentation

r◦Γ : W(Γ)→W(A)→ C(C)→ C(Γ)

r◦A : W(Γ)→W(A)→ C(C)→ C(A)

s◦Γ : W(Γ)→W(B)→ C(C)→ C(Γ)

s◦B : W(Γ)→W(B)→ C(C)→ C(B)

There are now three different ways to recover a counter C(Γ), one from q◦, one
from r◦Γ and one from s◦Γ, which are given below.

c : W(Γ)→ C(C)→ C(Γ)

c := λ(~x : W(Γ)) (w : C(C)). q◦ ~x (r◦A ~x (ql ~x) w) (s◦B ~x (qr ~x) w)

cl : W(Γ)→ C(C)→ C(Γ)

cl := λ(~x : W(Γ)) (w : C(C)). r◦Γ ~x (ql ~x)

cr : W(Γ)→ C(C)→ C(Γ)

cr := λ(~x : W(Γ)) (w : C(C)). s◦Γ ~x (qr ~x)

We finally recover our interpreted term by choosing which one of the cl or cl we
choose to use, according to which side of q is proved, i.e. whether the boolean qb

is true or false.

p◦ : W(Γ)→ C(C)→ C(Γ)

p◦ := λ(~x : W(Γ)) (w : C(C)).mergeΓ (c ~x w) (ifz (qb ~x) (cl ~x w) (cr ~x w)) ~x

Note that once again, we abused the notation of sequences for ifz.

Let us not be afraid of the apparent difficulty of such definitions and let us prove
that those terms realize the formula indeed. To this end, assume ~u : W(Γ) and
z : W(C), we must show as usual that

ΓD[~u, p◦ ~u z]→ CD[p• ~u, z]

Unfolding p◦ and applying the equivalence property of merge, this turns out to be
equivalent to

ΓD[~u, c ~u z]→ ΓD[~u, ifz (qb ~u) (cl ~u z) (cr ~u z)]→ CD[p• ~u, z]

114

7.5 Gödel’s Dialectica

Here, we have in particular

c ~u z ≡β q◦ ~u (r◦A ~u (ql ~u) z) (s◦B ~u (qr ~u) z)

so we can apply the induction hypothesis for q on the rightmost assumption of the
formula we have to prove. Therefore, we only have to prove

(A ∨B)D[q• ~u, (r◦A ~u (ql ~u) z ; s◦B ~u (qr ~u) z)] →
ΓD[~u, ifz (qb ~u) (cl ~u z) (cr ~u z)] →
CD[p• ~u, z]

which is convertible to

(qb ~u = 0 ∧AD[ql ~u, r◦A ~u (ql ~u) z]) ∨ (qb ~u = 1 ∧BD[qr ~u, s◦B ~u (qr ~u) z]) →
ΓD[~u, ifz (qb ~u) (cl ~u z) (cr ~u z)] →
CD[ifz (qb ~u) (r• ~u (ql ~u)) (s• ~u (qr ~u)), z]

There are now two different cases. Either qb ~u ≡ 0 or not, which corresponds to
the two branches we would have in a proper pattern matching on a sum.

Assume first that qb ~u ≡ 0. In that case, we can convert and simplify the whole
formula, by eliminating the obviously false branch of the ∨ and making some re-
ordering, to

ΓD[~u, r◦Γ ~u (ql ~u)]→ AD[ql ~u, r◦A ~u (ql ~u) z]→ CD[r• ~u (ql ~u), z]

but this is actually exactly the induction hypothesis of r applied to (~u ; ql ~u) :
W(Γ ; A) and z : C(C). Hence we are done.

The other case qb ~u 6≡ 0 is treated the same, choosing the other branch and using
s instead of r.

First-order First-order rules manipulate variables of HA formulae, so there is special
care to be taken in order not to create wild free variables.

• Rule

[
q : Γ ` A

p : Γ ` ∀z.A

]
:

This rule is almost transparent computationally, because the translation only binds
a variable that was free beforehand. Indeed, z is free in A, so the proofterms derived
from q may mention it and therefore we have to bind it. This is why we willingly
use the same name for the term binder below and for the binder of the quantifier
in the rule above. The translation goes as follows.

115

7 Dialectica: a historical presentation

p• : W(Γ)→ N→W(A)

p• := λ(~x : W(Γ)) (z : N). q• ~x

p◦i : W(Γ)→ N→ C(A)→ C(Γi)

p◦i := λ(~x : W(Γ)) (z : N) (w : C(A)). q◦i ~x w

We shall now prove that for all ~u : W(Γ), z : N and x : C(A), the following formula
holds.

ΓD[~u, p◦ ~u (z ; x)]→ (∀z.A)D[p• ~u, (z ; x)]

This formula is actually convertible to:

ΓD[~u, q◦ ~u x]→ AD[q• ~u, x]

where the variable z has been silently substituted in q and A. But this is exactly
the realization property of q. So the translation realizes the formula.

• Rule

[
q : Γ ` ∀z.A

p : Γ ` A[z := t]

]
:

For the same reasons as the previous rule, the translated terms are here almost
transparent. The one difference lies in the fact that instead of binding a free vari-
able, we must provide a term of the corresponding type to the resulting proofterms.
All is well because we precisely have the t term lurking around.

p• : W(Γ)→W(A)

p• := λ~x : W(Γ). q• ~x t

p◦i : W(Γ)→ C(A)→ C(Γi)

p◦i := λ(~x : W(Γ)) (w : C(A)). q◦i ~x t w

Let ~u : W(Γ) and x : C(A), we must show that

ΓD[~u, p◦ ~u x]→ (A[z := t])D[p• ~u, x]

which amounts to

ΓD[~u, q◦ ~u t x]→ (A[z := t])D[q• ~u t, x]

This is the induction hypothesis applied to q with ~u : W(Γ) and (t ; x) : C(∀z.A).
This allows us to conclude immediately.

116

7.5 Gödel’s Dialectica

• Rule

[
q : Γ ` A[z := t]

p : Γ ` ∃z.A

]
:

The introduction of the existential quantifier is interpreted similarly to the previous
rule, for duality reasons. As W(∃z.A) := N ; W(A), we split the p• translation into
the two following terms

pw : W(Γ)→ N

pw := λ_ : W(Γ). t

pp : W(Γ)→W(A)

pp := q•

Note that the proof term corresponding to the integer witnessed does not depend
on the computational content of the logical part of the derivation. The resulting
translation is then:

p• : W(Γ)→ N ; W(Γ)→W(A)

p• := pw ; pp

p◦i : W(Γ)→ (N→ C(A))→ C(Γi)

p◦i := λ(~x : W(Γ)) (w : N→ C(A)). q◦i ~x (w t)

We must show that for all ~u : W(Γ) and x : N→ C(A), the following holds

ΓD[~u, p◦ ~u x]→ (∃z.A)D[p• ~u, x]

which is, by unfolding, exactly the same as

ΓD[~u, q◦ ~u (w t)]→ (A[z := t])D[q• ~u, x t]

that is to say, the induction hypothesis from q, from which we conclude.

• Rule

[
q : Γ ` ∃z.A r : Γ, A ` B

p : Γ ` B

]
:

The complexity of this case is similar to the one of the elimination rule for the ∨
connective. Here, we need to handle at the same time duplication and capture of
free variables. As in the previous rule, let us first give a name to the two components
of

q• : W(Γ)→ N ; W(Γ)→W(A)

as

117

7 Dialectica: a historical presentation

qw : W(Γ)→ N

qp : W(Γ)→W(A)

In order to construct q•, we are going to use r• because it produces a W(B), and
feed the missing W(A) thanks to qp. Be careful though that z is free in r, so that
we need to eliminate it. This will be done thanks to qw. We finally obtain:

p• : W(Γ)→W(B)

p• := λ~x : W(Γ). (λz. r• ~x (qp ~x)) (qw ~x)

The p◦ translation is constructed by taking care of merging the two sets of hy-
potheses coming respectively from q and r. Let us recall that we can split r◦ in two
parts typed as:

r◦Γ : W(Γ)→W(A)→ C(B)→ C(Γ)

r◦A : W(Γ)→W(A)→ C(B)→ C(A)

We can now build the two sequences of C(Γ) counters as:

cl : W(Γ)→ C(B)→ C(Γ)

cl := λ(~x : W(Γ)) (w : C(B)). q◦ ~x (λz. r◦A ~x (qp ~x) w)

cr : W(Γ)→ C(B)→ C(Γ)

cr := λ(~x : W(Γ)) (w : C(B)). (λz. r◦Γ ~x (qp ~x) w) (qw ~x)

We finally get:

p◦ : W(Γ)→ C(B)→ C(Γ)

p◦ := λ(~x : W(Γ)) (w : C(B)).mergeΓ (cl ~x w) (cr ~x w)

Let us now prove that these terms realize the formula indeed. For this, we need to
prove that for any ~u : W(Γ) and y : C(B), the following holds.

ΓD[~u, p◦ ~u y]→ BD[p• ~u, y]

It is equivalent, by applying the merge property, to

ΓD[~u, cl ~u y]→ ΓD[~u, cr ~u y]→ BD[p• ~u, y]

118

7.5 Gödel’s Dialectica

If we unfold cl and apply the realization property for q on the left hypothesis, we
recover:

(∃z.A)D[q• ~u, λz. r◦A ~u (qp ~u) y]→ ΓD[~u, cr ~u y]→ BD[p• ~u, y]

that is, by unfolding (∃z.A)D:

(AD[qp ~u, r◦A ~u (qp ~u) y])[z := qw ~u]→ ΓD[~u, cr ~u y]→ BD[p• ~u, y]

and after subsequent unfolding of cr and p•, this is the same as:

AD[qp ~u, r◦A ~u (qp ~u) y]→ ΓD[~u, r◦Γ ~u (qp ~u) y]→ BD[r• ~u (qp ~u), y]

where all occurrences of z in AD, r◦Γ, r
◦
A and r• have been substituted by qw ~u.

But, up to the reordering of hypotheses, this is the realizability property of the r
term applied to (~u ; qp ~u) : W(Γ ; A) and y : C(B). Thus we can conclude.

Arithmetic Most of arithmetic rules are equalities, which are erased by the type trans-
lation. This means that proof terms for equalities are empty and, as it often occurs with
realizability, soundness is externalized in the metatheory. We only treat in detail one
case of an equality axiom, as all the other ones are just identical.

• Rule

[
p : Γ ` t = t

]
:

As explained above, W(t = t) := ∅, so the p• sequence is necessarily empty. The
reverse translation p◦ is, as usual, built out of dummy terms. Note that C(t = t) :=
∅, but as in the > introduction rule, we choose to leave an empty sequence of
variables to respect the same presentation as in the other rules.

p• : W(Γ)→W(t = t)

p• := ∅

p◦i : W(Γ)→ C(t = t)→ C(Γi)

p◦i := λ(~x : W(Γ)) (w : C(t = t)).zC(Γi)

In order to prove the soundness of these realizers, we only have to show that for
all ~u : W(Γ):

ΓD[~u, p◦ ~u]→ (t = t)D[p• ~u, ∅]

which is convertible to:
ΓD[~u,zC(Γ)]→ t = t

which is itself obtained by reflexivity in HA + T .

119

7 Dialectica: a historical presentation

• Rule

[
q : Γ ` t1 = t2 r : Γ ` A[z := t2]

p : Γ ` A[z := t1]

]
:

The substitution rule is almost transparent, because witness and counter types are
insensitive to substitution. Yet, in order to be able to recover the equality coming
from q, we need to be able to prove its assumptions. The only way to do this is by
using the merge primitive. This necessity will be obvious in the proof of realization.

p• : W(Γ)→W(A)

p• := r•

p◦ : W(Γ)→ C(A)→ C(Γ)

p◦ := λ(~x : W(Γ)) (w : C(A)).mergeΓ (r◦ ~x w) (q◦ ~x) ~x

Let us show the realization property. We must prove that for all ~u : W(Γ) and
x : C(A), the following holds:

ΓD[~u, p◦ ~u x]→ (A[z := t1])D[p• ~u, x]

Unfolding definitions and using the property of merge, this is equivalent to:

ΓD[~u, r◦ ~u x]→ ΓD[~u, q◦ ~u]→ (A[z := t1])D[r• ~u, x]

We can now apply the hypothesis on r to the first assumption, and on q to the
second assumption, so that we now have to prove:

(A[z := t2])D[r◦ ~u, x]→ t1 = t2 → (A[z := t1])D[r◦ ~u, x]

but as z is fresh, this is equivalent to:

(AD[r◦ ~u, x])[z := t2]→ t1 = t2 → (AD[r◦ ~u, x])[z := t1]

which we prove by rewriting the given equality.

• Rule

[
q : Γ ` A[z := 0] r : Γ, A ` A[z := S z]

p : Γ ` A[z := t]

]
:

This rule is by far one of the most complicated to translate. We need to handle at
the same time recursion, opening of a fresh variable and duplication of hypotheses.
The global picture is as follows: p• and p◦ are going to repeat the computational
behaviour of the underlying induction through the recursor, but while p• is really
a simple extraction, p◦ needs to keep track of duplication, leading to the use of
a merge at each recursion step. We need to perform both steps at once, so that

120

7.5 Gödel’s Dialectica

we define p• and p◦ at the same time. The definition makes use of a generalized
recursor that works on sequences rather than plain System T types, which is as
usual defined in a straightforward manner.

We will not discuss too much the intuitions here, and wait for the realizability proof
to observe why the translation below is the only sensible one. As done before, we
split r◦ in two parts typed as

r◦Γ : W(Γ)→W(A)→ C(A)→ C(Γ)

r◦A : W(Γ)→W(A)→ C(A)→ C(A)

from which we can built the desired term as follows.

p• ; p◦ : W(Γ)→ (W(A) ; (C(A)→ C(Γ)))

p• ; p◦ := λ~x : W(Γ). rec t ((q• ; q◦) ~x)
(λz y f. (r• ~x y ; λw.mergeΓ (f (r◦A ~x y w)) (r◦Γ ~x y w) ~x))

Remark how we chose carefully to name the bound variable z in the recursive call,
so as to match the corresponding free variable of r.

We must now prove that for all ~u : W(Γ) and x : C(A), the following holds:

ΓD[~u, p◦ ~u x]→ (A[z := t])D[p• ~u, x]

and we do this by induction over t, which is a natural number.

To ease the understanding of the reduction of the translated proof, we need to
parameterize p• ; p◦ by the actual natural number t it is applied to. Let us write
p•z and p◦z for the corresponding terms where t is some variable z. Then we have
the following System T equivalences.

p•0 ~u ≡β q• ~u
p◦0 ~u x ≡β q◦ ~u x
p•(S z) ~u ≡β r• ~u (p•z ~u)

p◦(S z) ~u x ≡β mergeΓ (p◦z ~u (r◦A ~u (p•z ~u) x)) (r◦Γ ~u (p•z ~u) x) ~u

By applying these equivalences, we can greatly simplify the recursive proof of our
realization property. We look at each case separatly.

Assume first that t = 0. Then we only have to prove that

ΓD[~u, q◦ ~u x]→ (A[z := 0])D[q• ~u, x]

which is simply the realization hypothesis coming from q.

121

7 Dialectica: a historical presentation

Now, assume that t = S z, and in addition that the realization property holds for
p•z and p◦z. We must show the following.

ΓD[~u, p◦(S z) ~u x]→ (A[z := S z])D[r• ~u (p•z ~u), x]

Applying the merge property results in the following proposition.

ΓD[~u, p◦z ~u (r◦A ~u (p•z ~u) x)]→ ΓD[~u, r◦Γ ~u (p•z ~u) x]→

(A[z := S z])D[r• ~u (p•z ~u), x]

The realization property for z coming from the induction hypothesis can be applied
to the leftmost hypothesis, leading to the formula

AD[p•z ~u, r
◦
A ~u (p•z ~u) x]→ ΓD[~u, r◦Γ ~u (p•z ~u) x]→

(A[z := S z])D[r• ~u (p•z ~u), x]

which is, up to a commutation, no more than the realization property for the term
r, so that we can conclude.

As usual, observe how we needed the merge property to recover the right hypothesis
coming from the other term. The interpretation of this rule features furthermore
a strong parallelism between the source proof and the corresponding term, which
both reason by induction on the considered integer.

7.6 A bit of classical logic

Gödel’s Dialectica interprets strictly more than purely intuitionistic arithmetic, which
was its interest in the first place. As explained in Section 7.4, it allows to realize Markov’s
principle and the independence of premise.
In the following, we will be looking at the actual realizers of those axioms in the

Dialectica interpretation.

7.6.1 Irrelevant types

Before going further in the implementation of those two principles, we first have to
formally define what we were assuming above for a type to be irrelevant. This will be
crucial in the understanding of the computational content of our axioms.
The definition itself is actually fairly simple, because we have a built-in notion of having

no content for a list of types: namely, to be empty.

Definition 88 (Irrelevance). We say that a proposition A is irrelevant if

W(A) = ∅ and C(A) = ∅

122

7.6 A bit of classical logic

Quite a lot of propositions are irrelevant. In particular, the so-called negative fragment
is irrelevant.

Proposition 44. Assume A and B two irrelevant types, and t, u two terms.

• ⊥ and > are irrelevant

• t = u is irrelevant

• A→ B is irrelevant

• A ∧B is irrelevant

Proof. By unfolding of the type interpretations.

This is not too much of a restriction if looking only from the logical point of view.
Indeed, we can freely cast decidable propositions into irrelevant ones.

Proposition 45. Let P be a decidable proposition, that is, there exists some term b such
that

` (P ∧ b = 0) ∨ (¬P ∧ b 6= 0)

then there exists a decidable irrelevant proposition [P] such that

` (P → [P]) ∧ ([P]→ P)

Proof. Simply take [P] := b = 0.

7.6.2 Markov’s principle

We are now trying to realize in the Dialectica translation Markov’s principle, i.e. the
formula ¬∀x.¬A → ∃x.A, assuming that A is decidable and irrelevant. Thanks to
Proposition 45 we can even safely assume without loss of generality that A is an equality.
The realizer displays a fancy blending of the assumption that its inner proposition is

both decidable and irrelevant, while actively taking advantage of the reverse proofs (−)◦

coming from the translation. We will not insist on this particular feature in this chapter,
but we will fully dedicate Chapter 8 to it.
For now we unfold the type translation of the negation in order to make typing clearer.

Proposition 46. Let A be a HA-formula. Then we have the following equalities.

W(¬A) = W(A)→ C(A)

C(¬A) = W(A)

(¬A)D[~ϕ, ~u] = ¬AD[~u, ~ϕ ~u]

Proof. Simple unfolding of definitions.

123

7 Dialectica: a historical presentation

We can finally write a proof term mp realizing Markov’s principle at any formula A.
If we completely unfold the type of witnesses of the principle, we get

W(¬∀x.¬A→ ∃x.A) =

{
W(¬∀x.¬A)→W(∃x.A) ;
W(¬∀x.¬A)→ C(∃x.A)→ C(¬∀x.¬A)

=

W(¬∀x.¬A)→ N ;
W(¬∀x.¬A)→W(A) ;
W(¬∀x.¬A)→ C(∃x.A)→ C(¬∀x.¬A)

=

(W(∀x.¬A)→ N)→ (W(∀x.¬A)→W(A))→ N ;
(W(∀x.¬A)→ N)→ (W(∀x.¬A)→W(A))→W(A) ;
W(¬∀x.¬A)→ C(∃x.A)→W(∀x.¬A)

so that we will be giving the following names to each component, in this order: mpw, mpp

and mp◦. The trick is that because A is irrelevant, we may perform further simplification
of the expected types. Indeed, we have then

W(A) = ∅
W(∀x.¬A) = ∅

so that the three components actually collapse to

W(¬∀x.¬A→ ∃x.A) =

N→ N ;
∅ ;
∅

It is now rather obvious how to define those three components: the second and third
ones are totally specified by their (empty) sequence of types, and the first one begs to
be identity for naturality reasons. Therefore, we pose

mpw := λn : N. n

mpp := ∅

mp◦ := ∅

Observe how trivial are the terms thanks to the collapsing due to irrelevance.
The only remaining thing to do is to prove that these terms do realize Markov’s princi-

ple. This is actually straightforward. Assume n : W(∀x.¬A)→ N, f : W(∀x.¬A)→W(A)
and k : N→ C(A), we must show that

(¬∀x.¬A)D[(n ; f),mp◦ n f k]→ (∃x.A)D[(mpw n f ; mpp n f), k]

which is, by collapsing all the irrelevant terms, exactly the same as

(¬∀x.¬A)D[n, ∅]→ (∃x.A)D[n, ∅]

Further unfolding of this proposition results in

(∀x.¬A)D[∅, n]→ (∃x.A)D[n, ∅]

124

7.6 A bit of classical logic

¬(¬A)D[x := n]→ AD[x := n]

¬¬AD[x := n]→ AD[x := n]

Luckily, the proposition A is decidable so that AD is also decidable, and we can con-
clude by elimination of double-negation which is intuitionistically valid in this case.

As one can see, the computational content of the realizer is so simple that one could
call it disappointing. Most of the magic occurs at the logical level of the realizability
condition. Nonetheless, the very fact we have been able to write out the realizers relies
on the presence of reverse proofs. Indeed, the source natural number for the function
mpw comes from the reverse component of a proof of W(¬∀x.¬A), so that the usual
intuitionistic arrow alone would not have been sufficient to provide us with this witness.

7.6.3 Independence of premise

We now turn to the interpretation of the scheme (A → ∃x.B) → ∃x. (A → B) for any
irrelevant formula A. As in the case of Markov’s principle, the irrelevance hypothesis will
result in the collapse of the translated formula.
Let us once again unfold the translation of witnesses of this principle.

W((A→ ∃x.B)→ ∃x. (A→ B))

=

{
W(A→ ∃x.B)→W(∃x. (A→ B)) ;
W(A→ ∃x.B)→ C(A→ ∃x.B)→ C(∃x. (A→ B))

=

W(A→ ∃x.B)→ N ;
W(A→ ∃x.B)→W(A→ B) ;
W(A→ ∃x.B)→ C(A→ ∃x.B)→ C(∃x. (A→ B))

It is helpful to notice that sinceA is irrelevant, then for any proposition C,W(A→ C) :=
W(C) by an obvious unfolding, and for the same reasons C(A→ C) := C(C). This allows
to further simplify the witness type as follows.

W((A→ ∃x.B)→ ∃x. (A→ B))

=

W(∃x.B)→ N ;
W(∃x.B)→W(B) ;
W(∃x.B)→ C(∃x.B)→ C(∃x. (A→ B))

=

N→W(B)→ N ;
N→W(B)→W(B) ;
N→W(B)→ (N→ C(B))→ N→ C(B)

Following the same argument as in the case of Markov’s principle, we will call those
three components ipw, ipp and ip◦ respectively, and we will take the natural interpretation
for them, that is,

ipw := λ(x : N) (p : W(B)). x
ipp := λ(x : N) (p : W(B)). p
ip◦ := λ(x : N) (p : W(B)) (k : N→ C(B)). k

125

7 Dialectica: a historical presentation

It remains to prove that these realizers do realize the independence of premise. Once
again, this is mostly a series of definition unfolding, even more than in the previous case.
We have to show that, given any x : N, p : W(B) and k : N→ C(B), we have (as usual,
using the same bound name as the argument in the quantifier to avoid writing explicitly
the substitution) the following unfolding steps:

(A→ ∃x.B)D[(x ; p), ip◦ k]→ (∃x. (A→ B))D[(ipw x p ; ipp x p), k]

(A→ ∃x.B)D[(x ; p), k]→ (∃x. (A→ B))D[(x ; p), k]

(AD → BD[p, k x])→ AD → BD[p, k x]

the latter one being a trivial proposition.
Note that we relied on the fact that x was not free in A when unfolding the realization

relation for the right-hand side existential in the second-to-last line, as it would have also
been substituted in A.

Although the realizer of independence of premise is essentially as trivial as its coun-
terpart for Markov’s principle, there is an important difference that deserves to be high-
lighted. We remarked that in the case of Markov’s principle, the realizer relied on the
reverse translations. Yet, independence of premises does not require the reverse trans-
lation at all. It merely uses the fact that decidable arguments may be made irrelevant,
and thus erased from the realizer, for they are lost in the translation. This is in no way
as strong as the requirement of reverse translations.

126

8 A proof-theoretical Dialectica
translation

Utinam tam facile vera invenire pos-
sem, quam falsa convincere.

Cicero about proof theory.

In order to move to a more modern setting, we are going to forget about arithmetic,
and focus on the propositional content of the Dialectica transformation. In the course of
this evolution, we will remove some of the encoding tricks of the historical presentation.

8.1 Down with System T

The first thing we are going to get rid of is the use of sequences, as well as the ad-hoc
encoding of sum types. To this end, we will use a simply-typed λ-calculus with inductive
datatypes λ×+ instead of System T.
It is not difficult to see that the derivation rules of the propositional fragment of HA

are mostly the computational erasure of the typing rules of λ×+, following the Curry-
Howard paradigm. It is indeed almost sufficient to simply forget about the λ-terms to
recover the corresponding HA-proofs.
The presentation of some rules is slightly different, though. The main difference lies in

the presentation of positive connectives, because while HA features additive n-ary con-
junctions, λ×+ uses the multiplicative presentation. Compare for instance the elimination
rule for λ×+ and its computational erasure:

Γ ` t : A×B Γ, x : A, y : B ` u : C

Γ ` match t with (x, y) 7→ u : C

Γ ` A×B Γ, A,B ` C
Γ ` C

versus the equivalent rules we took for HA:

Γ ` A ∧B
Γ ` A

Γ ` A ∧B
Γ ` B

One can witness here that HA eliminates conjunctions by projections, while λ×+ does
it through pattern-matching. Although the logical expressiveness is preserved, their oper-
ational behaviour is different. If we forget about this little mismatch, we can nonetheless
encode λ×+-terms as HA derivations.
This has one obvious application: we could apply directly the historical Dialectica

translation on λ×+ and get a term translation for free. Yet, the historical translation is

127

8 A proof-theoretical Dialectica translation

impractical. The use of sequences is cumbersome, and because we now have true inductive
connectives, we can get rid of it. In addition, some nice proof-theoretical properties of
the Dialectica translation are hidden beneath a pile of technicalities.
By presenting it directly as a proof translation, we will show that it is better behaved

that one could have thought of.

8.2 A proof system over λ×+

Similarly to the arithmetical case, we need a system to state properties about the λ×+-
terms we are going to manipulate. The system we are going to choose is a very simple
first-order dependently-typed theory. Indeed, we hardly need something more powerful
than the arithmetical case.
We will be taking special care to be able to reason about inductive types, though,

under the form of dependent elimination rules upon their inhabitants. This will be
realized thanks to the use of proposition-level matching constructs mimicking the ones
from term levels. In order not to confuse the two levels of types and propositions, we will
make this stratification explicit in the syntax by writing propositions A,B in boldface
while retaining the normal typeface A,B for λ×+ types.

Definition 89 (Formulae). The formulae of our logic are inductively defined below.

A,B := > | ⊥ | A ∧B | A ∨B | A→ B

| match t with (x, y) 7→ A | match t with () 7→ A

| match t with [·] | match t with [x 7→ A | y 7→ B]

Environments are list of hypotheses, as usual.

Γ := · | Γ,A

As in the HA+T case, our propositions may contain terms, so we need to ensure that
they are well-formed, which amounts in this case to check that the dependent elimination
rules are well-typed.

Definition 90 (Well-formedness). We inductively define below the well-formedness Σ `wf

A of a formula A in a λ×+-context Σ.

128

8.2 A proof system over λ×+

Σ `wf > Σ `wf ⊥
Σ `wf A Σ `wf B

Σ `wf A ∧B

Σ `wf A Σ `wf B

Σ `wf A ∨B

Σ `wf A Σ `wf B

Σ `wf A→ B

Σ ` t : 1 Σ `wf C

Σ `wf match t with () 7→ C

Σ ` t : A×B Σ, x : A, y : B `wf C

Σ `wf match t with (x, y) 7→ C

Σ ` t : 0

Σ `wf match t with [·]
Σ ` t : A+B Σ, x : A `wf C1 Σ, y : B `wf C2

Σ `wf match t with [x 7→ C1 | y 7→ C2]

Well-formedness is extended to lists of hypotheses in a direct way.

Σ `wf ·
Σ `wf Γ Σ `wf A

Σ `wf Γ,A

There is nonetheless a subtle difference between the current system and HA + T .
Indeed, in HA+T , computation was restricted to terms, and we used plain substitution to
define convertibility of formulae. Now, because of the presence of dependent elimination,
formulae themselves may be converted into one another.

Definition 91 (Convertibility). Two propositions A and B are convertible, written
A ≡β B, if they are in relation by the context closure of the following generators.

t ≡β u x fresh

A[x := t] ≡β A[x := u] match () with () 7→ B ≡β B

match (t, u) with (x, y) 7→ B ≡β B[x := t, y := u]

match inl t with [x 7→ B1 | y 7→ B2] ≡β B1[x := t]

match inr u with [x 7→ B1 | y 7→ B2] ≡β B2[y := u]

We finish the definition of our metatheory by actually giving the derivation rules for
the whole system.

Definition 92 (Rules). Sequents are of the form Σ | Γ ` A. The derivation rules of the
system are given below.

129

8 A proof-theoretical Dialectica translation

Σ `wf Γ,A,∆

Σ | Γ,A,∆ ` A

Σ | Γ ` A→ B Σ | Γ ` A

Σ | Γ ` B

Σ | Γ,A ` B

Σ | Γ ` A→ B

A ≡β B Σ | Γ ` B Σ `wf A

Σ | Γ ` A

Σ `wf Γ

Σ | Γ ` >
Σ | Γ ` ⊥
Σ | Γ ` A

Σ | Γ ` A Σ | Γ ` B

Σ | Γ ` A ∧B

Σ | Γ ` A ∧B

Σ | Γ ` A

Σ | Γ ` A ∧B

Σ | Γ ` B

Σ | Γ ` A

Σ | Γ ` A ∨B

Σ | Γ ` B

Σ | Γ ` A ∨B

Σ | Γ ` A ∨B Σ | Γ,A ` C Σ | Γ,B ` C

Σ | Γ ` C

Σ ` t : 1 Σ | Γ ` C[z := ()] z fresh

Σ | Γ ` C[z := t]

Σ ` t : A×B Σ, x : A, y : B | Γ ` C[z := (x, y)] x, y, z fresh

Σ | Γ ` C[z := t]

Σ ` t : 0 Σ `wf Γ,C[z := t] z fresh

Σ | Γ ` C[z := t]

Σ ` t : A+B

{
Σ | Γ, x : A ` C[z := inl x]
Σ | Γ, y : B ` C[z := inr y]

x, y, z fresh

Σ | Γ ` C[z := t]

8.3 Dialectica with inductive types

The goal of this section is to adapt the historical presentation to our calculus with in-
ductive datatypes. This is actually rather straightforward. The Dialectica translation on
types will be mostly following the Curry-Howard interpretation, that is, we will translate
logical connectives into their corresponding computational equivalent.
There is actually nothing involved in here. We will parallel the structure used in the

historical definition again, as we actually need the very same ingredients that will be
defined in the same order:

• Two translations W(−) and C(−) on types;

• A notion of dummy terms z− (here we actually need two such terms, one for each
type translation) in the target language;

130

8.3 Dialectica with inductive types

• For each source type A a predicate AD on proofs and counters in the proof system;

• A decide primitive in the target language;

• Two families of terms translations to the target language.

The reader may find that there is much repetition from the historical definition, which
is not untrue. Nevertheless, there are some subtle differences to point out. When things
are too similar, we will skip the details.
The one difference lies in the fact that we do not use sequences anymore. Thanks to

the presence of true positive types in λ×+, instead of resorting to the metatheoretical
artifact of sequences, we can encode them directly in the terms. Typically, sequences are
going to be turned into products, and we will get rid of the bizarre sum type encoding
through the use of a proper sum type.
Let us focus on the type translations to clear things up.

8.3.1 Witnesses and counters

Definition 93 (Type translation). The translation on types is inductively defined in the
table below. The W(−) and C(−) translations associate to a type of λ×+ another type
of λ×+.

W(−) C(−)

A→ B

W(A)→W(B)

×
W(A)→ C(B)→ C(A)

W(A)× C(B)

1 1 1

A×B W(A)×W(B) C(A) + C(B)

0 1 1

A+B W(A) + W(B) C(A)× C(B)

The reader may be surprised by the translation of the empty type 0, which is translated
as 1. This is actually a necessity of the translation inherited from the historical Dialectica:
we need to be able to construct a dummy proof-term at any type. The unsound proof-
terms which do not realize a given formula will be ruled out by the realizability relation
defined by the interpretation matrix.

8.3.2 Orthogonality

In our jump to a proof-as-program paradigm, we will take advantage of the occasion to
rename the interpretation matrix, and adorn it with a more realizability-friendly name,
viz. orthogonality. There is nothing complicated here: this is a direct adaptation of the
historical case to inductive types.

131

8 A proof-theoretical Dialectica translation

Definition 94 (Orthogonality). Given two fresh variables u and x, we inductively define
the orthogonality relation AD[u, x] on A below.

• 0D[u, x] := ⊥

• 1D[u, x] := >

• (A+B)D[w, z] := match w with [u 7→ AD[u, fst z] | v 7→ BD[v, snd z]]

• (A×B)D[w, z] := match z with [x 7→ AD[fst w, x] | y 7→ BD[snd w, y]]

• (A→ B)D[w, z] := AD[fst z, snd w (fst z) (snd z)]→ BD[fst w (fst z), snd z]

Proposition 47. For any λ×+ type A,

u : W(A), x : C(A) `wf AD[u, x]

Proof. By induction on A.

8.3.3 Interpretation

We still have to rely on dummy terms to write the interpretation. Luckily, we chose the
type interpretation such that all target types are inhabited. We construct this default
inhabitant in a way similar to the one of the historical presentation.

Proposition 48. For all type A, there exist two closed terms zA : C(A) and zA : W(A).

Proof. By induction on A. For z−:

• z0 := ()

• z1 := ()

• zA×B := inl zA

• zA+B := (zA,zB)

• zA→ B := (zA,zB)

and for z−:

• z0 := ()

• z1 := ()

• zA×B := (zA,zB)

• zA+B := inl zA

• zA→ B := (λ_.zB, λ__.zA)

132

8.3 Dialectica with inductive types

Remark 12. The non-canonicity of such a term is obvious in the context of λ×+-terms.
Indeed, the dummy term zA+B (resp. zA×B) is built by arbitrarily choosing one side
of the sum type to fill. This will be the source of a serious issue later on.

Definition 95 (Booleans). The λ×+ language allows us to write true booleans, by setting
B := 1 + 1. We can write the usual operations on it without any problem. We define
some useful constants below

true := inl ()

false := inr ()

if := λb t f. match b with [x 7→ t | y 7→ f]

as well as the following macro

True[b] := match b with [x 7→ > | y 7→ ⊥]

Likewise, as in the arithmetical case, we can still decide the orthogonality relation.

Proposition 49. For all type A, there exists a λ×+-term ` decideA : W(A)→ C(A)→ B
with the following property:

u : W(A), x : C(A) | · ` True[decideA u x]↔ AD[u, x]

Proof. By induction on A.

• decide0 := λux. false

• decide1 := λux. true

• decideA+B := λw z. match w with [u 7→ decideA u (fst z) | v 7→ decideB v (snd z)]

• decideA×B := λw z. match z with [x 7→ decideA (fst w) x | y 7→ decideB (snd w) y]

• decideA→ B := λw z. if (decideA (fst z) (snd z (fst z) (snd z)))
(decideB (fst w (fst z)) (snd z))
true

Proof of the specification follows immediately by a parallel induction on A.

Proposition 50. Using the decide term, we can build for all λ×+-type A a term

` mergeA : C(A)→ C(A)→W(A)→ C(A)

with the following property:

u : W(A), x1 : C(A), x2 : C(A) | · ` AD[u,mergeA x1 x2 u]↔ AD[u, x1] ∧AD[u, x2]

133

8 A proof-theoretical Dialectica translation

Proof. As in the historical case, we pose

mergeA := λx1 x2 u. if (decideA u x1) x2 x1

The proof uses exactly the same arguments as in the historical case, that is, a case
analysis on the boolean leading on one case to the expected result, and in the other case
to an absurdity.

Similarly to the historical case, were we needed merge over sequences, we need to lift
the merging operation to environments, i.e. list of hypotheses. For all environment Γ,
we need a term

mergeiΓ : C(Γ1)→ . . . → C(Γn)→ C(Γ1)→ . . . → C(Γn)→W(Γ1)→ . . . →W(Γn)→ C(Γi)

with the property that

~u : W(Γ), ~x : C(Γ), ~y : C(Γ) | · `
(∧

i
ΓiD[ui,mergeiΓ ~x ~y ~u]

)
↔
(∧

i
ΓiD[ui, xi] ∧ ΓiD[ui, yi]

)

We do not give the explicit construction here, but it is easily constructed from each
mergeΓj by induction over Γ. We will abuse the notation by writing mergexΓ for mergeiΓ
where i is the index of x in Γ.

Now we can write out the translation acting on λ×+-terms. Similarly to the case of
HA proofs, where a proof p was mapped to a tuple of sequences (p•, p1, . . . , pn), the
translation of a term is going to be given by a tuple of λ×+-terms.
This translation is typed, meaning the we still need the underlying typing derivation.

This is not as bad as it seems, because our system is simply-typed so inference is decidable,
hence we can somehow recover it from the term itself, but this does not make it as
readable as it should. The requirement is to be able to recover the type of a variable in
an environment, as defined below.

Definition 96. Let Γ be an environment, and x a variable. We define the type Γ(x) by
induction on Γ.

• (Γ, x : A)(x) := A

• (Γ, y : B)(x) := Γ(x)

• (·)(x) := 0

The choice of 0 for the value of a variable in the empty environment is arbitrary,
well-typed terms will not be using it anyway.

Definition 97 (Term translation). Let t be a term, x a variable, Γ a list of hypotheses
and A a type. We define mutually recursively the terms (Γ ` t : A)• and (Γ ` t : A)x
below by induction on the derivation Γ ` t : A.
First, the (− ` − : −)• translation:

134

8.3 Dialectica with inductive types

(Γ ` x : A)
•

:= x

(Γ ` λx. t : A→ B)
•

:= (λx. (Γ, x : A ` t : B)
•
, λx π. (Γ, x : A ` t : B)x π)

(Γ ` t u : B)
•

:= fst (Γ ` t : A→ B)
•

(Γ ` u : A)
•

(Γ ` match t with () 7→ u : C)
•

:= match (Γ ` t : 1)
• with () 7→ (Γ ` u : C)

•

(Γ ` match t with [·] : C)
•

:= zC

(Γ ` match t with (x, y) 7→ u : C)
•

:=
match (Γ ` t : A×B)

• with (x, y) 7→ (Γ, x : A, y : B ` u : C)
•

(Γ ` match t with [x 7→ u1 | y 7→ u2] : C)
•

:=
match (Γ ` t : A+B)

• with [x 7→ (Γ, x : A ` u1 : C)
• | y 7→ (Γ, y : C ` u2 : C)

•
]

(Γ ` () : 1)
•

:= ()

(Γ ` (t, u) : A×B)
•

:= ((Γ ` t : A)
•
, (Γ ` u : B)

•
)

(Γ ` inl t : A+B)
•

:= inl (Γ ` t : A)
•

(Γ ` inr t : A+B)
•

:= inr (Γ ` t : B)
•

and the (− ` − : −)x translation:

135

8 A proof-theoretical Dialectica translation

(Γ ` x : A)x := λπ. π

(Γ ` y : A)x := λπ.zΓ(x)

(Γ ` λy. t : A→ B)x := λρ. match ρ with (y, π) 7→ (Γ, y : A ` t : B)x π

(Γ ` t u : B)x := λπ.mergexΓ ((Γ ` t : A→ B)~x ((Γ ` u : A)
•
, π))

((Γ ` u : A)~x (snd (Γ ` t : A→ B)
•

(Γ ` u : A)
•
π))

~x

(Γ ` match t with () 7→ u : C)x := λπ.mergexΓ ((Γ ` t : 1)~x ())
((Γ ` u : C)~x π)
~x

(Γ ` match t with [·] : C)x := λπ. (Γ ` t : 0)x π

(Γ ` match t with (y, z) 7→ u : C)x :=
λπ.mergexΓ (match (Γ ` t : A×B)

• with (y, z) 7→ (Γ, y : A, z : B ` u : C)~x π)merge~xΓ (Γ ` t : A×B)~x (inl ((Γ, y : A, z : B ` u : C)y π))

(Γ ` t : A×B)~x (inr ((Γ, y : A, z : B ` u : C)z π))
~x

~x

(Γ ` match t with [y 7→ u1 | z 7→ u2] : C)x :=
λπ.mergexΓ (match (Γ ` t : A+B)

• with [y 7→ (Γ, y : A ` u1 : C)~x π | z 7→ (Γ, z : B ` u2 : C)~x π])
((Γ ` t : A+B)~x (((Γ, y : A ` u1 : C)~x π), ((Γ, z : B ` u2 : C)~x π)))
~x

(Γ ` () : 1)x := λπ.zΓ(x)

(Γ ` (t, u) : A×B)x := λπ. match π with [π 7→ (Γ ` t : A)x π | π 7→ (Γ ` u : B)x π]

(Γ ` inl t : A+B)x := λπ. (Γ ` t : A)x (fst π)

(Γ ` inr t : A+B)x := λπ. (Γ ` t : B)x (snd π)

As one may witness, the term translation is really close to the historical transformation,
except that we are using true inductive types instead of sequences. There is one exception
though, which is found in the elimination rules of conjunctions. While in the historical
presentation, we described them as projections, leading to a quite direct interpretation,
here, the interpretation of the pattern-matching over products is fairly more involved,
requiring two merge operations. This is due, as we will see later, to a mismatch of
interpretation: the type interpretation of products given here is typically negative, thus
giving naturally rise to a projection-oriented system.

Theorem 19 (Type soundness). For all typed λ×+-term Γ ` t : A, the translation

136

8.4 Linear Dialectica

preserves typing, i.e.

W(Γ) ` (Γ ` t : A)• : W(A)
W(Γ) ` (Γ ` t : A)x : C(A)→ C(Γi) when (x : Γi) ∈ Γ

Proof. By induction on the typing derivation.

Theorem 20 (Realization). For all closed λ×+-term ` t : A, the translated term
(· ` t : A)• realizes A, that is:

π : C(A) | · ` AD[(· ` t : A)•, π]

The theorem actually follows from the following generalization.

Proposition 51. For all λ×+-term ~x : Γ ` t : A, the translated term (~x : Γ ` t : A)•

realizes A, that is:
~x : W(Γ), π : C(A) | · ` AD[(Γ ` t : A)•, π]

Proof. By induction on the typing derivation. The arguments are essentially the same as
the one given in the historical case, except that we use inductives instead of sequences.
There is nothing novel compared to the historical presentation, so we skip the details.

8.4 Linear Dialectica

We are going to reformulate a result from the end of the 80’s due to De Paiva [92], namely
that Gödel’s Dialectica can be expressed as a translation acting on linear logic rather
than intuitionistic arithmetic.

8.4.1 The linear decomposition

We now turn to consider linear logic types. For the sake of conciseness, we will focus
on positive types while defining negative types by duality. The grammar of types we
consider is then:

A,B := 1 | 0 | A⊗B | A⊕B | !A | A⊥

As in the case of λ×+-types, we define a pair of translations W(−) and C(−) on linear
logic types.

Definition 98 (Linear interpretation). For any linear type A, we inductively define on
A two λ×+-types, the witness type W(A) and counter type C(A) as follows.

137

8 A proof-theoretical Dialectica translation

W(−) C(−)

1 1 1

A⊗B W(A)×W(B)

W(A)→ C(B)
×

W(B)→ C(A)

0 1 1

A⊕B W(A) + W(B) C(A)× C(B)

!A W(A) W(A)→ C(A)

A⊥ C(A) W(A)

The orthogonality relation can be easily adapted to this linear interpretation. For the
sake of completeness, we recall it here, although it is rather straightforwardly obtained
by letting oneself guide by the typing hints.

Definition 99 (Linear orthogonality). Given two fresh variables u and x, we inductively
define the orthogonality relation AD[u, x] on a linear type A below.

• 0D[u, x] := ⊥

• 1D[u, x] := >

• (A⊕B)D[w, z] := match w with [u 7→ AD[u, fst z] | v 7→ BD[v, snd z]]

• (A⊗B)D[w, z] := AD[fst w, snd z (fst w)] ∧BD[snd w, fst z (snd w)]

• (!A)D[w, z] := AD[w, z w]

• (A⊥)D[x, u] := ¬AD[u, x]

Proposition 52. For any linear type A,

u : W(A), x : C(A) `wf AD[u, x]

As expected, correct proofs of linear logic are mapped to λ×+-terms satisfying the
usual orthogonality property.

Theorem 21 (Linear soundness). From every proof in linear logic of a formula A, one
can construct a λ×+-term p of type W(A) such that

π : C(A) | · ` AD[p, π]

We will not discuss or even prove this result here because it is not our current point
of attention. For more details see for instance De Paiva’s thesis [92].

138

8.4 Linear Dialectica

8.4.2 Factorizing

As described by De Paiva in her thesis [92], the previous construction can be recovered by
carefully choosing a decomposition of intuitionistic types into linear types. It is indeed
an exotic mix of call-by-name and call-by-value translations.

• Arrows are interpreted through the call-by-name decomposition

• Sums are interpreted through a call-by-value decomposition

• Products are interpreted through a negative call-by-value decomposition

This is formally expressed below.

Definition 100 (Exotic calling convention). We inductively define the translation [[·]]e
from λ×+ types to linear logic types as follows.

• [[0]]e := 0

• [[1]]e := 1

• [[A×B]]e := [[A]]e & [[B]]e

• [[A+B]]e := [[A]]e ⊕ [[B]]e

• [[A→ B]]e := ![[A]]e([[B]]e

We recall that in the above definition, we used the usual encodings by duality:

A&B := (A⊥ ⊕B⊥)
⊥

A(B := (A⊗B⊥)
⊥

This translation is also known as the economical translation according to Di Cosmo [34].

The exotic translation is more natural to handle when considering sequents, because it
prevents requiring a lot of exponential operations, hence its nickname. Nonetheless, it is
quite alien from the point of view of programming, because it mixes calling conventions
and polarities. The fact that pairs are negative, and thus defined by projections, contrasts
with the semantics we would like to give them in call-by-name. This explains in particular
the oddity of the translation of pattern-matching over pairs in the term interpretation.

As we were hoping for, the intuitionistic type translation factorizes through the linear
decomposition.

Proposition 53. Let A be a λ×+-type, then the λ×+-types W(A) and W([[A]]e) (resp.
C(A) and C([[A]]e)) are isomorphic.

Please remark that we abused the W(−) and C(−) notations: in the first case, this is
a translation acting on λ×+-types, while in the second case, this translation is defined
on linear logic types.

139

8 A proof-theoretical Dialectica translation

Proof. By induction on A. The only interesting case is the translation of the arrow. We
have indeed:

W(A→ B) := (W(A)→W(B))× (W(A)→ C(B)→ C(A))

and on the other hand:

W([[A→ B]]e) := W(![[A]]e([[B]]e)

≡ C(![[A]]e ⊗ [[B]]e
⊥)

≡ (W(![[A]]e)→ C([[B]]e
⊥))× (W([[B]]e

⊥)→ C(![[A]]e))

≡ (W([[A]]e)→W([[B]]e))× (C([[B]]e)→W([[A]]e)→ C([[A]]e))

∼= (W([[A]]e)→W([[B]]e))× (W([[A]]e)→ C([[B]]e)→ C([[A]]e))

We conclude by the induction hypothesis applied to A and B. The counter case is
treated directly.

The strange mix of calling conventions in the current state of our translation may
seem unsettling in the light of modern proof theory. Actually, it is not really an issue
yet, because we did not focus on the dynamic behaviour of our translated terms. It is
indeed possible to give a realizability account for the Dialectica translation with this
decomposition. Yet, the description we will be doing of it in the next chapter will stick
to the more uniform linear decompositions, in order not to complicate too much the
structure of the machines involved.

8.5 A not-so proof-theoretical translation

One could think that the presentation we gave of a revised Dialectica translation above
is enough to label it as a proof-theoretical transformation. For sure, we took any typed
λ×+-term and translated it into another λ×+-term, while preserving typing. This sounds
Curry-Howardesque enough... or does it?
The following fact about the current translation shoud wash our hope away.

Proposition 54. There exists two λ×+-terms Γ ` t : A and Γ ` u : A such that t ≡β u
but (Γ ` t : A)• 6≡β (Γ ` u : A)•.

This incompatibility is not merely a technical issue related to some missing administra-
tive reduction step. We can find indeed two terms whose translations are not equatable
for any sensible equivalence over λ×+-terms.

Example 4. Take for instance ` λy. (λx. x) y : A→ A and ` λy. y : A→ A. Obviously
the two terms are convertible, but we have

(` λy. y : A→ A)• ≡β (λy. y, λy π. π)
(` λy. (λx. x) y : A→ A)• ≡β (λy. y, λy π.mergeA zA π y)

140

8.5 A not-so proof-theoretical translation

Now, for a careful choice of A we can show that mergeA zA π y has no reason to be
convertible to π. Say for example that A := 0→ A0 for some type A0. Then because
the orthogonality test on witnesses of 0 is trivial, we have

mergeA zA π y ≡β ((),zA0)

which is in general distinct of π. Note that this incompatibility is actually already present
in the historical translation, as long as we think of LJ and System T as two variants of
the simply-typed λ-calculus.

We are facing quite a bothersome issue there. We claimed that our translation was
an instance of a proof-as-program interpretation of logic, but it turns out it does not
even preserve the semantics of the source proof seen as a program. This is only half of a
failure, though. Even though the translation does not agree with the semantics, we have
nice type decompositions respecting the dualities of linear logic.
It should be obvious to a pair of trained eyes that the source of the above failure is

the requirement of the merge operations and their evil counterparts, the dummy terms,
for they are totally lacking any form of naturality in the categorical acceptance of the
term. The next chapter shows that it is actually possible to get around it, in a clean and
algebraic fashion.

141

9 A realizability account

La logique mène à tout, à condition
d’en sortir.

Alphonse Allais about realizability.

This chapter is dedicated to the elaboration of a presentation of the Dialectica trans-
lation that does work well, based on De Paiva’s linear decomposition presented before.
By carefully choosing one decomposition or another, we will be able to describe precisely
the computational content hidden beneath the translation and unravel the true nature
of Dialectica as a translation adding a certain class of side-effects in our programming
language. This line of work is heavily influenced by Krivine and Miquel’s presentation
of forcing in Krivine’s realizability [81].

9.1 Introducing multisets

In this section, we are first going to get rid of the last encoding artifact of the previous
presentations, ultimately inherited from the historical Dialectica.

9.1.1 Motivations

The reader should have remarked by now that all the previous presentations required the
same tricks to allow to write the realizers.

• on the one hand, we need to be able to write out dummy terms, to fill holes when
there is no way to construct a term of the given type from the context

• on the other, we need to be able to decide orthogonality, in order to dynamically
choose from a witness or another

Recall that the dummy term is not canonical in general; in the case of witnesses for
proofs of the sum + one could actually choose either side and feed it with the correspond-
ing dummy term of that side. This is one of the issue we encounter when carelessly trying
to prove that our translation should preserve β-equivalence of λ-terms. In particular, we
do not have the desirable equality

mergeA zA π t ≡β π

even when π and t are well-typed.

143

9 A realizability account

Worse, the very need to be able to define dummy terms forces use to have all interpreted
types inhabited, and in particular requires that we interpret the empty type 0 by the
singleton type 1, furthermore requiring a term placeholder in the elimination rule of 0.
Recall that in the translation of the λ×+-calculus, we posed indeed

(Γ ` match t with [·] : C)• := zC

because t• had type 1, so we could not use the usual elimination rule of falsity on it to
produce a proof of C.

All these observations hint at the fact that the issue stems from the use of dummy
terms and merge. If we look carefully at the soundness proof, be it from the historical
translation or in the λ×+-case, we do not require much from those structures. The
following suffices:

• at the level of terms, zA must exists;

• at the level of realizability, merge must commute with the realization relation, as
in Proposition 41.

More importantly, in the translation of pure intuitionistic sequents or λ×+-terms, if we
forget about the elimination of 0, those two terms are only used when defining the reverse
translations (−)◦ and (−)x. In particular, they only appear on counter types coming
from a bang type in the linear decomposition. This is no surprise, because as outlined
in the historical case, dummy terms are used when there is some form of weakening
occurring, while merge is used for duplication. And those use cases are precisely the task
of exponentials in linear logic.

9.1.2 Formal definition

Therefore, we are going to algebraize this behaviour by assuming an abstract datatype
featuring the same properties as z and merge, but compatible with β-equivalence. This
will be the rôle of abstract multisets.

Definition 101 (Abstract multisets). An abstract multiset datastructure is given by:

• a parameterized type M (−);

• two operations giving it a monad signature:

{·} : A→MA
>>= : MA→ (A→MB)→MB

• two operations giving it a monoid signature:

ø : MA
� : MA→MA→MA

144

9.1 Introducing multisets

We do not ask for particular equality of terms now. We will make them explicit when
we need it later on. For now, one may truthfully think of it as respecting monad laws
and equipped with a monoidal structure.
Note that we will be using infix notations in λ-terms in the remaining of this chapter,

to ease the reading of terms. As usual, >>= is left associative and binds less tightly than
application but more than pattern matching. The � operation is left associative and
binds more tightly than anything except application.

As explained before, we change the type interpretation of the bang connective in the
translation of linear logic type to make it use the abstract multiset structure.

Definition 102 (Linear translation revisited). Given a linear logic type A, we will define
two λ×+-types W(A) and C(A) by induction on A as given below.

W(−) C(−)

1 1 1

A⊗B W(A)×W(B)

{
W(A)→ C(B)
W(B)→ C(A)

0 0 1

A⊕B W(A) + W(B) C(A)× C(B)

!A W(A) W(A)→MC(A)

A⊥ C(A) W(A)

Remark that compared to the definition from Section 8.4, we only changed the inter-
pretation of W(0) and C(!A). The first change is motivated by the removal of now useless
dummy terms, while the second has been discussed more thoroughly above.

9.1.3 A taste of déjà-vu

Remark 13. The use of abstract multisets corresponds to the notion of Hyland’s well-
behaved monoids [58]. While the former uses it in the context of double-glueing, we use
it here in the Dialectica translation, which was one of the roots for the design of the
double-glueing construction.

Actually, the use of such a structure is not novel. It is a generalization of the Diller-
Nahm construction [40].

Proposition 55. If we take M := Pf to be the finite set structure with the expected
operations, and compose with the [[·]]e translation, we recover the so-called Diller-Nahm
variant of the Dialectica translation.

There is quite a methodologic difference though. The Diller-Nahm translation is mo-
tivated by the fact that the original translation requires atomic types to be inhabited,

145

9 A realizability account

which may be much too strong from the logical point of view. That is not our base
motivation, as we aim to recover the preservation of β-equivalence, which is a much more
proof-theoretical demeanour. Moreover, the target system of the Diller-Nahm translation
is often thought of as a variant of some set theory, which is essentially non-computable.
We, in turn, take it to be a true programming language equipped with types. This is
another difference.

9.1.4 The whereabouts of orthogonality

The reader should have noticed by now that we did not mention the orthogonality relation
defined on the multiset-using types. This is perfectly doable, as long as we have a notion
of being true at each elements for our abstract multisets. In that case, we could define

(!A)D[w, z] := ∀x ∈ z w.AD[w, x]

where the ∈ notation stands for the property of pointwise truth. This is actually doable,
basing ourselves on the case of the Diller-Nahm translation which is a particular instance
of this datastructure. Nonetheless, there are some particular points that will refrain
ourselves from pursueing into this direction.

• First, as far as preservation of reduction is concerned, we actually do not need
orthogonality anymore. A careful design of translation will be sufficient to ensure
that, if we bothered about orthogonality, our translated terms would actually verify
the realizability relation. Another way to state it is that we now only care of the
computational contents of the skeleton of our proofs, not on the internalized logical
properties they convey.

• Second, orthogonality can chiefly be seen as a way to rule out unsoundness of
the resulting model when allowing proof terms inhabiting any type. Once we get
rid of the dummy terms we were using all along, soundness will be preserved by
construction, i.e. by choosing to interpret the empty type as itself.

For these reasons, we will now drop the orthogonality conditions of our translated
terms and only focus on their respective definitions and types.

9.2 The call-by-name translation

In this section, we present the Dialectica translation obtained by composing its linear
version with the call-by-name translation from intuitionistic logic into linear logic. We
will be letting ourselves guide by the type translation to elaborate the term translation.
We first focus on the pure λ-calculus as a source language, for its simplicity, although

we will extend it to positive connectives in a subsequent section. Therefore, we will
restrict to the following type grammar.

A,B := α | A→ B

As we will see, the translation requires pairs, so our target language will be the subset of
the λ×+-calculus deprived of sum types but enriched with an abstract multiset datatype.

146

9.2 The call-by-name translation

9.2.1 Type translation

Definition 103 (Call-by-name decomposition). We recall that the call-by-name linear
decomposition [[·]]n described at Section 3.4.1 is inductively defined over our types as

[[α]]n := α
[[A→ B]]n := ![[A]]n ([[B]]n

while sequents are interpreted as

[[Γ1, . . . ,Γn ` A]]n := ![[Γ1]]n (. . . (![[Γn]]n ([[A]]n

Proposition 56. The resulting type translations on the arrow type are:

W([[A→ B]]n) := (W([[A]]n)→W([[B]]n))× (C([[B]]n)→W([[A]]n)→MC([[A]]n))
C([[A→ B]]n) := W([[A]]n)× C([[B]]n)

Note that these types are, up to isomorphism and to the introduction of multisets, the
same as those obtained in the exotic decomposition.

If we were to use the linear type interpretations W(−) and C(−) on sequent transla-
tions, we would obtain a convoluted translated type. Instead of doing so, we choose to
see sequent translation through an isomorphism, resulting in a presentation close to the
previous sections.

Proposition 57. Let Γ1, . . . ,Γn and A be intuitionistic types, then we have the following
isomorphism.

W([[Γ1, . . . ,Γn ` A]]n) ∼=

W([[Γ1]]n)→ . . . →W([[Γn]]n)→W([[A]]n)

×

W([[Γ1]]n)→ . . . →W([[Γn]]n)→ C([[A]]n)→MC([[Γ1]]n)

×

. . .

×

W([[Γ1]]n)→ . . . →W([[Γn]]n)→ C([[A]]n)→MC([[Γn]]n)

Proof. By induction on n.

We can clearly see that the translation of a sequent produces two types of objects, as
in the previously presented translations.

• the first component of type

W([[Γ1]]n)→ . . . →W([[Γn]]n)→W([[A]]n)

is what corresponds to the direct translations (−)• of the historical and revised
cases.

147

9 A realizability account

• for each free variable (xi : Γi), a term of type

W([[Γ1]]n)→ . . . →W([[Γn]]n)→ C([[A]]n)→MC([[Γi]]n)

which corresponds to the i-th projection of the historical reverse translation (−)◦

and to the revised translation (−)xi itself.

Thanks to the isomorphism, we can make the obvious observation that those two type
translations share a common prefix, which is precisely the W([[−]]n) translation applied
to the environment pointwise.
This observation greatly simplifies the translation: we can handle free variables directly,

by simply making the design choice that the translation preserves them (up to a type
lifting).

9.2.2 Term translation

As in the previous variant of the translation, we keep the respective names (−)• and
(−)x for some variable x for the two translations, which we formally define below.

Definition 104 (Term translation). Given a λ-term t and a variable x, we mutually
define the translations t• and tx by induction on t below.

x• := x

(λx. t)• := (λx. t•, λπ x. tx π)

(t u)• := fst t• u•

xx := λπ. {π}

xy := λπ. ø

(λy. t)x := λ(y, π). tx π

(t u)x := λπ. (snd t• π u• >>= λρ. ux ρ) � (tx (u•, π))

As explained above, this translation copreserves free variables.

Proposition 58. For all term t and variables x, y, if x is free in t• or in ty, then it is
free in t.

Proof. By induction on t. The interesting detail one should look at is the fact that
translations of the λ-abstraction also close the bound variable.

Another interesting remark regarding free variables has to be made in the translation
of λ-abstractions. Assume a term λx. t for instance. Then x is (potentially) free in t,
but not in λx. t. So there is an additional reverse translation tx available to t, but not
to λx. t. In order not to lose this information, (λx. t)• packs it into a pair. Hence we
can see the reverse translation of arrows as a way to keep information coming from the
variable being bound.

148

9.2 The call-by-name translation

9.2.3 Typing soundness

As with the previous translations, and as expected, this translation preserves typing in
the following sense.

Theorem 22 (Typing soundness). If

x1 : Γ1, . . . , xn : Γn ` t : A

then
x1 : W([[Γ1]]n), . . . , xn : W([[Γn]]n) ` t• : W([[A]]n)

and
x1 : W([[Γ1]]n), . . . , xn : W([[Γn]]n) ` txi : C([[A]]n)→MC([[Γi]]n)

for all 1 ≤ i ≤ n.

Proof. By induction on the typing derivation.

• Suppose x1 : Γ1, . . . , xn : Γn ` xi : Γi. We must provide the following three typing
derivations, where i 6= j.

x1 : W([[Γ1]]n), . . . , xn : W([[Γn]]n) ` xi : W([[Γi]]n)

x1 : W([[Γ1]]n), . . . , xn : W([[Γn]]n) ` λπ. {π} : C([[Γi]]n)→MC([[Γi]]n)

x1 : W([[Γ1]]n), . . . , xn : W([[Γn]]n) ` λπ. ø : C([[Γi]]n)→MC([[Γj]]n)

These derivations are obvious.

• Suppose Γ ` λx. t : A→ B. We must check that:

W([[Γ]]n) ` λx. t• : W([[A]]n)→W([[B]]n)

W([[Γ]]n) ` λπ x. tx π : C([[B]]n)→W([[A]]n)→MC([[A]]n)

W([[Γ]]n) ` λ(x, π). ty π : W([[A]]n)× C([[B]]n)→MC([[C]]n)

when (y : C) ∈ Γ. Then the first typing derivation comes from the induction
hypothesis on t•, the second one from the hypothesis on tx and the third one from
the hypothesis on ty.

• Suppose Γ ` t u : B, where Γ ` t : A→ B. We must check that:

W([[Γ]]n) ` fst t• u• : W([[B]]n)

W([[Γ]]n) ` λπ. (snd t• π u• >>= λρ. ux ρ) � (tx (u•, π)) : C([[B]]n)→MC([[C]]n)

149

9 A realizability account

when (x : C) ∈ Γ. The first derivation is obtained by applying the induction
hypothesis to t• and u•. The second one can be decomposed in the two following
derivations.

W([[Γ]]n), π : C([[B]]n) ` snd t• π u• >>= λρ. ux ρ : MC([[C]]n)

W([[Γ]]n), π : C([[B]]n) ` tx (u•, π) : MC([[C]]n)

But by induction hypothesis, we get

W([[Γ]]n), π : C([[B]]n) ` snd t• π u• : MC([[A]]n)

W([[Γ]]n) ` ux : C([[A]]n)→MC([[C]]n)

W([[Γ]]n) ` tx : C([[A→ B]]n)→MC([[C]]n)

W([[Γ]]n), π : C([[B]]n) ` (u•, π) : C([[A→ B]]n)

so we conclude by reassembling those typing derivations.

9.2.4 Computational soundness

We will now prove properties of preservation of term reduction through the translation.
Recall that this is the default that led us to the design of the multiset-using version of
Dialectica. Therefore, this theorem is probably the most important about the revised
translation!
In order for us to be able to do so, we first need to explain the expected computational

behaviour of abstract multisets.

Definition 105 (Multiset reductions). We expect the following β-equivalences on ab-
stract multisets.

• Monadic laws:

{t} >>= f ≡β f t
t >>= λx. {x} ≡β t
t >>= f >>= g ≡β t >>= λx. g (f x)

• Monoidal laws:

ø � t ≡β t
t � u ≡β u � t
t � (u � v) ≡β (t � u) � v

• Distributivity laws:

150

9.2 The call-by-name translation

ø >>= f ≡β ø
t � u >>= f ≡β (t >>= f) � (u >>= f)
t >>= λx. ø ≡β ø
t >>= λx. (f x) � (g x) ≡β (t >>= f) � (u >>= g)

• Commutative cuts:

match t with (x, y) 7→ ø ≡β ø
match t with (x, y) 7→ u1 � u2 ≡β

(match t with (x, y) 7→ u1) � (match t with (x, y) 7→ u2)
match t with (x, y) 7→ {u} ≡β {match t with (x, y) 7→ u}
match t with (x, y) 7→ (u >>= f) ≡β match t with (x, y) 7→ u >>= f

The rules that manipulate bound variables are only valid with the usual convention
that they cannot create free variables.

We should discuss those rewriting rules a bit. The first three sets are what would be
expected for a structure exhibiting the same algrebraical structure as a monad equipped
with an internal commutative monoidal structure. The commutative cuts are a technical
impediment appearing frequently when mixing positive types such as pairs together with
other structure. Such artifacts tend to hint at the fact that elimination rules of positive
connectives are badly behaved in natural deduction; and indeed they work more neatly
in sequent calculus, see for instance Munch [84].

Concerning their implementability in our λ-calculus, one should not worry too much.
Indeed, we do not really care about this in the translation. These reduction rules should
be thought of as applying to an abstract datatype, where all those equivalences are
handled directly in the machine interpreting our calculus.

Notation 9. Because the union is associative, we will drop the parentheses around
multiple union applications for legibility.

Thanks to the rewriting rules we now have at hand, we can state and prove the reduc-
tion properties of the translation.

Proposition 59 (Emptiness). Let t be a λ-term and x a variable which is not free in t.
Then the following holds.

tx ≡β λπ. ø

Proof. By induction on t.

• Case y. Necessarily x 6= y, hence yx := λπ. ø.

• Case λy. t. We have
(λy. t)x := λ(y, π). tx π

so that by induction hypothesis, we recover

(λy. t)x ≡β λ(y, π). ø

151

9 A realizability account

but recall that the right-hand side is just a notation, which, once unfolded results
in the following equivalence

(λy. t)x ≡β λρ. match ρ with (y, π) 7→ ø

where ρ is fresh. We conclude by applying the commutative cut rule.

• Case t u. We have

(t u)x := λπ. (snd t• π u• >>= λρ. ux ρ) � (tx (u•, π))

which results in the following when we rewrite the induction hypotheses:

(t u)x ≡β λπ. (snd t• π u• >>= λρ. ø) � ø

We conclude by applying distributivity and monoidal rewriting rules.

The following is a purely technical lemma, which does not provide any insight in the
translation.

Proposition 60 (Expansion lemma). For all term t and variable x, tx ≡β λπ. tx π for
some fresh variable π.

Proof. Trivial case analysis on the term. All of our reverse translations start with a
λ-abstraction, so that there is no need to apply some form of η-rule (which we do not
have anyway).

We can now state the generic substitution lemma. Note that we have to generalize it a
little to make it pass it through. The second part of the equivalence may seem cryptic at
first view, but its meaning will be deciphered when studying the computational content
of the translation.

Proposition 61 (Substitution lemma). Let t and r be terms and x, y variables. Then
the following holds.

(t[x := r])• ≡β t•[x := r•]

and
(t[x := r])y ≡β λπ. (ty[x := r•] π) � (tx[x := r•] π >>= λρ. ry ρ)

when x 6= y and x is not free in r.

Proof. By simultaneous induction on the λ-term t.

• Case x. We have for the first equivalence:

(x[x := r])• ≡β r• ≡β x[x := r•] ≡β x•[x := r•]

while the second one gives for the left-hand side:

(x[x := r])y := ry

when the right-hand side is:

152

9.2 The call-by-name translation

λπ. (xy[x := r•] π) � (xx[x := r•] π >>= λρ. ry ρ)
≡β λπ. ø � ({π} >>= λρ. ry ρ)
≡β λπ. ry π

We conclude by applying the expansion lemma.

• Case y. For the first equivalence we have

(y[x := r])• ≡β y ≡β y[x := r•] ≡β y•[x := r•]

For the left-hand side of the second we get:

(y[x := r])y ≡β yy ≡β λπ. {π}

while for the right-hand side we have:

λπ. (yy[x := r•] π) � (yx[x := r•] π >>= λρ. ry ρ)
≡β λπ. {π} � (ø >>= λρ. ry ρ)
≡β λπ. {π}

• Case z 6= x, y. The first equivalence is the same as the previous case. We focus on
the second one instead. The left-hand side gives:

(z[x := r])y ≡β zy ≡β λπ. ø

and the right-hand side gives:

λπ. (zy[x := r•] π) � (zx[x := r•] π >>= λρ. ry ρ)
≡β λπ. ø � (ø >>= λρ. ry ρ)
≡β λπ. ø

from which we conclude.

• Case λz. t. We have for the first equation:

((λz. t)[x := r])•

≡β (λz. t[x := r])•

≡β (λz. (t[x := r])•, λπ z. (t[x := r])z π)

while the right-hand side is:

(λz. t)•[x := r•]
≡β (λz. t•[x := r•], λπ z. tz[x := r•] π)

The left projections of these pairs are provably β-equivalent thanks to the induction
hypothesis. It remains to be proved that the right projections are also β-equivalent.
Thanks to the reverse induction hypothesis applied to t with the variable z, we get:

153

9 A realizability account

λπ z. (t[x := r])z π
≡β λπ z. (tz[x := r•] π) � (tx[x := r•] π >>= λρ. rz ρ)

Yet, z is not free in r because it was a bound variable of the considered term. So
thanks to the emptiness lemma, we obtain:

λπ z. (t[x := r])z π
≡β λπ z. (tz[x := r•] π) � (tx[x := r•] π >>= λρ. ø)

and hence, with a bit of multiset rewriting:

λπ z. (t[x := r])z π ≡β λπ z. tz[x := r•] π

which is precisely the equivalence we had to prove.

We now turn to the reverse equation. The left-hand side gives us:

((λz. t)[x := r])y
≡β (λz. t[x := r])y
≡β λ(z, π). (t[x := r])y π

so that by induction hypothesis, we get:

((λz. t)[x := r])y
≡β λ(z, π). (ty[x := r•] π) � (tx[x := r•] π >>= λρ. ry ρ)
≡β λπ. match π with (z, π) 7→ (ty[x := r•] π) � (tx[x := r•] π >>= λρ. ry ρ)

As z is free in r, we may apply a series of commutative cut rules by making the
head pattern-matching dive into the term. This results in the following:

((λz. t)[x := r])y
≡β λπ. (match π with (z, π) 7→ ty[x := r•] π) �

(match π with (z, π) 7→ tx[x := r•] π >>= λρ. ry ρ)

but it turns out this is, up to introduction of a dummy β-redex on π on each side,
the unfolding of the right-hand side we were looking for. Therefore we are done.

• Case t u.

We have:

((t u)[x := r])• ≡β (t[x := r] u[x := r])•

≡β fst (t[x := r])• (u[x := r])•

≡β fst t•[x := r•] u•[x := r•]
≡β (t u)•[x := r•]

154

9.2 The call-by-name translation

by applying the induction hypotheses to t and u, giving us the expected result.

The reverse equation is quite technical, as this is the most complicated translation
of all λ-terms. We derive each term and check that they agree. The left-hand side
gives us:

((t u)[x := r])y
≡β (t[x := r] u[x := r])y
≡β λπ. (snd (t[x := r])• π (u[x := r])• >>= λρ. (u[x := r])y ρ) �

((t[x := r])y ((u[x := r])•, π))

≡β λπ. (snd t•[x := r•] π u•[x := r•] >>= λρ. (u[x := r])y ρ) �
((t[x := r])y (u•[x := r•], π))

≡β λπ. (snd t•[x := r•] π u•[x := r•] >>= λρ. uy[x := r•] ρ) �
(snd t•[x := r•] π u•[x := r•] >>= λρ. ux[x := r•] ρ >>= λχ. ry χ) �
(ty[x := r•] (u•[x := r•], π)) �
(tx[x := r•] (u•[x := r•], π) >>= λρ. ry ρ)

To go from the penultimate line to the last one, we used the disjunction properties
of the union operator w.r.t. the bind of the monad.

We now reduce the right-hand side of the equation:

λπ. ((t u)y[x := r•] π) � ((t u)x[x := r•] π >>= λρ. ry ρ)

≡β λπ. (snd t•[x := r•] π u•[x := r•] >>= λρ. uy[x := r•] ρ) �
(ty[x := r•] (u•[x := r•], π)) �
(snd t•[x := r•] π u•[x := r•] >>= λχ. ux[x := r•] χ >>= λρ. ry ρ) �
(tx[x := r•] (u•[x := r•], π) >>= λρ. ry ρ)

We used the left-disjunction of union over bind in the rewriting. But a careful gaze
at the term obtained reveals that is no more than the result of the left-hand side, up to
α-renaming and commutativity of the union operator. Thus we proved the property.

We are now able to prove the main theorem that states that β-equivalence is preserved
by the translation.

Theorem 23 (Computational soundness). If t1 ≡β t2 then

t1
• ≡β t2

•

t1x ≡β t2x

for any variable x.

Proof. By induction on the β-equivalence. The contextual rules are all straightforward,
because our translation is built by induction over the structure of the considered λ-term.
Note that the one place in the forward translation were we need equating reverse trans-
lations is the λ-abstraction, which packs a reverse translation together with a forward
translation. This is what forces us to also prove the second equation at the same time.

155

9 A realizability account

Hence we only describe the complicated case, that is, β-reduction itself.

We must therefore first show the first equation, i.e.:

((λy. t) u)• ≡β (t[y := u])•

By deriving the left-hand side, we get:

((λy. t) u)• ≡β fst ((λy. t•), (λπ y. ty π)) u•

≡β (λy. t•) u•

≡β t•[y := u•]
≡β (t[y := u])•

which is precisely the equation we were looking for. The last line is obtained thanks to
the substitution lemma.
We now turn to the second equation. We must show:

((λy. t) u)x ≡β (t[y := u])x

From the left-hand side, we get:

((λy. t) u)x ≡β λπ. (snd ((λy. t•), (λπ y. ty π)) π u• >>= λρ. ux ρ) �
((λ(y, ρ). tx ρ) (u•, π))

≡β λπ. ((λπ y. ty π) π u• >>= λρ. ux ρ) � ((λ(y, ρ). tx ρ) (u•, π))
≡β λπ. (ty[y := u•] π >>= λρ. ux ρ) � (tx[y := u•] π)

By applying the reverse substitution lemma, it turns out this is, up to a commutation
of the union, the right-hand-side term. Thus we proved the equation.

As expected, the multiset-using Dialectica translation features a much more proof-
theoretical behaviour than its more antique variants. There is something strange enough
to be highlighted in the introduction of multisets. Indeed, as explained above, such a
construction is not novel, because the Diller-Nahm translation is an instance of our own
translation, with multisets being instantiated as finite sets. Nonetheless, the motivation
for their introduction is not the same in the two cases.

• We wanted to recover preservation of β-equivalence;

• The Diller-Nahm variant aimed at getting rid of the requirement that orthogonality
on atoms is decidable.

We find it rather peculiar that the same modification brings us with two sharp im-
provements over the traditional Dialectica. Yet, the most intriguing fact to us is that
up to the present work, it seems that nobody ever realized that the Diller-Nahm vari-
ant also solved the β-equivalence preservation issue. We conjecture that the Dialectica
community was not interested in the proof-theoretical properties per se of their various
translations, preferring the study of their logical expressiveness instead.

156

9.3 KAM simulation

9.3 KAM simulation

This section is dedicated to our main result on the Dialectica translation. It essentially
explains what the translation is actually doing from the point of view of the dynamics
of the program. We want to exploit the Curry-Howard isomorphism in the proof-to-
program direction, and describe the target of the Dialectica translation as a λ-calculus
enriched with some side-effect.
The essential tool on which this work is based is the Krivine abstract machine, already

described at Section 2.4.1. We will use in quite an involved way the structures it uses.
To spill the beans quickly for the impatients, the Dialectica translation is a way to

manipulate first-class observable stacks in a program, in a way similar to delimited con-
tinuations. Such stacks are constructed thanks to the reverse translations.
First, let us give a thorough explanation of what we mean by first-class stacks.

9.3.1 Stacks as first-class objects

We want to explain here how we fooled the reader by hiding a fact that was in plain sight,
that is, we were already manipulating stacks in the Dialectica translation long before this
section. The main idea is that the counter types C(−) from the Dialectica translation
are actually the types of stacks accepting the corresponding witnesses. Let us give a bit
of typing to make things clearer.

Definition 106 (Stack typing). We define a typing system over stacks and environments.
We write ` π : A when the stack π has type A, and σ ` Γ when the environment σ has
type Γ, where Γ is a list of hypotheses as in the typing of terms. The derivations rules
are given below.

` ε : A

` π : B σ ` Γ Γ ` t : A

` (t, σ) · π : A→ B

· ` ·
τ ` ∆ ∆ ` t : A σ ` Γ

σ + (x := (t, τ)) ` Γ, x : A

One should not be upset by the convention we use in this definition. In particular, the
fact we give a stack an arrow type should be thought of as coming through the looking
glass: the actual type for the stack is the dual of an arrow, where the meaning of dual is
the one of linear logic. Indeed, we have

([[A→ B]]n)⊥ ≡ (![[A]]n ([[B]]n)⊥ ≡ ![[A]]n ⊗ ([[B]]n)⊥

and the stacks of type A→ B are precisely given by a pair of a closure of type A and a
stack of type B (i.e. the dual). Should we have taken another linear decomposition, we
would then have recovered a different notion of stacks.
The idea that stacks matter and that their nature differs in the various calling con-

ventions is pervasive in modern works, and can be found in a whole range of rather
distinct systems. We consider that the current matter is in the wake of the various works
mentioned below.

157

9 A realizability account

• Krivine’s realizability, briefly recalled in Section 2.4.2. Although rooted in com-
putation, it is a technique used to construct models of various theories, see for
instance Krivine [70] or Miquel [82]. For a high-level synthetic presentation, the
paper by Oliva and Streicher [90] is probably one of the best summaries. In classical
realizability, stacks play a central rôle because the realization property on terms
is a notion derived from the so-called falsity values, that are more primitive and
defined in terms of stacks.

• The λ̄µµ̃-calculus, developed by Curien and Herbelin [35]. The main goal of this
calculus is to highlight the duality that exists between objects in call-by-name and
call-by-value. Stacks are given a first-class treatment, as they are actually dual to
terms, and thus named co-terms in this setting.

• Munch’s System L [84] is the offspring of the two previous objects. It can be seen
as a simplification of λ̄µµ̃ guided by intuitions provided by classical realizability.
It also shares a strong relationship with linear logic, and in particular polarization
principles, up to the point where it can be considered as a term syntax for Girard’s
unified logic framework LC [43].

• This point of view is somehow implicitly present in Levy’s Call-by-Push-Value [76]
to some extent. This is due to the fact that CBPV and λ̄µµ̃ share the same purpose,
namely being a universal framework to describe various calling conventions.

Something to be insisted on in this trend of relevant stacks is the property that stacks
are not merely continuations, i.e. blackbox closures that can only be fired to escape the
context, but instead inductive objects that can be observed and pattern-matched as well.
We will make this intuition more concrete later on.

The interesting fact about stack typing is that the KAM reduction verifies a sort of a
subject reduction property.

Proposition 62 (Subject reduction). Let t be a term, σ an environment and π a stack
such that there exists Γ and A such that we have the following typing derivations.

Γ ` t : A ` π : A σ ` Γ

Assume now that there exists a process 〈(r, τ) | ρ〉 such that the reduction below holds.

〈(t, σ) | π〉 −→ 〈(r, τ) | ρ〉

Then there exists ∆ and B such that we have the following typing derivations.

∆ ` r : B ` ρ : B τ ` ∆

Proof. By case analysis over the possible reductions.

158

9.3 KAM simulation

• Assume 〈(x, σ + (x := (t, τ))) | π〉 −→ 〈(t, τ) | π〉. Inverting the typing hypotheses
on the first process ensures us that there exist some Γ, ∆ and A such that we have
the typing derivations below.

σ ` Γ τ ` ∆ ∆ ` t : A ` π : A

Therefore the reduced process is trivially typable by forgetting about the typability
of σ.

• Assume 〈(x, σ + (y := (t, τ))) | π〉 −→ 〈(x, σ) | π〉. The typing hypotheses on the
first process once inverted gives us the following typing derivations, for some Γ, ∆
and A where (x : A) ∈ Γ.

σ ` Γ τ ` ∆ ∆ ` t : B ` π : A

The reduced process is trivially typable by forgetting this time about the typability
of t.

• Assume 〈(t u, σ) | π〉 −→ 〈(t, σ) | (u, σ) · π〉. This means we have the following
typing derivations for some Γ, A and B.

Γ ` t : A→ B Γ ` u : A ` π : B σ ` Γ

But then we can derive straightforwardly

` (u, σ) · π : A→ B

so that we found the required typability.

• Assume 〈(λx. t, σ) | (u, τ) ·π〉 −→ 〈(t, σ+ (x := (u, τ))) | π〉. We have therefore the
typing derivations below for some Γ, ∆, A and B.

Γ, x : A ` t : B ` π : B ∆ ` t : A τ ` ∆ σ ` Γ

The desired typing is obtained by repacking everything, resulting in the following:

σ + (x := (u, τ)) ` Γ, x : A

Let us see how we can translate typed stacks from the KAM into counters of the
Dialectica translation. We first need a small technical apparatus to get rid of closures,
but this is not difficult.

Definition 107 (Closure flattening). If t is a term and σ an environment, we define the
flattening of the closure (t, σ) as the term t n σ, inductively defined on σ as follows.

159

9 A realizability account

t n · := t
t n σ + (x := (u, τ)) := (t[x := u n τ]) n σ

We will only be manipulating closed terms in the translation, so that the exact choice of
when we do the substitution in the second case does not matter, as x is not inadvertently
captured.
As expected, the flattening of a closure behaves well with respect to typing.

Proposition 63. Let t and σ be respectively a term and a closure such that we have the
following typing derivations.

Γ ` t : A σ ` Γ

Then ` t n σ : A.

Proof. By induction on σ.

• If the environment is empty, then the statement is trivially true.

• Assume now that we have the typing derivation below.

Γ, x : B ` t : A σ + (x := (u, τ)) ` Γ, x : B

The typing of the environment provides us with a certain ∆ such that ∆ ` u : B
and τ ` ∆. Therefore, by induction hypothesis on τ , we have that ` u n τ : B. By
substituting, we immediately get that

Γ ` t[x := u n τ] : A

from which we conclude using the induction hypothesis on σ.

Now we have gathered all ingredients at hand to be able to dispell the growing im-
patience of the reader: we will show how to properly translate stacks from the KAM
through the Dialectica translation. It is rather simple actually, because call-by-name
stacks are themselves rather dull, at least when only considering the λ-calculus. Call-
by-name stacks of the negative fragment are indeed a purely first-order datastructure.
Thence the translation is very straightforward, and it interprets stacks as pairs.

Definition 108 (Stack translation). Let π be a KAM stack. We define the λ×+-term
π• by induction over π.

ε• := ε
((t, σ) · π)• := ((t n σ)•, π•)

Here ε is a special λ-variable reserved for that use.

160

9.3 KAM simulation

Note that we do not bother with the stack bottom, in the stack typing as well as in
the stack translation: in the first case we arbitrarily decided that we could give it any
type, while in the second we just translated it as a special variable. We could have, and
should have been more precise if we were interested in translations actually messing with
the stack bottom, as it is the case for instance in call-by-name delimited continuations.
This issue is not relevant in this section, so we will just forget about it.

As we were hoping for, the stack translation is compatible with the typing translation
induced by the typing Dialectica translation on terms.

Proposition 64 (Stack typing soundness). Let π be a stack such that ` π : A. Then
there exist a type R such that

ε : C([[R]]n) ` π• : C([[A]]n)

Proof. By induction on the typing derivation of π.

• If ` ε : A, then R := A and this is trivially true.

• If ` (t, σ) · π : A→ B, by combining the typing preservation of flattening and the
Dialectica typing soundness, we get that

` (t n σ)• : W([[A]]n)

and from the induction hypothesis on π we know that there exists some R such
that

ε : C([[R]]n) ` π• : C([[B]]n)

Recall that C([[A→ B]]n) := W([[A]]n)× C([[B]]n), so that we immediately get the
typing derivation below.

ε : C([[R]]n) ` ((t, σ) · π)• : C([[A→ B]]n)

This is what we were looking for.

The result above ensures us that the KAM stacks have an actual existence in the
Dialectica translation. Indeed, they exist in the target language as well-typed objects.
There is a slight mismatch though, because we have to flatten all closures in the trans-
lation. This results in a small loss of information. As we will see, the main result of this
section crucially uses closures, but it only does so on the head closure of the machine, not
on the ones coming from the stack. This is why this mismatch is of little consequence.

161

9 A realizability account

9.3.2 Realizability interpretation

Now that we have given a real existence to stacks that otherwise only exist under the form
of ghostly objects known as contexts, we can start trying to explain how they appear in
the Dialectica translation.
Notice that indeed, the Dialectica translation makes stacks appear on intuitionistic

objects: recall that the witness translation of the arrow type is defined as

W([[A→ B]]n) := (W([[A]]n)→W([[B]]n))× (C([[B]]n)→W([[B]]n)→MC([[A]]n))

so that stacks gatecrash into the translation even in purely intuitionistic types. This
means that if we wish to give a realizability account of the Dialectica translation, we
better have to explain what rôle those stacks actually have.

The main hint that should be leading us is the strange-looking equality found in the
substitution lemma for the reverse translation. Recall that we have indeed

(t[x := r])y ≡β λπ. (ty[x := r•] π) � (tx[x := r•] π >>= λρ. ry ρ)

when x 6= y and y not free in r. While the left side of the union is what should be the
naturally expected term, the right one is a bit at odds with the remainder. What does
ry has to do with all this? The very existence of the right-hand side term hints at the
fact that something fancy is happening during substitution. Likewise, the translation of
the λ-abstraction suggests that we do care about free variables: the −x terms obviously
deal with them.
Precisely, the KAM features itself a fancy substitution: instead of substituting terms

upfront when encountering a β-redex, the KAM delays the substitution until a substi-
tuted variable ends in head position of the machine, while hitherto keeping the substi-
tutive term in a closure. In particular, closures retain their free variables, giving more
structure to substituted terms.

Looking at types is even more interesting: the π and ρ in the resulting term of the
substitution are themselves typed with a counter type, i.e. those variables stand for a
stack in the KAM.

Its featured first-class stacks and delayed substitution support the idea that the KAM
is probably one of the best object to describe the dynamic behaviour of the Dialectica
translation.

We will now phrase the simulation result in a few suggestive words, then formally state
and prove it, to finally come back on it afterwards.

Theorem 24 (Pseudo-KAM simulation). Given a λ-term t, the term tx captures all the
stacks that appear in front of the head variable x in the reduction of 〈t | π〉.

The above claim is not formal, but it gives the broad idea. We now turn to the formal
property, which is less intelligible than the previous handwavish version. We first need
some formal definitions to ease writing it out formally.

162

9.3 KAM simulation

Notation 10. Let m be a term1 and t some other term. Then we evocatively write
t ∈ m if there exists some term n such that

m ≡β {t} � n

This notation should be understood as the natural way to denote abstract multiset
membership. It indeed features most of the properties we would be expecting from the
membership relation.
Because we have to handle terms with free variables packed with environments, we

need to ensure a generalized version of Barendregt’s conditions on closures.

Definition 109 (Hereditary α-conversion). Let σ be an environment and t be a term.
We can lift α-conversion to the closure (t, σ) in a natural way, i.e. by regarding all
variables of t defined in σ as being bound, and recursively over the closures defined in σ.

Definition 110 (Hereditary freedom). Let σ be an environment and x be a variable.
We say that x is not free in σ if it does not appear in any term bindings of σ as well as
being recursively not free in any environment τ present in σ.

Remark 14. An alternative definition for a variable x not being hereditarily free in an
environment σ can be given as: x is not free in σ if for all term t, if x is a free variable
of t n σ, then it is also a free variable of t.

Definition 111 (Closure translation). If t is a λ-term and σ an environment, we write
t n σ• by analogy of the flattening for the term defined by induction on σ as follows.

t n (·)• := t
t n (σ + (x := (u, τ)))• := (t[x := (u n τ)•]) n σ•

We suppose that there is no capture of variables when doing such a substitution (oth-
erwise we α-convert the closure (t, σ)).

This suggestive notation commutes with the interpretation as expected.

Proposition 65. Let t be a term and σ an environment. Then

(t n σ)• ≡β t• n σ•

Proof. By induction on σ and repetitive application of the substitution lemma.

We finish by phrasing the simulation theorem below.

Theorem 25 (Formal KAM simulation). Let t be a λ-term, σ an KAM environment
and π a KAM stack, such that (t, σ) is closed. Assume some variable x not free in σ nor
in any closure of π.
If 〈(t, σ) | π〉 −→∗ 〈(x, τ) | ρ〉 for some τ and ρ, then ρ• ∈ (tx n σ•) π•.

1Hopefully denoting a multiset, but the definition makes sense for any term.

163

9 A realizability account

Proof. By induction on the length of the reduction, and case analysis of the first reduction
rule.

• Assume a reduction of length zero on 〈(x, σ) | π〉. In this case, we have

(xx n σ•) π• ≡β (λπ. {π}) π• ≡β {π•}

and obviously π• ∈ {π•} because

{π•} ≡β {π•} � ø

• Assume 〈(y, σ + (y := (u, τ))) | π〉 −→ 〈(u, τ) | π〉. By the freedom hypothesis on
x with respect to the original environment, we know that x cannot occur in head
position during the reduction of 〈(u, τ) | π〉 (up to α-renaming, it does not appear
anywhere in this process).

There are therefore two distinct cases: either x = y, or x 6= y. The first case
has already been handled above. The second case is vacuously true, because no x
appears in head of the machine at all. Note that in this case, we have

(yx n σ•) π• ≡β (λπ. ø) π• ≡β ø

• Assume 〈(λy. t, σ) | (u, τ) · π〉 −→ 〈(t, σ + (y := (u, τ))) | π〉. This case is straight-
forward. Indeed, by induction hypothesis we know that

ρ• ∈ (tx n (σ + (y := (u, τ)))•) π•

as x is still free in the closure and in the stack of the reduced process if we take y
to be fresh. But then we have

((λy. t)x n σ•) ((u, τ) · π)• ≡β ((λ(y, π). tx) n σ•) ((u n τ)•, π•)
≡β (λ(y, π). (tx n σ•)) ((u n τ)•, π•)
≡β (tx[y := (u n τ)•] n σ•) π•

≡β (tx n (σ + (y := (u, τ)))•) π•

so that we can conclude directly that

ρ• ∈ ((λy. t)x n σ•) ((u, τ) · π)•

• Assume 〈(t u, σ) | π〉 −→ 〈(t, σ) | (u, σ) · π〉. This is the most complicated case.
Let us first unfold the Dialectica interpretation of the process.

((t u)x n σ•) π•

≡β (snd (t• n σ•) π• (u• n σ•) >>= λρ. (ux n σ•) ρ) � ((tx n σ•) (u• n σ•, π•))

164

9.3 KAM simulation

There are two ways x may appear in head position of the process: either in a reduct
of t or in a reduct of u. It cannot appear anywhere else because of the freedom
hypothesis made on x. Each of these cases will correspond to one side of the union
in the reduced term above.

– In the first case, we can α-rename the closure (u, σ) into (û, σ̂) such that x
does not appear in u. Then there exists a reduction

〈(t, σ) | (û, σ̂) · π〉 −→∗ 〈(x, τ) | ρ〉

which is strictly shorter than the reduction we were considering, and which
behaves identically as the α-renaming is transparent for the KAM. The x
variable is also free in (û, σ̂) ·π so that we can apply the induction hypothesis
on this process. Therefore

ρ• ∈ (tx n σ•) ((û, σ̂) · π)•

Because we only α-renamed the closure, we still have

(u n σ)• ≡β u• n σ• ≡ û• n σ̂• ≡β (û n σ̂)•

from which we immediately get

ρ• ∈ (tx n σ•) (u• n σ•, π•)

and in particular
ρ• ∈ ((t u)x n σ•) π•

by a simple unfolding of the definition of ∈ and by using the reduction of the
term given at the beginning.

– In the second case, x appears because the closure (u, σ) came in head position.
To do so, (t, σ) must have reduced to a λ-abstraction. In particular, a quick
analysis of the possible reductions shows that there exists a term t0, a fresh
variable x0 and an environment σ0 extending σ such that

〈(t, σ) | (u, σ) · π〉 −→∗ 〈(λx0. t0, σ0) | (u, σ) · π〉

followed by the pattern of reduction given below

〈(λx0. t0, σ0) | (u, σ) · π〉 −→ 〈(t0, σ0 + (x0 := (u, σ))) | π〉

−→∗ 〈(x0, σ0 + (x0 := (u, σ))) | χ〉

−→ 〈(u, σ) | χ〉

−→∗ 〈(x, τ) | ρ〉

165

9 A realizability account

for some stack χ, where we can safely assume that x is not free in χ (otherwise
we α-rename it without affecting the considered reduction). But we can now
apply the induction hypothesis on the reduction sequence of (u, σ) against χ,
so that we know that:

ρ• ∈ (ux n σ•) χ•

Likewise, we can apply the induction hypothesis to the process 〈(t0, σ0+(x0 :=
(u, σ))) | π〉 but this time considering the reverse translation for the variable
x0. Thus we know that:

χ• ∈ (t0x0 n (σ0 + (x0 := (u, σ)))•) π•

Notice that we were able to apply the induction hypothesis in both cases
because the considered reduction was strictly shorter than the original one, as
witnessed by the first and third transitions which ensure that we do at least
one reduction step in each case.

From the reduction of the closure (t, σ), we also get immediately that

t n σ ≡β (λx0. t0) n σ0

by the soundness of the KAM itself. Some steps of rewriting eventually give
us that

t• n σ• ≡β (t n σ)•

≡β ((λx0. t0) n σ0)•

≡β (λx0. t0)• n σ0
•

≡β (λx0. t0, λπ x0. t0x0 π) n σ0
•

and in particular, if we look at the left-hand side of the reduction of the
original application process, we obtain

snd (t• n σ•) π• (u• n σ•) ≡β ((t0x0 [x0 := (u• n σ•)]) n σ0
•) π•

≡β (t0x0 n (σ0 + (x0 := (u, σ)))•) π•

so that, in the end,

χ• ∈ snd (t• n σ•) π• (u• n σ•)

By unfolding the ∈ notation and using the distributivity properties of the >>=
operator, we easily conclude that

ρ• ∈ snd (t• n σ•) π• (u• n σ•) >>= λρ. (ux n σ•) ρ

and therefore
ρ• ∈ ((t u)x n σ•) π•

which was what was to be proved.

166

9.3 KAM simulation

9.3.3 When Krivine meets Gödel

The moment has come when we have the global picture of the dynamic contents of the
Dialectica translation. The (−)x translation allows to capture the current stack each
time the variable x reaches head position. As this may occur several times, we have to
return a multiset instead of only one stack. In addition, we also need the current stack to
somehow delimit our returned stacks. The access to the current stack may be essential,
because it contains terms that may in turn reach head position, taking control over the
whole machine. This gives a very higher-orderish flavour to the Dialectica translation.
The fact that beneath the Dialectica translation was waiting for so long an interpre-

tation deeply relying on the properties of the KAM keeps us in awe. Who knew that
the seemingly ad-hoc definitions of the original Dialectica were hiding side-effects akin
to delimited continuations?
Let us now step back a moment and try to explain things we presented but with a new

light.

Proposition 66 (Substitution lemma revisited). Let us look again at the substitution
lemma on the reverse translations. Recall that we have the equation below.

(t[x := r])y ≡β λπ. (ty[x := r•] π) � (tx[x := r•] π >>= λρ. ry ρ)

It tells us no more than that the accesses to the variable y in the term t[x := r] can be
classified in two kinds of accesses.

• The left-hand side of the union corresponds to the accesses to y in the term t[x := r]
itself. This was expected.

• The substitution may nonetheless have created new accesses to y: these are precisely
described by the accesses to y in r when r is to be substituted by x when it comes in
head position. But this is exactly what is constructed by the right-hand side term

tx[x := r•] π >>= λρ. ry ρ

Indeed, the left argument of the bind constructs all accesses to x in t, that are then
passed to the accessors of y created by r, which is the right argument of the bind.

We can also revisit the historical presentation of the Dialectica translation, and com-
pare it with our hybrid of Diller-Nahm and Curry-Howardesque translation. The main
differences lies in the way the historical translation gets rid of the abstract multiset
datastructure.

• Instead of returning an empty multiset, the historical translation choose a canonical
placeholder materialized by the dummy term.

• When having to make the union of two multisets, the historical translation dy-
namically determines one the two terms to be picked, according to the decidable
orthogonality.

167

9 A realizability account

The main issue with this process is that the selection occurring when picking one of
the two terms is incorrect with respect to the operational semantics: it may choose a
dummy term just because in the current context, it wins against the considered term,
even though it is not a proper stack.

An intriguing fact is that even if our translation is call-by-name, in the sense that the
stacks we operate on are the one of the KAM, the resulting calculus by itself is by no
means call-by-name, i.e. the translation preserves all β-equivalences, not only the ones
valid in a call-by-name reduction strategy. This translation is therefore call-by-name
w.r.t. the notion of calculus, not to the one of strategies.

9.3.4 An unfortunate mismatch

While the simulation theorem is particularly informative, and can be seen as the uncover-
ing of the dynamical nature of the Dialectica translation when seen as a KAM translation
rather than a term one, there is still an itchy spot just under our fingers.
A reader granted with a keen eye may already have realized that there is a huge dis-

crepancy between the Dialectica translation and its KAM interpretation. The simulation
theorem relates indeed reduction sequences of the KAM with multisets of stacks. This
is were there is a catch.

• The KAM is fully sequential. With the reduction rules we provided, there is even
only one possible reduction path. This means that the stacks we observe in the
accesses to variables ought to be ordered with respect to the sequential order by
which they appear along the reduction.

• The Dialectica is not sequential. The use of multisets, as free commutative monoids
by excellence, forgoes any hope to recover some order relating it to the KAM.

One could naively use the natural candidate for free non-commutative monoids, namely,
lists. Unluckily, this is not possible.

Proposition 67. If we implement abstract multisets by standard lists, disregarding the re-
quired equivalence axioms, then the Dialectica translation does not preserve β-equivalence
anymore.

Proof. We essentially use the commutativity axioms throughout the proof of the preser-
vation, especially in the substitution lemma. Most of the rewriting rules would make no
sense using lists.

This discrepancy of a list-using Dialectica can actually be explained itself through the
KAM. We can indeed get such an intuition by looking at rules dealing with the �
operator, that corresponds to contraction from the point of view of linear logic. For
instance, let us consider the reverse translation of the application rule.

(t u)x := λπ. (snd t• π u• >>= λρ. ux ρ) � (tx (u•, π))

168

9.3 KAM simulation

Assume we had a sequential simulation theorem, stating that for any term t, tx pro-
duces the list of accessed stack in the order induced by the reduction of the KAM. Then
the above translation does not comply with this interpretation. Indeed, in the KAM, the
term t u can make two types of accesses to x, either from t or from u. A quick analysis
already done in the proof of the simulation theorem shows that a reduction for the term
t u is of the form

〈(t u, σ) | π〉 −→ 〈(t, σ) | (u, σ) · π〉

−→∗ 〈(λx0. t0, σ0) | (u, σ) · π〉 (?)

−→ 〈(t0, σ0 + (x0 := (u, σ))) | π〉

−→∗ 〈(x0, σ0 + (x0 := (u, σ))) | χ〉 (?)

−→ 〈(u, σ) | χ〉

−→∗ 〈(x, τ) | ρ〉 (?)

. . .

−→∗ 〈(x0, σ0 + (x0 := (u, σ))) | χ〉 (?)

. . .

where the (?) stands for reductions where a x from t may appear in head position and
hence trigger a growth of the returned list as a side-effect.
One can immediately remark that there is something really wrong here with respect

to the translation, when using lists instead of multisets. The accesses of x in t u can be
indeed interleaved between t and u: they can be realized before t itself evaluates to a
function, then some part of that function may access x, or maybe x0 is accessed before
instead, and so on. This has nothing to do with the Dialectica interpretation which
sharply separates the two sources of accesses: the left side of the union corresponds to
terms from t and the right side to those from u. No such interleaving is present in the
translation.
This is actually even worse. No such interleaving is possible in the Dialectica transla-

tion. To cope with this sequentialization, as witnessed by the above pattern of reduction,
one would need to know the order of relative accesses to the free variables in the term
(i.e. x vs. x0 in our example). The Dialectica is totally oblivious of this issue, because all
terms tx are constructed in parallel for each variable x, regardless of the other variables.
There is no further dependency on the free variables of the source term.
If we wished to overcome this defect, we would need a more complicated scheme of

translation acknowledging the reduction order induced by the KAM. At the present
time, we are not aware of such a translation. If it exists, we believe it to be both quite
complicated and very higher-order. It would indeed require a way to speak of closures
as first-class objects: while Dialectica treats stacks on par with terms, closures are the
great absent of the translation, although they do exist in the KAM. To handle closures in
a typed way, we believe that we need to resort to complex very functional objects hiding
existential type.

169

9 A realizability account

We conjecture that this phenomenon is actually a consequence of the linear factor-
ization of the Dialectica translation, rather than a true defect of the translation itself.
As expressed by Proposition 13, linear logic is essentially a model of commutative mon-
ads. Requiring the translation to respect the sequentiality of the KAM would break this
commutativity. That is why we also conjecture that any sequential Dialectica would not
factor through linear logic, even on the type translation only.
We propose nonetheless translations cousins of the Dialectica translation at Section 12

that do arise from linear decompositions and that we hope to help us designing a sequen-
tial Dialectica.

9.3.5 A quantitative interpretation?

We would like to take a step backward, and look at the Dialectica translation from two
very distinct point of views, that may turn out to be the same from our higher-level point
of view. We allege that some bridge should be drawn between two alien communities, to
the benefit of all.
The starting remark of this little digression that we would like to be enlightening is

the simple fact that we can see the Dialectica translation as a way to count things. By
counting, we mean measuring the complexity of a program for some precise metric.
Indeed, the simulation theorem teaches us that given a term t and a stack π, we can

retrieve all accesses to a given variable x by t all along the reduction of the process 〈t | π〉.
This is given as a multiset m by the translated term tx. In particular, by just considering
the length of this multiset, we can actually compute the number of accesses to x in the
reduction of 〈t | π〉. This is, per se, a valuable complexity metric of our program. In
the process, we lost the contents of the multiset, but if we are only interested by the
counting, this is no matter.

This only would be already interesting, but there is more. It turns out that it is
well-known that the Dialectica can count, but through two very different paths.

• First, quite an important part of Kohlenbach’s book on proof mining [66] is dedi-
cated to the study of majorizability and its implementation in the Dialectica trans-
lation, under the name of the monotone functional interpretation. The main idea
consists in replacing the witness terms by higher-order arithmetical functions sub-
ject to a certain realizability condition. The multiset operations are in turn re-
placed by arithmetical operations. In particular, the multiset union is changed into
a maximum.

The purpose of this translation is to provide bounds on the growth of arithmetical
functions, thus the inherent underlying counting approach.

Even though we do not fully master this translation, we believe it to be losely based
on an erasure of the multiset translation.

• The second instance of a déjà-vu counting Dialectica can be found in the trend of
recent work on the so-called quantitative semantics (see for instance Breuvart and
Pagani [23], Gaboardi et al. [25] and Laird et al. [73]).

170

9.3 KAM simulation

In those works, the authors aim at extracting quantitative properties from the
semantics, thanks to a clever use of linear logic. The paper [73] in particular
designs such a semantics atop of a variation of coherence spaces.

It is folklore that coherence spaces are a degenerate instance of the double-glueing
construction, which is actually itself the generalization of De Paiva categories, from
which our Dialectica proceeds.

We believe those two families of objects to be essentially the same, albeit seen through
the prism of two distinct communities’ practices and history. We hope that the present
work can close the gap between both. We also hope that reunifying both will help in
ameliorating the overall design process coming from the two traditions, as well as fixing
tickling defects present in one but not on the other, and conversely.

• The monotone functional interpretation is a purely logical tool. It only cares about
numbers (arithmetic and analysis, primarily) and not about the underlying pro-
grams, as well as about richer proof-as-program types.

• The metrics used in quantitative semantics are purely first-order data, be it numbers
or a structural semiring as in [25], thus preventing the typability of many perfectly
valid more higher-order programs. The multiset-producing terms of the Dialectica
translation are much richer than a mere integer.

There is therefore probably a lot to learn from the other side of the bank.

171

10 Variants of the Dialectica translation
It is possible to get “as much mustard
as wanted” from a mustard watch.

Yann-Joachim Ringard about logical extensions.

In this part, we consider extensions and variations of the translation presented previ-
ously. Indeed, because we are climbing over the shoulders of linear logic, it is not difficult
to tweak the considered call-by-name decomposition or to choose a completely different
one to get different calling conventions for free.
Note that we will be more concise in the proofs of this chapter, because most of them

are essentially the same as the previous chapter, or at least following the very same
arguments.

10.1 Call-by-name positive connectives

Up to now, we only translated the purely negative fragment of the call-by-name λ-
calculus, that is, our one and only type was the call-by-name arrow. Positive datatypes
are often overlooked for various reasons, and we find it a pity. They feature indeed
properties sharply contrasting with the negative fragment that deserve to be studied
for their own sake. This is why we dedicate this section to their study in the renewed
Dialectica translation. We will be focusing on the following extension of the simple types
defined at Section 9.2.

A,B := . . . | 1 | A×B | 0 | A+B

We believe that one of the main reasons of their mistreatment is that they often raise
issues in call-by-name. It is quite well-known indeed that the purely negative fragment
is of the realms of the vast land of λ-calculi which is the most devoid of any issue. In
general, problems tend to occur whenever one wishes to add inductive datatypes to a
call-by-name system. Indeed, the introduction of what would correspond to positive
datatypes from a polarized point of view often result in the scattered appearance of itchy
spots.
Luckily, in our case, we already scratched them thoroughly enough, because we actually

already introduced positive datatypes in the target calculus, to be able to construct
stacks. It is indeed a standard fact that stacks corresponding to some terms have the
opposite polarity, so that our all-negative terms must have all-positive stacks.
Therefore, adding positives should not be so painful. Yet, this is not totally unin-

teresting, because we still introduce alternations of polarity, which can give interesting
insights into both polarized logic and the Dialectica translation.

173

10 Variants of the Dialectica translation

10.1.1 Dynamics

The λ-terms associated to the positive datatypes are the same as for the λ×+-calculus.
We will be taking the very same typing rules and derivations. It means that our extended
translation can be seen as a translation from the λ×+-calculus into itself.

10.1.2 Extended KAM

As for the KAM, it is easy to extend it with positive connectives. The fact that we have
coexisting polarities forces us to have stacks of negative polarity, that is, stacks that force
the head of their term before going any further. Thus, the current closure is no more the
sole responsible of the reduction, as the stack may also be in charge. This also implies
that our stacks are now higher-order objects.

Definition 112 (Extended KAM stacks). The stacks of the KAM are extended as fol-
lows.

π, ρ := . . .
| () 7→ (t, σ) · π
| (x, y) 7→ (t, σ) · π
| [·]
| ([x 7→ t1 | y 7→ t2], σ) · π

Each of these stacks correspond to the forcing of a term whose head must reduce to a
given inductive constructor. We have four positive types, resulting in four distinct stacks
constructions.

Definition 113 (Extended KAM rules). The reduction rules of the KAM are then
completed with the ones given below.

Forcing rules:

〈(match t with () 7→ u, σ) | π〉 −→ 〈(t, σ) | () 7→ (u, σ) · π〉
〈(match t with (x, y) 7→ u, σ) | π〉 −→ 〈(t, σ) | (x, y) 7→ (u, σ) · π〉

〈(match t with [x 7→ u1 | y 7→ u2], σ) | π〉 −→ 〈(t, σ) | ([x 7→ u1 | y 7→ u2], σ) · π〉
〈(match t with [·], σ) | π〉 −→ 〈(t, σ) | [·]〉

Return rules:

〈((), σ) | () 7→ (u, τ) · π〉 −→ 〈(u, τ) | π〉
〈((t1, t2), σ) | (x, y) 7→ (u, τ) · π〉 −→

〈(u, τ + (x := (t1, σ)) + (y := (t2, σ))) | π〉
〈(inl t, σ) | ([x 7→ u1 | y 7→ u2], τ) · π〉 −→ 〈(u1, τ + (x := (t, σ))) | π1〉
〈(inr t, σ) | ([x 7→ u1 | y 7→ u2], τ) · π〉 −→ 〈(u2, τ + (x := (t, σ))) | π2〉

The first four rules encode the elimination of positive datatypes: whenever a match
occurs in head position, its content should be forced, which was the purpose of the
extended stacks. The matched term is then reduced until it evaluates to a partial value,
that is, a term whose head node is an inductive constructor.

174

10.1 Call-by-name positive connectives

The four remaining rules are the return rules of the machine. Whenever a term eval-
uates to a partial value, this value is destructured by pattern-matching, and control is
returned back to the caller, i.e. the matching branch of the pattern-matching that led to
this machine state.
Note that there is no return reduction associated to the stack [·]. Indeed, it corresponds

to a proof of the empty type, which should not occur if our system is consistent.

To help the reader, we can provide a typing system for those extended stacks, inspired
by the one provided at Section 9.3.1.

Definition 114 (Stack typing, extended). Stacks for inductive connectives are given the
following typing derivations.

σ ` Γ Γ ` u : C ` π : C

` () 7→ (u, σ) · π : 1 ` [·] : 0

σ ` Γ Γ, x : A, y : B ` u : C ` π : C

` (x, y) 7→ (u, σ) · π : A×B

σ ` Γ Γ, x : A ` u1 : C Γ, y : B ` u2 : C ` π : C

` ([x 7→ u1 | y 7→ u2], σ) · π : A+B

The subject reduction property stated at Section 9.3.1 is still valid, though we will not
dwell on it.

10.1.3 Type translation

Recovering the type translation is only a matter of letting ourselves guide by the linear
logic decomposition. The call-by-name linear decomposition is characterized by the fact
we add an exponential at each change of polarity.
Especially, we need to interleave a ! connective under each positive connective. This

corresponds to the fact that the terms under positive constructors are thunked, and
therefore are not forced when pattern-matching over the resulting term.

Definition 115 (Call-by-name decomposition, extended). We extend the call-by-name
decomposition [[·]]n into linear logic to positive datatypes as follows.

[[1]]n := 1
[[A×B]]n := ![[A]]n ⊗ ![[B]]n
[[0]]n := 0
[[A+B]]n := ![[A]]n ⊕ ![[B]]n

We can then look at the resulting types once we apply the Dialectica translation on
those linear types. For the easiness of manipulation of translated terms, as in the case of
sequent translation, we will define those types only isomorphically to the types we would
obtain from the raw translation.

175

10 Variants of the Dialectica translation

Proposition 68 (Type translation). The witness translation has the following values.

W([[1]]n) := 1
W([[A×B]]n) := W([[A]]n)×W([[B]]n)
W([[0]]n) := 0
W([[A+B]]n) := W([[A]]n) + W([[B]]n)

Yet, for counter types, we will tweak the definitions and take the isomorphisms below
as proper definitions, regardless of the fact that we were seeing up to now the C([[·]]n)
translation as a composition of two distinct translations.

C([[1]]n) ∼= 1

C([[A×B]]n) ∼=

W([[A]]n)×W([[B]]n)→MC([[A]]n)

×
W([[A]]n)×W([[B]]n)→MC([[B]]n)

C([[0]]n) ∼= 1

C([[A+B]]n) ∼= (W([[A]]n)→MC([[A]]n))× (W([[B]]n)→MC([[B]]n))

As in the previous chapter, we will just write W(A) for W([[A]]n) in this section when
the context makes clear that A is an intuitionistic type.

10.1.4 Term translation

In order to write out our extended translation, we should base ourselves both on the
typing of terms as well as on the intuitions provided by the simulation theorem: tx
should indeed capture all accesses to x in t, so that we must not forget about any when
designing the translation.

Definition 116 (Term translations, extended). The term translations are mutually in-
ductively extended as follows. The direct translation are all straightforward.

()• := ()

(t, u)• := (t•, u•)

(inl t)• := inl t•

(inr t)• := inr t•

(match t with () 7→ u)• := match t• with () 7→ u•

(match t with (x, y) 7→ u)• := match t• with (x, y) 7→ u•

(match t with [·])• := match t• with [·]

(match t with [x 7→ u1 | y 7→ u2])• :=

match t• with [x 7→ u1
• | y 7→ u1

•]

176

10.1 Call-by-name positive connectives

The interest comes from the reverse translations, which clearly make appear the higher-
order nature of stacks accepting positive types.

()z := λπ. ø

(t, u)z := λ(ϕ,ψ). (ϕ (t•, u•) >>= λχ. tz χ) �
(ψ (t•, u•) >>= λχ. uz χ)

(inl t)z := λ(ϕ,ψ). ϕ t• >>= λχ. tz χ

(inr t)z := λ(ϕ,ψ). ψ t• >>= λχ. tz χ

(match t with () 7→ u)z := λπ. (match t• with () 7→ uz π) �
(tz ())

(match t with (x, y) 7→ u)z := λπ. (match t• with (x, y) 7→ uz π) �
(tz ((λ(x, y). ux π), (λ(x, y). uy π)))

(match t with [·])z := λπ. (match t• with [·]) �
(tz ())

(match t with [x 7→ u1 | y 7→ u2])z := λπ. (match t• with [x 7→ u1z π | y 7→ u2z π]) �
(tz ((λx. u1x π), (λy. u2y π)))

We clearly see a pattern repeating in the reverse translations defined above: while
introduction rules are essentially constructing a CPS translation of the future pattern-
matching they will be applied to, elimination rules construct a two-part object. According
to our variable-observing interpretation, the left part corresponds to the uses of z in the
pattern branches, while the right part corresponds to the uses of z in the term being
matched. Interestingly enough, we see that the right part is always built upon the same
sort of CPS that was featured in the introduction rules.
This CPS-like translation can be intuitively explained as follows. Let us consider for

instance the term (t, u) and let us look closely at the (t, u)z translation. This means
we want to track when z is used in this pair. Unluckily, even in call-by-name, a pair
is somehow a value, i.e. an object that would be inert if we put it the KAM together
with an empty stack. Therefore, we need its surrounding context, which is the one
deciding how to use the various components. And this context is necessarily a functional
object, because it eventually boils down to some pattern-matching context of the form
match · with (x, y) 7→ r.
But there is hope: the only information we need about this context is the way it uses x

and y in r, that is, rx and ry. Looking at the type of those terms allows us to understand
that this is exactly the purpose of the ϕ and ψ terms in the translation above.

We state the typing soundness below, and give a bit of detail of the proof to help the
reader understand what is going on thanks to the typing of the considered terms.

Proposition 69 (Typing soundness, extended). If Γ ` t : A, then

177

10 Variants of the Dialectica translation

W(Γ) ` t• : W(A)

W(Γ) ` tz : C(A)→MC(U)

when (z : U) ∈ Γ.

Proof. By induction on the typing derivation. The direct translations are... direct, so
we only look at the reverse translations. We assume in all cases that (z : U) ∈ Γ.

• Case (). This is trivial.

• Case (t, u). We have Γ ` (t, u) : A×B. By induction hypothesis, we have all of
the following derivations.

W(Γ) ` t• : W(A)

W(Γ) ` u• : W(B)

W(Γ) ` tz : C(A)→MC(U)

W(Γ) ` uz : C(B)→MC(U)

Recall that

C(A×B) :=

W(A)×W(B)→MC(A)

×
W(A)×W(B)→MC(B)

so that we only have to prove the two following derivations

W(Γ), ϕ : W(A)×W(B)→MC(A) ` ϕ (t•, u•) >>= λχ. tz χ : MC(U)

W(Γ), ψ : W(A)×W(B)→MC(B) ` ψ (t•, u•) >>= λχ. uz χ : MC(U)

which is just a matter of plugging all the proofs recovered from the induction
hypotheses.

• Case inl t (and its symmetric). We have

C(A+B) :=

W(A)→MC(A)

×
W(B)→MC(B)

so that it is sufficient to prove that

W(Γ), ϕ : W(A)→MC(A) ` ϕ t• >>= λχ. tz χ : MC(U)

which is easily obtained by applying the induction hypotheses.

178

10.1 Call-by-name positive connectives

• Case match t with () 7→ u. We have to prove that

W(Γ), π : C(C) ` match t• with () 7→ uz π : MC(U)

W(Γ) ` tz () : MC(U)

which are easily proved by applying the induction hypotheses.

• The other pattern-matching are proved similarly, in two parts, corresponding to
the two derivations to prove above. The upper derivation is always the same and
comes from the typing of the term being eliminated, while the second one creates
a stack for the term being eliminated by using the branches of the match.

– For A×B, (λ(x, y). ux π, λ(x, y). uy π) is a term of type

C(A×B) := (W(A)×W(B)→MC(A))× (W(A)×W(B)→MC(B))

– For 0, () is a term of type
C(0) := 1

– For A+B, (λx. u1x π, λy. u2y π) is a term of type

C(A+B) := (W(A)→MC(A))× (W(B)→MC(B))

Note that the variables introduced by these stacks are free in the terms coming
from the various pattern branches, so that choosing the same name is important.

It is rather insightful to observe that in the proof above, we silently feed the free
variables of the term of the branches thanks to both pattern-matching and stack con-
struction. It is indeed a nice property that we do not need to deeply manipulate our
terms to make them blend into the translation: everything is done effortlessly thanks to
free variables.

10.1.5 Computational soundness

As in the case of the pure λ-calculus, we still have the substitution lemma, and thus the
preservation of β-equivalence through the translation. We need to add the commutative
cuts corresponding to the additives 0 and A+B though.
Such commutative cuts are straightforwardly adapted from the multiplicative case,

and are given below.

Definition 117 (Additive commutative cuts). The additive commutative cuts are given
by the following equalities, with the usual conditions on variable capture.

179

10 Variants of the Dialectica translation

match t with [·] ≡β ø

match t with [·] ≡β (match t with [·]) � (match t with [·])

match t with [·] ≡β {match t with [·]}

match t with [·] ≡β match t with [·] >>= f

match t with [x 7→ ø | y 7→ ø] ≡β ø

match t with [x 7→ u1 � u2 | y 7→ u1 � u2] ≡β
(match t with [x 7→ u1 | y 7→ u1]) � (match t with [x 7→ u2 | y 7→ u2])

match t with [x 7→ {u1} | x 7→ {u2}] ≡β {match t with [x 7→ u1 | y 7→ u2]}

match t with [x 7→ u1 >>= f | y 7→ u2 >>= f] ≡β match t with [x 7→ u1 | y 7→ u2] >>= f

Observe that the rules for the elimination of the empty type are worrisome. Indeed,
they may create ill-typed terms, as there are no restrictions on the way we use them.
There is no reason that an elimination of the absurdity has type MA for some A, and
yet, match t with [·] is convertible to ø. This is actually an issue related to the fact
that we are in an a priori type-free setting, and these commutative cuts are unsound in
general in this setting. This is a standard phenomenon, as empty types only make sense
in an explicitly typed system.
We will pretend it is not a real issue, because we just want to show that we can work

out the untyped reduction proof in a way similar to the previous chapter. As soon as
we get back into the realm of typedness, we are a little safer: all the rewriting steps we
are using in the computational soundness lemma are indeed type-safe. The Dialectica
translation and its equivalence properties can be adapted to an explicitly typed system
without much effort, but that would require a lengthy description that we cannot afford
here. We will therefore ignore these issues by considering that we would eventually only
consider typed terms, even if the translation is defined over untyped terms.

Proposition 70 (Emptiness lemma, extended). For any λ-term t and any variable x
not free in t, we have the equivalence below.

tx ≡β λπ. ø

Proof. By induction on terms, as usual.

Proposition 71 (Substitution lemma, extended). The substitution lemma holds, i.e.
for any terms t and r, any variables x, y s.t. x 6= y and x is not free in r, we have the
following equivalences.

(t[x := r])• ≡β t•[x := r•]

(t[x := r])y ≡β λπ. (ty[x := r•] π) � (tx[x := r•] π >>= λρ. ry ρ)

Proof. By induction on terms. We will only look at the case of the introduction and elim-
ination of products. The other cases are treated alike. The forward translation commutes
with everything, so it is trivial here. We are only left with the reverse translations.

180

10.1 Call-by-name positive connectives

• Let us show that

((t, u)[x := r])z ≡β λπ. ((t, u)z[x := r•] π) � ((t, u)x[x := r•] π >>= λρ. rz ρ)

when x is not free in r and distinct of z. The left-hand side gives us

((t, u)[x := r])z

≡β (t[x := r], u[x := r])z

≡β λ(ϕ,ψ). (ϕ ((t[x := r])•, (u[x := r])•) >>= λχ. (t[x := r])z χ) �
(ψ ((t[x := r])•, (u[x := r])•) >>= λχ. (u[x := r])z χ)

≡β λ(ϕ,ψ). (ϕ (t•[x := r•], u•[x := r•]) >>= λχ. tz[x := r•] χ) �
(ϕ (t•[x := r•], u•[x := r•]) >>= λχ. tx[x := r•] χ >>= λρ. rz ρ) �
(ψ (t•[x := r•], u•[x := r•]) >>= λχ. uz[x := r•] χ) �
(ψ (t•[x := r•], u•[x := r•]) >>= λχ. ux[x := r•] χ >>= λρ. rz ρ)

It is easy to see that the right-hand side evaluates to the same value up to rear-
rangement of the unions.

• We must show that

((match t with (x, y) 7→ u)[w := r])z
≡β

λπ. (match t with (x, y) 7→ u)z[w := r•] π
� ((match t with (x, y) 7→ u)w[w := r•] π >>= λρ. rz ρ)

when w is not free in r and distinct of z. This case is very similar to the case of
λ-abstraction, viz. the trick consists in using the emptiness lemma to get rid of
spurious accesses to x and y in r in the left-hand side where they are not free.

Corollary 2. The translation preserves β-equivalence.

10.1.6 Stack translation

As in the purely negative case, we can translate stacks of the extended KAM to terms
of the right type through Dialectica. This is really not difficult at all, although it is a
little more involved than in the λ-calculus fragment, because stacks are now higher-order
objects. We define the translation just below.

Definition 118 (Extended stack translation). The stack translation is inductively de-
fined as follows.

181

10 Variants of the Dialectica translation

(() 7→ (t, σ) · π)• := ()

((x, y) 7→ (t, σ) · π)• := (λ(x, y). (t n σ)x π
•, λ(x, y). (t n σ)y π

•)

[·]• := ()

(([x 7→ t | y 7→ u], σ) · π)• := (λx. (t n σ)x π
•, λy. (u n σ)y π

•)

We easily get the preservation of typing through the translation, as expected.

Proposition 72 (Stack typing soundness, extended). The typing soundness for stacks
holds.

Proof. By induction on the stacks, as usual. This is obvious for nullary connectives, and
just a matter of unfolding the translation for binary connectives.

Remark 15. There is something rather important to be said about this translation. If we
look at the translation of additives, it is rather obvious that what we would like to have
is not a tuple of size zero and two for the types 0 and A+B respectively, but rather an
term starting with an elimination of the term being observed. Formally, we would like
to have

[·]• := λp. match p with [·]

(([x 7→ t | y 7→ u], σ) · π)• := λp. match p with [x 7→ (t n σ)x π
• | y 7→ (u n σ)y π

•]

While this is not a real problem in the case of the empty type, this is really troublesome
for the sum type. Indeed, in absence of dependent elimination on this sum type, the
translated stack is not typable in a simply-typed calculus. Remark that indeed each
branch have a distinct type, namely the type of multisets of stacks corresponding to each
side of the sum type.
Likewise, the stack translation for the unit type is a bit at odds both with the intuition

we get from linear logic as well as the fact it totally forgets about the continuation of
the machine. Indeed, we know from linear logic that C(1) := ⊥, so that we should
use this continuation to do something useful, instead of just dropping it without further
consideration. The translation should rather be of the form

(() 7→ (t, σ) · π)• := λp. match p with () 7→ k π

for some well-chosen term k of type C(C)→ ⊥ constructed from the term t. Alas, there
is no information for such a bottom type coming from t in this precise translation.

These two points will be discussed in the barebone version of the Dialectica translation
of Section 12.2, as well as its dependent version.

182

10.1 Call-by-name positive connectives

10.1.7 Extended KAM simulation

Thanks to the construction guided by the linear decomposition, we easily mimic the
arguments from the purely negative case to recover the same property. That is, the
extended Dialectica has the same relationship with the extended KAM as its purely
negative counterpart with the usual KAM, i.e. the simulation theorem is provable.

Theorem 26 (Extended simulation theorem). The simulation theorem holds for the
extended translation with respect to the extended KAM.

Proof. Once again, it is sufficient to reason by induction on the length of the reduction
and to do a case analysis on the first reduction. Let us assume that the process 〈(t, σ) | π〉
we are considering is reducing to some state of the form 〈(z, τ) | ρ〉 where z is a variable.
We make the usual freedom assumption on z w.r.t. σ and π and we would like to show
that

ρ• ∈ (tz n σ•) π•

• Suppose 〈(match t with () 7→ u, σ) | π〉 −→ 〈(t, σ) | () 7→ (u, σ) · π〉. There are two
ways z may come in head position of the machine, either coming from t or from u.
But recall that

((match t with () 7→ u)z n σ•) π• ≡β ((tz n σ•) ()) � ((uz n σ•) π•)

If z comes from a reduction of t, we know by induction hypothesis applied to the
reduced state that ρ• ∈ (tz n σ•) (). Otherwise, we know that

〈(t, σ) | () 7→ (u, σ) · π〉 −→∗ 〈((), σ0) | () 7→ (u, σ) · π〉

−→ 〈(u, σ) | π〉

−→∗ 〈(z, τ) | ρ〉

so that we conclude by applying the induction hypothesis to the process 〈(u, σ) | π〉.

• Suppose 〈((), σ) | () 7→ (u, σ′) · π〉 −→ 〈(u, σ′) | π〉. In this case, z cannot appear in
the reduction path of the machine, because we supposed the current stack did not
contain it. Therefore, this is vacuously true.

• Suppose 〈(match t with (x, y) 7→ u, σ) | π〉 −→ 〈(t, σ) | (x, y) 7→ (u, σ) · π〉. As
usual, there are two ways that z appears in head position, either from t or from
u. We can conclude similarly to the elimination of the unit type by just looking at
the translation of the set of collected stacks.

((match t with (x, y) 7→ u)z n σ•) π•

≡β
((tz n σ•) ((λ(x, y). ux π

•), (λ(x, y). uy π
•))) �

(match (t• n σ•) with (x, y) 7→ (uz n σ•) π•)

183

10 Variants of the Dialectica translation

All instances of z coming from t will be provided by the first component, while all
instances of z coming from u will be given by the second component.

• Suppose 〈((t, u), σ) | (x, y) 7→ (r, σ′) · π〉 −→ 〈(r, σ′ + (x := (t, σ)) + (y := (u, σ))) |
π〉. The variable z may appear in head position only from t and u. This means
that we have either a reduction of the form

〈(r, σ′+(x := (t, σ))+(y := (u, σ))) | π〉 −→ 〈(x, σ′+(x := (t, σ))+(y := (u, σ))) | χ〉

or of the form

〈(r, σ′+(x := (t, σ))+(y := (u, σ))) | π〉 −→ 〈(y, σ′+(x := (t, σ))+(y := (u, σ))) | χ〉

But unfolding the term encoding the collected set gives us

((t, u)z n σ•) ((x, y) 7→ (r, σ′) · π)•

≡β
((rx n (σ′ + (x := (t, σ)) + (y := (u, σ)))•) π• >>= λχ. (tz n σ•) χ) �
((ry n (σ′ + (x := (t, σ)) + (y := (u, σ)))•) π• >>= λχ. (uz n σ•) χ)

so that, by applying the same argument as for the λ-abstraction case, we conclude
by taking the first (resp. second) component in the first (resp. second) reduction
scenario.

• The additive cases are treated just the same, so we will not give the details.

There is actually nothing magical in the fact that everything is provable so seamlessly:
this is due to the fact that our translation factors through a call-by-name linear decom-
position, and that the (extended) KAM is the archetypal machine for call-by-name, up
to the point that we can just see it appearing behind the Lafont-Reus-Streicher CPS [72],
itself inspired by the linear decomposition.

10.1.8 Recursive types

The positive types we presented here are all non-recursive. This is not representative of
most general positive inductive types which feature some form of recursion. A canonical
example is the type of unary integers N, which is generated by the inductive definition

N := 0 : N | S : N→ N

and whose elimination rules can be defined either through a recursor similar in content
to the term representing induction principle from HA, or directly as a mix of a guarded
fixpoint and a match construct.

184

10.2 A glimpse at the resulting logic

While we do not provide an interpretation for this kind of recursive types, we assume
it to be doable, extrapolating from the treatment of integers in the historical translation.
One nice feature of the aforementioned translation can be materialized by the fact that the
translation itself reduces a potentially infinite fixpoint into a finite functional datatype,
akin to the impredicative encoding used for instance by System F [47]. We also believe
that it would give interesting insights in the treatment of co-inductive objects in the
KAM. This is left for future work.

10.2 A glimpse at the resulting logic

Thanks to our multiset-using reformulation of the Dialectica translation, as well as the
computational intuition provided by the simulation theorem, we can revisit the interpre-
tation of the two additional semi-classical axioms featured by the historical Dialectica
translation.

10.2.1 Dialectica as a side-effect

The first thing we can do is adding the additional expressive power present in the target
language as new constructions in the source language. This is a standard construction,
and it corresponds from the programming point of view as considering the direct style
arising from the translation, that is, adding native side-effects in the source language.
Morally, the one effect added by our translation could be summarized by the trans-

lation of the arrow, which is the main diverging point from the usual proof-as-program
interpretation. That would require the definition of a type of stacks accepting A, say
∼A 1, subject to certain conditions, together with a principle of the following form.

(A→ B)→ A→ ∼B →M (∼A)

Intuitively, one can consider that the type ∼A will have the type translations below.

W(∼A) := C(A)
C(∼A) := W(A)

With such translations, it seems that the principle is reduced to a mere projection,
because the arrow A → B already comes with the necessary structure to recover the
remaining of the principle.
Even without further making explicit the properties of the ∼(−) type constructor

induced by the above translations, we are already bumping into various more or less
subtle issues. First, there is an obvious problem: the source calculus does not feature
multisets, and we did not provide a way to translate them in the target calculus. We
can try to work around this by representing them with an impredicative encoding, even
though that is not that easy.
Moreover, the fact that we are call-by-name raises an issue of its own: except for the

arrow A → B given as an argument to the principle, the other arrows should not be
1This notation is inspired by the involutive negation described in [85], where it has a similar rôle.

185

10 Variants of the Dialectica translation

considered as call-by-name arrows, but rather as pure meta-arrows. In particular, they
should not be translated as W((−)→ (−)). Otherwise, these arrows would have to come
with a reverse component. More formally, assuming we discriminate between pure arrows
− → − and effectful arrows − ·→ −, our principle should therefore have type

(A
·→ B)→ A→ ∼B →M (∼A)

This means that we need to define this principle by means of a native combinator
rather than as an axiomatic call-by-name function. This issue is akin to the fact that, in
call-by-value, effectful constructions such as a try-with clause

Γ ` t : A Γ ` u : A

Γ ` try t with u : A

cannot only be typed up to an encoding such as

trywith : (1→ A)→ (1→ A)→ A

where the 1→ A types indicates that there may be effects performed by the invocation
of the argument, resulting in the equivalence below.

try t with u ∼ trywith (λ(). t) (λ(). u)

Here, we are in call-by-name, and thence there is no way to ensure the purity of our
objects without more expressive polarization. We could resort to the continuation-passing
style technique called storage operators by Krivine, but that would be heavyweight.

When trying to define the connective ∼(−), similar problems arise. Indeed, the one
equation we want on it is the property that

∼(A→ B) ≡ A× (∼B)

but we do not have products in the source language either, if we are only considering the
negative fragment. If we want to retrieve pairs via the impredicative encoding, we will
once again hit the fact that we cannot discriminate between pure and impure arrows.
There is a simple (simplistic?) way to ensure that stacks are pure objects, which consists
in breaking the symmetry of the type interpretation of stacks. Namely, we can pose

W(∼A) := C(A)
C(∼A) := 0

so that arrows manipulating stacks are interpreted as

W(∼A→ B) ∼= C(A)→W(B)
C(∼A→ B) ∼= C(A)× C(B)
W(A→ ∼B) ∼= W(A)→ C(B)
C(A→ ∼B) ∼= 0

for any A and B. This simple trick forbids one to observe the accesses of variables by
stacks by a mere typing argument.
We will not provide the corresponding constructions though, because that would re-

quire to solve the multiset issue, and as we will show in the section studying the imple-
mentation of Markov’s, we need to reinstall orthogonality to make it work properly.

186

10.2 A glimpse at the resulting logic

10.2.2 Markov’s principle

There are several issues to consider in order to recover Markov’s principle. For us to
explain the details, we first need to agree on what we mean as Markov’s principle in a
setting where we do not have existential types at hand. We will stick to the propositional
version of Markov’s principle described in [55], that is, we are interested in the principle

¬¬P → P

where P is a purely positive type, i.e. built over the following inductive grammar:

P,Q := 0 | 1 | P +Q | P ×Q

As explained in the above article, this is a generalization of Markov’s principle. In-
deed, existential statements also pertain to the purely positive types, insofar as they can
be eliminated by pattern-matching, allowing to purge them from the effects they may
contain.
To understand where things start to get involved in our translation, let us just start

with the explicitation of the interpretation of the negation.

Proposition 73. Let A be a type, then

W([[¬A]]n) ∼=

W([[A]]n)→ 0

×
W([[A]]n)→MC([[A]]n)

C([[¬A]]n) ∼= W([[A]]n)

In the sequence-based Dialectica, the first component of the witness type was collapsed
to the empty sequence, because the interpretation of 0 was empty. Here, we run into
trouble as soon as we want to recover information from a negated type, because pushing
the isomorphism further, we have indeed

W([[¬A]]n) ∼= W([[A]]n)→ 0

which is not likely to be ever fed with something if our target system is consistent. This is
why we need to emulate what the historical Dialectica does through a clever workaround.

The main idea is that actually, in call-by-name, we do not really use the empty type
to encode negation, but rather the bottom type representing the return type of the whole
computation. A bit of linear logic will help, as it sharply contrasts the two following
types:

!A(0

!A(⊥ ∼= ?A⊥

187

10 Variants of the Dialectica translation

Contrarily to the empty type 0, the bottom type ⊥ does not represent the impossibility
of something, but rather the mere fact that the computation handed back control to the
caller. While it shares with 0 the property that it cannot be proved in an empty sequent,
it otherwise does not allow one to derive anything from it. That is the key point of our
trick.
We do need to have a way to talk about this type in the source language, so we simply

add it in the grammar of intuitionistic types, as follows

A := . . . | ⊥

and we trivially interpret it through the linear decomposition as itself, i.e.

[[⊥]]n := ⊥

As the bottom type has no introduction rule in linear logic, we mirror this fact by not
adding any rule for it in the intuitionistic calculus. It somehow acts as an existentially-
quantified type whose actual content is unknown. The negation over this type (thereafter
called weak negation) behaves much better now.

Proposition 74. Let A be a type, then

W([[A→ ⊥]]n) ∼= W([[A]]n)→MC([[A]]n)

C([[A→ ⊥]]n) ∼= W([[A]]n)

In particular, we can effectively recover information from a witness of a weak negation,
without being in an inconsistent state. Let us look in particular at the translation of the
double weak negation of a type, to guess what we can extract of it.

Proposition 75. Let A be a type, then

W([[(A→ ⊥)→ ⊥]]n) ∼= (W([[A]]n)→MC([[A]]n))→MW([[A]]n)

C([[(A→ ⊥)→ ⊥]]n) ∼= W([[A]]n)→MC([[A]]n)

We stumble on a new issue here. It is rather obvious that, in order to mimic what the
historical Dialectica did, we need to recover a witness from the right-hand side of the
witness arrow, which now returns a multiset instead of a plain type. And this is quite an
issue, because this multiset can be empty, which would defeat the purpose of extracting
anything from it.
To be able to recover anything at all from it, we need to reintroduce the orthogonality

relation we nonchalantly threw away in Section 9.1.4. We thus assume that we live in a
dependently-typed system similar to the one described at Section 8.4 from the remaining
of this section, so that we can describe properties of our terms. The orthogonality is then
defined just as in the type-theoretical Dialectica, except for the exponential modality
which has to be adapted to the multiset presentation.

188

10.2 A glimpse at the resulting logic

Definition 119 (Multiset quantification). We assume that our dependently typed sys-
tem features a connective allowing to quantify a proposition over an abstract multiset,
i.e. the syntax of propositions from Section 8 is extended with

A,B := . . . | ∀x ∈ t.A

while the well-formedness relation is extended with the rule
Σ ` t : MA Σ, x : A `wf C

Σ `wf ∀x ∈ t.C

Furthermore, we assume that we have the following axioms.

• (∀x ∈ ø.P)↔ >

• (∀x ∈ {t}.P)↔ P[x := t]

• (∀x ∈ t � u.P)↔ (∀x ∈ t.P) ∧ (∀x ∈ u.P)

• (∀y ∈ t >>= f.Q)→ (∀x. (∀y ∈ f x.Q)→ P)→ ∀x ∈ t.P

Note that the last axiom is not really expressible in the system used at Section 8 because
it features a universal quantification, but this can be worked around by presenting it as
a derivation rule rather than as an axiom, which we give below.

Σ ` t : MA
Σ ` f : A→MB Σ | Γ ` ∀y ∈ t >>= f.Q Σ, x : A | Γ,∀y ∈ f x.Q ` P

Σ | Γ ` ∀x ∈ t.P

Now we can simply write the definition of orthogonality on linear types.

Definition 120 (Revised orthogonality). For any linear type A, we define the orthog-
onality relation AD[−,−] as in section 8.4 except for the bang connective, where we
set

(!A)D[u, ϕ] := ∀π ∈ ϕ u.AD[u, π]

One can show that with this notion of orthogonality, our multiset-based translation
provides universal realizers.

Theorem 27. If ` t : A, then we have a proof of

π : C(A) | · ` AD[t•, π]

We will not show this theorem here. It is actually a simple variant of the Diller-Nahm
translation [40], where we abstracted away the fact we were working with multisets (or,
more precisely, finite sets). Its proof is a simple induction over the typing derivation,
generalized to cope with the free variables under the following form.

~x : Γ ` t : A implies ~x : W(Γ), π : C(A) | ∀ρi ∈ txi π.ΓiD[xi, ρi] ` AD[t•, π].

What we will rather show is the interpretation of the orthogonality over the weak
negation of a type.

189

10 Variants of the Dialectica translation

Proposition 76. By taking the isomorphisms of Proposition 74 to be definitions, we
have the following unfolding.

(A→ ⊥)D[ϕ, u] := ¬(∀π ∈ ϕ u.AD[u, π])

Assuming our abstract multisets are in practice implemented with finite multisets,
we know by a meta-theoretical argument that one can extract from a proof of ¬(∀x ∈
t.P) a witness w that satisfies P[x := w] when P is decidable. This is simply done by
iterating over the multiset t, checking for each element whether it satisfies P. This search
eventually terminates because t is finite by definition.
This mechanism is not observable in the historical presentation of the Dialectica trans-

lation, because instead of returning the whole multiset of observed stacks, the translation
provides us with a term that has been already picked up from the multiset by transla-
tion itself, using the dynamic dispatch merge function. The historical interpretation of
Markov’s principle as the mere identity is therefore hiding conceptual complexity under
the carpet.

It is also noteworthy to realize that, in this case, the orthogonality relation remains
decidable on closed formulae2. Indeed, one can effectively check if all elements of a mul-
tiset are orthogonal to a given term or not. This is why the orthogonality interpretation
of the weak negation is actually productive.
Therefore, from a realizer ϕ of (A → ⊥) → ⊥, where A is a closed formula, one can

build a function
ϕw : (W([[A]]n)→MC([[A]]n))→W([[A]]n)

satisfying the following specification

k : W([[A]]n)→MC([[A]]n) | · ` ¬(A→ ⊥)D[k, ϕw k]

which is, by unfolding, equivalent to

k : W([[A]]n)→MC([[A]]n) | · ` ¬¬∀π ∈ k (ϕw k). AD[ϕw, π]

One can conclude by applying the decidability of the orthogonality relation to prove
that the extracted witness realizes the formula indeed.

10.2.3 Independence of premise

As for the interpretation of Markov’s principle, we do not have first-order types in our
calculus, so we need to describe an equivalent principle in a propositional setting. This
is once again done relatively to positive types. From the abstract point of view, inde-
pendence of premise is a dependent form of the following principle:

(A→ B × C)→ B × (A→ C)

2All our types are propositional. This would not hold if ever we had quantifiers in our source language.

190

10.2 A glimpse at the resulting logic

where B cannot computationally depend on A. It can be seen as a special instance of
a commutation of a positive connective (here, the conjunction) with a negative one (the
arrow).
If we want to port this axiom from the historical presentation, there is already an

obvious issue: we cannot define that a type is irrelevant when its interpretation is the
empty sequence, because we do not have sequences anymore. The closest thing one can
do to overcome this issue is to define it relatively to the singleton type.

Definition 121 (Revised irrelevance). Given a type A, we say it is irrelevant whenever

W(A) ∼= 1
C(A) ∼= 1

Proposition 77. Unluckily, almost all types are relevant in our presentation.

• The type 1 is irrelevant.

• The type 0 is relevant.

• Even if A and B are irrelevant, in general A→ B and A×B are not irrelevant.

This comes from the fact that our translation features multisets, and it is obvious that
multisets of singleton types are relevant, because they are isomorphic to integers. The
independence of premise loses therefore all of its usefulness, because it states no more
than

(1→ B × C)→ B × (1→ C)

which is trivially true, and even an isomorphism.
Apparently, the fact that the original Dialectica interprets the axiom of independence

of premise is more due to chance rather than to a deliberate design choice. Indeed, it
essentially comes from the fact that a lot of type interpretations are collapsed into the
empty sequence, and that the realizability emerging from them comes uniquely from the
meta-level logic and not from their trivial realizers. Our proof-theoretical presentation is
much more computationally aware, and many properties that came from the meta-level
are now present in the types themselves. Therefore, it seems that the independence of
premise is out of our reach.
Yet, a similar principle could be probably retrieved by adding a touch of Friedman

translation to the multiset-using Dialectica translation. The interpretation of the elim-
ination of falsity in the historical translation, which is the only rule that directly relies
on the dummy value at the level of terms, is typical of a Friedman-like translation. The
historical Dialectica translation does not make any difference between dummy terms that
serve an empty multiset purpose and dummy terms that play a call-by-name exception
rôle. The independence of premise actually uses the latter, not the former. Such a
translation remains to be described formally, though.

191

10 Variants of the Dialectica translation

10.3 Classical-by-name translation

In this section we are going to take a glance at the classical version of the call-by-name
linear decomposition. Actually, the classical-by-name version of the linear decomposition
is very close to its intuitionistic by-name variant, which allows a rather direct adaptation
of what we have done up to now. As a quick side remark, the relationship between
call-by-value and classical-by-value is much more involved.
It is well-known that the vanilla KAM is already well-suited to handle classical logic

natively through the callcc operator, so it may be interesting to see what our Dialectica
does in this setting. For the sake of atomicity, we will be translating λµ-calculus instead
of a λ-calculus enriched with a callcc primitive.

10.3.1 The λµ-calculus

The λµ-calculus is an extension of λ-calculus designed by Parigot [94] as the programming
language equivalent to the classical natural deduction proof system, thanks to its handling
of continuation manipulation. We already sketched it quickly in Chapter 6, but we will
present it more thoroughly in this section as we will rely on more involved features,
including typing.

Definition 122 (λµ-terms). The λµ-terms are the usual λ-terms extended with a new
µ binder (hence the name) together with a new syntactic class c known as commands.
The whole grammar is given below.

t, u := x | t u | λx. t | x | µα. c

c := [α] t

The α variables introduced by µ binders are in a distinct class than the usual variables
introduced by λ. We use Greek names to distinguish them.

Remark 16. The use of Greek names is coherent with our own use of Greek-lettered
variables in the Dialectica translation, because in both cases, they stand for stacks. In
particular, we will be naming them consistently stack variables.

Definition 123 (λµ-calculus reduction). The λµ-calculus reductions in call-by-name are
generated by the three rules below, together with context closure.

(λx. t) u → t[x := u]
(µα. t) u → µα. t[α := u · α]
[β]µα. c → c[α := β]

The notation t[α := u · α] means that we push the u term as an argument of all terms
t in commands [α] t. More formally, we define it by induction on t below, with the usual
freshness conditions on bound variables.

• x[α := r · α] := x

192

10.3 Classical-by-name translation

• (λx. t)[α := r · α] := λx. t[α := r · α]

• (t u)[α := r · α] := t[α := r · α] u[α := r · α]

• (µβ. c)[α := r · α] := µβ. c[α := r · α]

• ([α] t)[α := r · α] := [α] t[α := r · α] r

• ([β] t)[α := r · α] := [β] t[α := r · α]

This strange-looking reduction is actually better understood when thinking of it as
substitution of stacks.

Definition 124 (λµ-calculus typing). Types of the λµ-calculus are the usual simply-
typed types with arrow as the only connective, recalled below.

A,B := α | A→ B

Typing statements of the λµ-terms are of the form

Γ ` t : A | ∆

where both Γ and ∆ are lists of types. We also type commands c as

Γ ` c | ∆

with the same syntactic classes. The derivation rules are given below.

x : A ∈ Γ

Γ ` x : A | ∆
Γ, x : A ` t : B | ∆

Γ ` λx. t : A→ B | ∆
Γ ` t : A→ B | ∆ Γ ` u : A | ∆

Γ ` t u : B | ∆

Γ ` t : A | ∆ α : A ∈ ∆

Γ ` [α] t | ∆
Γ ` c | ∆, α : A

Γ ` µα. c : A | ∆

10.3.2 Classical KAM

The usual KAM is almost λµ-calculus ready. The one thing added by the λµ-calculus is
actually the ability to manipulate stacks as first-class objects, akin to the introduction
of stacks of the Dialectica translation.
Essentially, the µ binder captures stacks, while commands reinstate them. Because we

have true stack variables, the definitions of the KAM have to be extended a little bit,
and in particular enriching the stacks with variables.

Definition 125 (Classical KAM processes). As in the previous case, KAM states are
made of processes p. Yet, those processes are now constituted of pair of a closure c and
an evaluable stack π. Those stacks may contain variables, which is the main difference.
This also implies that environments σ may bind stacks. We give the inductive grammar
of those objects below.

193

10 Variants of the Dialectica translation

p := 〈c | π〉
c := (t, σ)
t, u := · · ·
π, ρ := (α, σ) | c · π
σ, τ := · | σ + (x := t) | σ + (α := π)

Here the t, u syntactic class stands for λµ-terms.

There is no distinguished ε in this presentation, because it is a particular case of an
unbound stack variable. When needed, we will simply assume that this is some fresh free
variable with an empty environment.
The reduction rules adapted in a similar fashion. There is a critical pair, though, which

arises from the choice we have to make about the precise moment at which we evaluate
stack variables. In absence of additional side-effects (such as global state), such a choice
is a mere matter of taste, because the difference is not observable. In our case, we stick
to unfolding stack variables on a demand-driven basis, for it makes the simulation proof
look more natural.

Definition 126 (Classical KAM rules). The reduction rules are given below.

〈(x, σ + (x := c)) | π〉 −→ 〈c | π〉
〈(x, σ + (y := c)) | π〉 −→ 〈(x, σ) | π〉
〈(x, σ + (α := π)) | π〉 −→ 〈(x, σ) | π〉

〈(t u, σ) | π〉 −→ 〈(t, σ) | (u, σ) · π〉
〈(λx. t, σ) | c · π〉 −→ 〈(t, σ + (x := c)) | π〉

〈(λx. t, σ) | (α, τ + (α := π))〉 −→ 〈(λx. t, σ) | π〉
〈(λx. t, σ) | (α, τ + (β := π))〉 −→ 〈(λx. t, σ) | (α, τ)〉
〈(λx. t, σ) | (α, τ + (x := c))〉 −→ 〈(λx. t, σ) | (α, τ)〉

〈(µα. [β] t, σ) | π〉 −→ 〈(t, σ + (α := π)) | (β, σ + (α := π))〉

Note that most of the rules are about variable accesses, and could be summarised into
only one reduction rule. We keep the expanded form for its simplicity.

10.3.3 Type translation

We describe here the type translation that arises from the classical-by-name linear de-
composition through the Dialectica translation. It is very similar to the call-by-name
translation.

Definition 127 (Classical-by-name linear decomposition). The classical-by-name linear
decomposition [[A]]Cn of an intuitionistic type A is inductively defined on A as follows.

[[α]]Cn := α

[[A→ B]]Cn := !?[[A]]Cn (?[[B]]Cn

Sequents of the λµ-calculus are translated as

194

10.3 Classical-by-name translation

[[Γ ` A | ∆]]Cn := !?[[Γ]]Cn ` ?[[A]]Cn | ?[[∆]]Cn

[[Γ ` ∆]]Cn := !?[[Γ]]Cn ` ?[[∆]]Cn

For the sake of readability, as we did before, we define the composition of [[−]]Cn with
W(−) up to isomorphism, and just write W(−) for the composition when the context is
clear.

Proposition 78 (Arrow translation). We take the following isomorphism to be a defini-
tion.

W([[A→ B]]Cn) ∼=

(C([[A]]Cn)→MW([[A]]Cn))→ C([[B]]Cn)→MW([[B]]Cn)

×

(C([[A]]Cn)→MW([[A]]Cn))→ C([[B]]Cn)→MC([[A]]Cn)

C([[A→ B]]Cn) ∼= (C([[A]]Cn)→MW([[A]]Cn))× C([[B]]Cn)

We now turn to look at this translation through the prism of Dialectica. As usual,
we will rely on a handy isomorphism for sequents, allowing to easily manipulate free
variables. Note that we now have a new type of free variables coming from ∆. Our
translation should therefore take it into account.

Proposition 79 (Sequent isomorphism). We have the following isomorphisms, when
Γ := Γ1, . . . ,Γn and ∆ := ∆1, . . . ,∆m.

W([[Γ ` A | ∆]]Cn) ∼=

W(?[[Γ]]Cn)→ C([[∆]]Cn)→ C([[A]]Cn)→MW([[A]]Cn)

×

W(?[[Γ]]Cn)→ C([[∆]]Cn)→ C([[A]]Cn)→MC([[Γ1]]Cn)

×

. . .

×

W(?[[Γ]]Cn)→ C([[∆]]Cn)→ C([[A]]Cn)→MC([[Γn]]Cn)

×

W(?[[Γ]]Cn)→ C([[∆]]Cn)→ C([[A]]Cn)→MW([[∆1]]Cn)

×

. . .

×

W(?[[Γ]]Cn)→ C([[∆]]Cn)→ C([[A]]Cn)→MW([[∆m]]Cn)

195

10 Variants of the Dialectica translation

W([[Γ ` ∆]]Cn) ∼=

W(?[[Γ]]Cn)→ C([[∆]]Cn)→ C([[A]]Cn)→MC([[Γ1]]Cn)

×

. . .

×

W(?[[Γ]]Cn)→ C([[∆]]Cn)→ C([[A]]Cn)→MC([[Γn]]Cn)

×

W(?[[Γ]]Cn)→ C([[∆]]Cn)→ C([[A]]Cn)→MW([[∆1]]Cn)

×

. . .

×

W(?[[Γ]]Cn)→ C([[∆]]Cn)→ C([[A]]Cn)→MW([[∆m]]Cn)

Proof. By induction on Γ and ∆. The remainder of the argument is the same as the
intuitionistic case.

Remark 17. Note that we use the ? notation for compactness, but it should be unfolded
into the following.

W(?A) := C(A)→MW(A)

This isomorphism is coherent with the principle of management of free variables we
exposed above. Indeed, the W(?[[Γ]]Cn) corresponds to the term variables found in Γ,
while the C([[∆]]Cn) corresponds to the stack variables found in ∆. In addition, we have
the right number of produced objects: one for the term (the first component), one for
each variable of Γ (the n following components) and one for each variable in ∆ (the m
remaining components). Hence the formal definition below.

Definition 128 (Sequent translation). In the classical-by-name Dialectica, sequents of
the form Γ ` t : A | ∆ are translated into three types of objects.

• The direct translation t•:

W(?Γ),C(∆) ` t• : C(A)→MW(A)

• For each variable x : Γi ∈ Γ the reverse translation tx:

W(?Γ),C(∆) ` tx : C(A)→MC(Γi)

• For each variable α : ∆j ∈ ∆, the stack reverse translation tα:

W(?Γ),C(∆) ` tα : C(A)→MW(∆j)

196

10.3 Classical-by-name translation

Likewise, commands Γ ` c | ∆ are just translated into two types of objects:

• For each variable x : Γi ∈ Γ the reverse translation cx:

W(?Γ),C(∆) ` cx : MC(Γi)

• For each variable α : ∆j ∈ ∆, the stack reverse translation cα:

W(?Γ),C(∆) ` cα : MW(∆j)

Note that in both cases, we consider that Greek-lettered variables from the ∆ context
can be univocally considered as usual variables of the target calculus. We were already
doing so in the call-by-name translation, so this should not be surprising to the reader
by now.

It is rather interesting to witness that, in a classical formulation, terms are much
more symmetric than their intuitionistic counterpart. Indeed, the forward translation
is now essentially the same as the reverse translation, except that it produces witnesses
instead of counters. Likewise, the stack reverse translation does not even deserve this
nickname, because it has actually the same type as the direct translation, so it could be
advantageously renamed the α-direct translation, or something similar. We nonetheless
stick to the old naming scheme for the sake of uniformity.
In all cases, the terms are waiting for a stack of the type of the term being con-

structed. Together with the distinctive ? worn by the intuitionistic context, this is the
only asymmetry of the translation.

10.3.4 Term translation

To write the term translation down, we use the intuition provided by the original simula-
tion theorem, and extend it to the classical case. Namely, the multiset produced by the
term tα is made of the terms that were encountered by the variable α in head position
during the reduction of the KAM. As t• is no more than a particular case of tα, for the
distinguished unnamed current stack, its translation is built by symmetry.

Definition 129 (Term translation). The term translation is mutually inductively defined
below.
Direct translation:

x• := λπ. x π

(λx. t)• := λ_. {(λxπ. t• π, λxπ. tx π)}

(t u)• := λπ. t• (u•, π) >>= λ(f,_). f u• π

(µα. c)• := λα. cα

Reverse translation:

197

10 Variants of the Dialectica translation

xx := λπ. {π}

xy := λπ. ø

(λy. t)x := λ(y, π). tx π

(t u)x := λπ. (t• (u•, π) >>= λ(_, f). f u• π >>= λρ. ux ρ) � (tx (u•, π))

(µα. c)x := λα. cx

([α] t)x := tx α

Stack reverse translation:

xα := λπ. ø

(λy. t)α := λ(y, π). tα π

(t u)α := λπ. (t• (u•, π) >>= λ(_, f). f u• π >>= λρ. uα ρ) � (tα (u•, π))

(µβ. c)α := λβ. cα

([α] t)α := (t• α) � (tα α)

([β] t)α := tα β

As we can see, there is a little bit of redundancy: we duplicate some arguments in the
application case. This is actually a defect of the type decomposition of the Dialectica
translation. We will provide a better-behaved decomposition later on.
The symmetry between (−)x and (−)α is fairly obvious in this presentation. This is not

unexpected, as usual variables and stack variables have a dual rôle in the calculus. The
only places where the two translations are distinct are precisely the variable-introducing
cases, be it the simple variable case for intuitionistic variable or the command case for
stack variables.

Proposition 80 (Typing soundness). As expected, the translation preserves the typing
according to the translation of definition 129.

Proof. By induction on the typing derivation, as usual.

10.3.5 Computational soundness

The call-by-name translation and the classical-by-name translation share many common
points, including in the type translation as well as in the term translation. This is
therefore no surprise that most of the theorems about the computational content of
the latter are very similar to the ones about the former. We give in this section the
corresponding modified properties.

Proposition 81 (Emptiness lemma). If x is not free in t (resp. in c) then tx ≡β λπ. ø
(resp. cx ≡β ø). Likewise, if α is not free in t (resp. in c) then tα ≡β λπ. ø (resp.
cα ≡β ø).

198

10.3 Classical-by-name translation

Proof. For the reverse translation, this is essentially the same as the intuitionistic case.
For the stack reverse translation, one only has to observe that we make the tα and cα
translations grow only when we encounter as a subterm a command of the form [α]u.
Because we assumed that α was not free in the considered term, this cannot happen.

The original substitution holds, extended to the new translations.

Proposition 82 (Substitution lemma). For all terms t and r, and all command c,
assume some variable x not free in r and some other variable y 6= x. Then the following
equalities hold.

(t[x := r])• ≡β λπ. t•[x := r•] π
(t[x := r])y ≡β λπ. (ty[x := r•] π) � (tx[x := r•] π >>= λρ. ry ρ)

(t[x := r])α ≡β λπ. (tα[x := r•] π) � (tx[x := r•] π >>= λρ. rα ρ)

(c[x := r])y ≡β cy[x := r•] � (cx[x := r•] >>= λρ. ry ρ)

(c[x := r])α ≡β cα[x := r•] � (cx[x := r•] >>= λρ. rα ρ)

Proof. By induction on t and c.
The first two equations are proved using the same arguments and almost the same

rewriting steps as the intuitionistic case. Thus, there is no need to give more details.
The third equation is trivial, assuming the first one: the (−)α translation does not

involve any (−)x translation, so that everything commutes straightforwardly.
The second to last equation is likewise obvious, while the last one is done by case

analysis and simple application of the induction hypothesis.

There is a more interesting notion of substitution in the λµ-calculus: the t[α := r · α]
involves indeed stack variables, a fact we need to reflect in the equations derived from
our translation. This is why we have a classical substitution lemma, stated and proved
below.

Proposition 83 (Classical substitution lemma). For all terms t and r, and all command
c, assume some stack variable α not free in r and some other variable β 6= α. Then the
following equalities hold.

(t[α := r · α])• ≡β λπ. t•[α := (r•, α)] π
(t[α := r · α])y ≡β λπ. (ty[α := (r•, α)] π) �

(tα[α := (r•, α)] π >>= λ(_, f). f r• α >>= λρ. ry ρ)
(t[α := r · α])α ≡β λπ. tα[α := (r•, α)] π >>= λ(_, f). f r• α
(t[α := r · α])β ≡β λπ. (tβ[α := (r•, α)] π) �

(tα[α := (r•, α)] π >>= λ(_, f). f r• α >>= λρ. rβ ρ)

(c[α := r · α])y ≡β cy[α := (r•, α)] �
(cα[α := (r•, α)] >>= λ(_, f). f r• α >>= λρ. ry ρ)

(c[α := r · α])α ≡β cα[α := (r•, α)] >>= λ(_, f). f r• α
(c[α := r · α])β ≡β cβ[α := (r•, α)] �

(cα[α := (r•, α)] >>= λ(_, f). f r• α >>= λρ. rβ ρ)

199

10 Variants of the Dialectica translation

Proof. By induction on t and c.
We will only detail some interesting cases, all the remaining ones are direct applications

of the induction hypothesis together with rewriting of the multiset equalities.

• Let us consider the command [α] t. This is the most interesting case, because it
introduces a new use of the stack variable α in the term. We have:

(([α] t)[α := r · α])y

≡β ([α] t[α := r · α] r)y

≡β ((t[α := r · α])y (r•, α)) �
((t[α := r · α])• (r•, α) >>= λ(_, f). f r• α >>= λρ. ry ρ)

≡β (ty[α := (r•, α)] (r•, α)) �
(tα[α := (r•, α)] (r•, α) >>= λ(_, f). f r• α >>= λρ. ry ρ) �
(t•[α := (r•, α)] (r•, α) >>= λ(_, f). f r• α >>= λρ. ry ρ)

≡β ([α] t)y[α := (r•, α)] �
([α] t)α[α := (r•, α)] >>= λ(_, f). f r• α >>= λρ. ry ρ

This was the equality we were looking for. We used the commutative cut rules to
factor back the two last components of the union into the reverse stack translation.

The (−)β case is treated exactly the same, by symmetry. We only have to look at
the (−)α case.

(([α] t)[α := r · α])α

≡β ([α] t[α := r · α] r)α

≡β ((t[α := r · α])α (r•, α)) �
((t[α := r · α])• (r•, α) >>= λ(_, f). f r• α >>= λρ. rα ρ)

≡β (tα[α := (r•, α)] (r•, α) >>= λ(_, f). f r• α) �
(t•[α := (r•, α)] (r•, α) >>= λ(_, f). f r• α >>= λρ. rα ρ)

≡β tα[α := (r•, α)] (r•, α) >>= λ(_, f). f r• α

This is the required equality. Note that we crucially used the fact that α was not
free in r to get rid of the second component of the union.

These equations should be rather understandable, when adapting the simulation theo-
rem to stack variables. They acknowledge the fact that both usual and stack substitution
may trigger new accesses to both usual and stack variables. Thus, we can still read them
as indicating from where the various accesses come.
By using those lemmas, we can directly conclude about the preservation of β-equivalence

in the λµ-calculus.

200

10.4 Call-by-value translation

Theorem 28 (Computational soundness). If t ≡β u, then:
• t• ≡β u•

• for any variable x, tx ≡β ux

• for any stack variable α, tα ≡β uα
Proof. This amounts to applying the various substitution lemmas. Reduction of (λx. t) u
is handled by the usual substitution lemma, reduction of (µα. c) u is handled by the
classical substitution lemma, and reduction of [α]µβ. c is trivial. In the first two cases
we use the fact that x (resp. α) is not free in u to be allowed to apply those lemmas. All
remaining context-closure rules are straightforward.

10.3.6 KAM simulation

The KAM simulation theorem is readily adapted to the classical case. As stack variables
may also appear in head position of the machine, we can observe the terms against which
they are reducing. This will form the multisets returned by the stack reverse translation.

All KAM translations need to be adjusted to the classical case, but this is really
straightforward, so we will not detail anything here.

Conjecture 2 (KAM simulation). Let t be a λµ-term, σ a KAM environment and π a
KAM stack. Assume some variable x not free in σ nor in any closure of π.
If 〈(t, σ) | π〉 −→∗ 〈(x, τ) | ρ〉 for some τ and ρ, then ρ• ∈ (tx n σ•) π•.

Let t be a λµ-term, σ a KAM environment and π a KAM stack. Assume some stack
variable α not free in σ nor in any closure of π.
If 〈(t, σ) | π〉 −→∗ 〈(u, τ) | (α, σ′)〉 for some σ′ and τ , then u• n τ• ∈ (tα n σ•) π•.

10.4 Call-by-value translation

Once again, thanks to the linear decomposition, we can have for free an adaptation of the
Dialectica translation to the call-by-value case by taking the right decomposition. The
call-by-value translation is a little more involved than the by-name variants, because of
its salient feature, that is, the notion of values.

10.4.1 Call-by-value

We briefly recall here the definition of the call-by-value reduction semantics. The main
difference with the call-by-name reduction is that we only substitute values in the usual
β-reduction.
In the remainder of this section, we will only look at the negative fragment of the λ-

calculus, but as we will also look at call-by-value semantics in more expressive settings,
we give here the definition of call-by-value for a λ-calculus with inductive types.

201

10 Variants of the Dialectica translation

Definition 130 (Values). We define the syntactic notion of values v, w as the subset of
usual λ-terms described by the following grammar.

v, w := x | λx. t | () | (v1, v2) | inl v | inr v

Call-by-value has essentially the same redexes as call-by-name, except that we restrict
objects being substituted to values.

Definition 131 (Call-by-value). A term t reduces to r in call-by-value, written t →βv

r, when the pair (t, r) is in the relation generated by the rules below, and closed by
congruence.

(λx. t) v →βv t[x := v]
match () with () 7→ u →βv u
match (v, w) with (x, y) 7→ u →βv u[x := v, y := w]
match inl v with [x 7→ u1 | y 7→ u2] →βv u1[x := v]
match inr v with [x 7→ u1 | y 7→ u2] →βv u2[y := v]

The equivalence generated by these rules is written ≡βv.

10.4.2 Type translation

The call-by-value linear decomposition [[A]]v of an intuitionistic type A in inductively
defined on A as follows.

[[α]]v := !α

[[A→ B]]v := !([[A]]v ([[B]]v)

We will depart from the usual sequent translation as described in section 3.4.2 in this
section, for ease of translation. We are actually going to add spurious bang connectives
in the environment, so that we recover a tractable sequent translation. Indeed, in the
fragment we consider, we know that all the translated types start with a bang.
We will therefore add those bang connectives explicitly, and shift our point of view in

the witness translation. The criterion that demonstrates that we are not writing nonsense
comes from the fact we recover the preservation of call-by-value semantics at the end,
and no other one.

First, we tweak the decomposition to extrude all bang connectives into the englobing
arrow, by defining a decomposition [[−]]v̂ as follows.

Definition 132 (Extruded decomposition). We define the extruded call-by-value de-
composition [[−]]v̂ by induction on our source intuitionistic types as follows.

[[α]]v̂ := α

[[A→ B]]v̂ := ![[A]]v̂ (![[B]]v̂

202

10.4 Call-by-value translation

As explained above, this is a mere change in the point of view of the translation, as
we have the following property.

Proposition 84. For any type A, [[A]]v = ![[A]]v̂.

Proof. By induction on A.

Basing ourselves on this type translation, we translate sequents as

[[Γ1, . . . ,Γn ` A]]v := ![[Γ1]]v̂, . . . , ![[Γn]]v̂ ` ![[A]]v̂

The equivalence lemma stated before ensures us that this is actually the same sequent
translation we would have recovered, should we have taken the standard decomposition.
The modified decomposition gives us the following type translation through the Dialectica
interpretation.

Proposition 85. We have the following type unfoldings

W([[A→ B]]v̂) :=

W([[A]]v̂)→W([[B]]v̂)

×

K([[B]]v̂)→ K([[A]]v̂)

C([[A→ B]]v̂) := W([[A]]v̂)×K([[B]]v̂)

where
K(C) := W(C)→MC(C)

We will be using the notation K(−) for compactness reasons, as it is rather pervasive
in the call-by-value translation. As usual, we will look at the sequent translation through
a simplifying isomorphism.

Proposition 86 (Sequent isomorphism). We have the following isomorphism.

W([[Γ1, . . . ,Γn ` A]]v) ∼=

W([[Γ]]v̂)→W([[A]]v̂)

×

W([[Γ]]v̂)→ K([[A]]v̂)→MC([[Γ1]]v̂)

×

. . .

×

W([[Γ]]v̂)→ K([[A]]v̂)→MC([[Γn]]v̂)

As in the call-by-name case, for any term Γ ` t : A, we will therefore be producing two
types of translations:

203

10 Variants of the Dialectica translation

• A forward translation W([[Γ]]v̂) ` t• : W([[A]]v̂).

• For each free variable x : R ∈ Γ, a reverse translation W([[Γ]]v̂) ` tx : K([[A]]v̂) →
MC([[R]]v̂).

Let us detail this translation here.

Definition 133 (Term translation). Given a λ-term t and a variable x, we mutually
define the translations t• and tx by induction on t below.

x• := x

(λx. t)• := (λx. t•, λϕx. tx ϕ)

(t u)• := fst t• u•

xx := λϕ. ϕ x

xy := λϕ. ø

(λy. t)x := λϕ. ϕ (λy. t)• >>= λ(y, ψ). tx ψ

(t u)x := λϕ. (tx (λf. {(u•, ϕ)})) � (ux (λv. snd t• ϕ v))

As one can witness, the forward translation is the same as in the call-by-name case,
the main difference coming from the reverse one. This translation features a much more
continuation-passing-style flavour than the call-by-name variant. Indeed, the reverse
translation takes what is essentially a continuation expecting the eventual value of the
term, and threads it all along until the translation steps across a value.

Proposition 87 (Typing soundness). The translation preserves typing, according to the
sequent isomorphism given before.

Proof. By induction on the typing derivation.

In order to state properly the substitution lemma, we need to define an auxiliary
translation that is only defined on values.

Definition 134 (Value translation). For all value v and variable x, we define vv
x by case

analysis on the value v as follows.

xv
x := λπ. {π}

yv
x := λπ. ø

(λy. t)v
x := λ(y, ψ). tx ψ

Proposition 88 (Value typing soundness). If Γ ` v : A, then for all (x : R) ∈ Γ,

W([[Γ]]v̂) ` vv
x : C([[A]]v̂)→MC([[R]]v̂)

204

10.4 Call-by-value translation

Proof. Case analysis on the value.

The value translation can be seen as the core of the reverse translation of values, as
the following lemma testifies.

Proposition 89 (Value decomposition). For any value v and variable x, we have

vx ≡β λϕ. ϕ v• >>= λπ. vv
x π

Proof. By case analysis on the value and multiset rewriting.

This property corresponds to the fact that one needs to perform a dereliction in the
linear decomposition when casting values into computations. The term provided is effec-
tively the translation of the dereliction itself.
We can finally unroll all the necessary lemmas to make the computational soundness

theorem go through.

Proposition 90 (Emptiness lemma). If x is not free in t, then tx ≡β λϕ. ø.

Proof. By induction on t. We omit the details which are very similar to the call-by-name
case.

Proposition 91 (Substitution lemma). For any term t, any variables x 6= y, any value
v s.t. x is not free in v, we have

(t[x := v])• ≡β t•[x := v•]

(t[x := v])y ≡β λϕ. (ty[x := v•] ϕ) � (tx[x := v•] ϕ >>= λπ. vv
y π)

Proof. The substitution lemma is, as one can observe, similar to its call-by-name coun-
terpart, except that it is restricted to values. It is, once again, proven crawling through
tedious rewriting steps. We will omit the details of the proof, although we would like to
insist on an important point.
The substitution lemma does not hold when the term being substituted is not a value,

and for a simple reason: in that case, the translation vv
y is just undefined. One could

argue, based on typing hindsights, that the following equivalence ought to be derivable
for any term r.

(t[x := r])y ≡β λϕ. (ty[x := r•] ϕ) � (tx[x := r•] ϕ >>= λπ. ry (λ_. {π}))

While this equivalence preserves typing, it is not provable in general. Let us compare
the simple case of the variable substitution on the rightful equivalence and the tentative
one, i.e. assume t := x. The left-hand side gives immediately

(x[x := r])y ≡β ry

If r is a value, then evaluating the correct right-hand side gives

205

10 Variants of the Dialectica translation

λϕ. (xy[x := r•] ϕ) � (xx[x := r•] ϕ >>= λπ. rv
y π)

≡β λϕ. ø � (ϕ r• >>= λπ. rv
y π)

≡β λϕ. ϕ r• >>= λπ. rv
y π

which is convertible to the left-hand side thanks to the value decomposition lemma.
Meanwhile, if we try to do so with the tentative substitution lemma, we end up with the
following.

λϕ. (xy[x := r•] ϕ) � (xx[x := r•] ϕ >>= λπ. ry (λ_. {π}))
≡β λϕ. ø � (ϕ r• >>= λπ. ry (λ_. {π}))
≡β λϕ. ϕ r• >>= λπ. ry (λ_. {π})

The problem is that we have no way to relate ry with such a term when r is not a value,
because the continuation captured by ry can be used in many ways that are incompatible
with the fact we immediately apply it to a value and discard it afterwards in the value
translation. Taking a well-chosen instance for r, say r := y y, shows that the two terms
must be distinct. In that case we have indeed

ry ≡β λϕ. {(y, ϕ)} � (snd y ϕ y)

but applying this term and the tentative right-hand side written above to a well-chosen
function, for instance ϕ := λ_. ø, leads to two different terms.

(ry) ϕ ≡β {(y, ϕ)} � (snd y ϕ y)

ϕ r• >>= λπ. ry (λ_. {π}) ≡β ø

If our abstract multisets are implemented as true multisets, then the two terms above
cannot agree, because the first one has at least one element while the second one is empty.

Once we have the substitution lemma, it is easy to check that the translation transports
βv-equivalence into plain β-equivalence.

Proposition 92 (Computational soundness). If t ≡βv u then t• ≡β u• and for any
variable x, tx ≡β ux.

Proof. Congruence rules are immediate, and it is sufficient to check that call-by-value
β-redexes are transported, which is easily proved by applying the substitution lemma.

Once again, and similarly to the call-by-name case, the translation does not capture
call-by-value as a reduction strategy, but rather as a calculus. All contextual reduction
rules are allowed as long as the fired redex only substitutes values. The translation only
validates this calculus, though. The counter-example in the proof of the substitution can
be easily worked out to obtain two terms which are β-convertible, but whose translation
is not.

206

10.4 Call-by-value translation

One could probably construct a call-by-value machine that would feature a simulation
theorem similar to the call-by-name setting, but we will not study this option here. We
will not study the classical-by-value translation arising from the linear decomposition
either, but once again, everything comes almost for free thanks to the linear decomposi-
tion.

207

11 A dependently-typed Dialectica

Dialectic, for the most part, can be
constructed only a posteriori.

Schopenhauer about synthesis of program translations.

This short chapter is dedicated to a proof-of-concept dependently-typed Dialectica
translation. As we will see, our version of the Dialectica translation accommodates quite
well within a dependent framework, at least for the purely negative fragment.
Things turns out to be frankly more complicated, if doable at all, when introducing

dependent elimination. The issues raised by dependent elimination are described in
section 11.5.

11.1 A simple framework: λΠω

The source system for our translation will be one of the many variants of a purely
negative dependently-typed system, namely, λΠω. A rough description can be given, as
a PTS [18] with an infinitely countable hierarchy of types. It is a close variant of Luo’s
ECC [77], except that it does not feature any impredicative universe nor dependent
pairs. Alternatively, one can see it as the Calculus of Constructions CC [33] without
impredicativity and extended with the aforementioned hierarchy of universes.
As this is no more than a proof of concept, we choose to use a stripped-down version of

systems we could actually find implemented in the wild. In particular, we describe and
use a Curry-style PTS, because it simplifies a lot the assumptions and the presentation
of the translation, while allowing to reuse the proofs given at chapter 9.
This has various drawbacks. For instance, type inference and checking is undecidable

in general with our presentation. Nonetheless, adapting the translation to a Church-
style setting seems quite in reach, at the cost of a more intricate but essentially similar
presentation. This is still work in progress.
The syntax of the terms is given below. As usual in dependent setting, there is no a

priori syntactic difference between terms and types.

Definition 135 (Terms). Terms of λΠω are inductively generated by the following gram-
mar.

M,N,A,B := �i∈N | x |M N | λx.M | Πx : A.B

As usual, x is bound by the constructions λx.M and Πx : A.B.

Although there is no formal difference between types and terms, we will tend to use the
letters M,N for normal terms and A,B for terms that should be understood as types.

209

11 A dependently-typed Dialectica

Definition 136 (Reduction rules). The β-equivalence ≡β is the contextual closure of
the rule

(λx.M) N ≡β M [x := N]

Definition 137 (Environments). Environments are defined as ordered lists associating
variables to terms, as usual, i.e.

Γ,∆ := · | Γ, x : A

Definition 138 (Typing system). We define here two statements mutually recursively.
The statement `wf Γ means that the environment Γ is well-founded, while Γ ` M : A
means that the term M has type A in environment Γ. The rules are given below.

`wf ·
Γ ` A : �i

`wf Γ, x : A

Γ `M : B Γ ` A : �i

Γ, x : A `M : B

Γ ` A : �i

Γ, x : A ` x : A

`wf Γ i < j

Γ ` �i : �j

Γ ` A : �i Γ, x : A ` B : �j

Γ ` Πx : A.B : �max(i,j)

Γ, x : A `M : B Γ ` Πx : A.B : �i

Γ ` λx.M : Πx : A.B

Γ `M : Πx : A.B Γ ` N : A

Γ `M N : B[x := N]

Γ `M : B Γ ` A : �i A ≡β B
Γ `M : A

This is, as one can remark, a very simple system. There is no cumulativity, no inductive
types and thus no dependent elimination, and not any other fanciful stuff.
As usual, we will allow ourselves some immediate notational artifacts. For instance, we

will code the non-dependent arrow A→ B in a standard way, by encoding it as Πx : A.B
where x does not appear in B.

11.2 The target system

Exactly as the translation of chapter 9, the target language of our translation is slightly
richer than its corresponding source calculus. Similarly to the simply-typed case, where
we needed to add pairs in the target calculus to represent the famous first-class stacks,
we now need to add their dependent counterpart, unsurprisingly named dependent pairs,
also known as Σ-types.
Obviously, we also need to accommodate for the use of abstract multisets, so that

we also need them in the target calculus. The consequences of the presence of such a
structure will be discussed more in detail later on. While Σ-types are well-known (they
are present in ECC for instance), the soundness of multisets is questionable. For now

210

11.2 The target system

we refrain from more feebleness, and we concentrate on the proof of concept currently
being defined.
We will name the extended system λΠ×ω . It will be seen as an extension of the source

system λΠω, so that we only present the extensions, not the core system already exposed
at the previous section. The two extensions are presented separately, for the sake of
comprehensiveness.

11.2.1 Dependent pairs

There exists the same relation of adjunction between regular arrows and pairs than
between Π-types and Σ-types, which is better known as the currification. We recall here
the usual definition of Σ-types.

Definition 139 (Terms). We extend λΠω terms as follows.

M,N,A,B := . . . | Σx : A.B | (M,N) | let (x, y) := M in N

The variable x is bound by Σx : A.B, as well as x and y by let (x, y) := M in N .

Reduction rules are extended with the following generator.

Definition 140 (Reduction rules). We add the following generator to λΠω reductions.

(let (x, y) := (M,N) in P) ≡β P [x := M,y := N]

Typing rules are then a simple adaptation to the dependent case of the usual pair
construction.

Definition 141 (Typing rules). We add the following typing rules to λΠω.

Γ ` A : �i Γ, x : A ` B : �j

Γ ` Σx : A.B : �max(i,j)

Γ ` Σx : A.B : �i Γ `M : A Γ ` N : B[x := M]

Γ ` (M,N) : Σx : A.B

Γ `M : Σx : A.B Γ, x : A, y : B ` N : C[z := (x, y)] z fresh

Γ ` let (x, y) := M in N : C[z := M]

Note that we chose to use a let notation instead of the usual pattern-matching we used
throughout our previous definitions because it is slightly less verbose in a dependent
setting. Yet, there is no formal difference between both otherwise.
This system allows to encode non-dependent pairs in the same fashion λΠω allows to

encode non-dependent arrows.

Notation 11. We write A×B for the term Σx : A.B where x is not free in B.

Up to well-formation of types, this shorthand admits the same typing rules as the usual
non-dependent pairs.

211

11 A dependently-typed Dialectica

11.2.2 Multisets

As for the non-dependent translation, we also need to add multisets. While pairs needed
to be made dependent, this is not the case for multisets. We simply adapt our definitions
a tiny bit.

Definition 142 (Terms). Terms are extended as follows.

M,N,A,B := . . . |MA | {M} |M >>= N |M � N | ø

Note that we could have simply added the above term constructors as mere constants.
This would not have changed the presentation much.
The reduction rules are likewise adapted.

Definition 143 (Reduction rules). The reduction rules are extended with the obvious
context closures induced by the above terms, together with the redexes below.

• Monadic laws:

{M} >>= F ≡β F M
M >>= λx. {x} ≡β M
M >>= F >>= G ≡β M >>= λx.G (F x)

• Monoidal laws:

ø �M ≡β M
M � N ≡β N �M
M � (N � P) ≡β (M � N) � P

• Distributivity laws:

ø >>= F ≡β ø
M � N >>= F ≡β (M >>= F) � (N >>= F)
M >>= λx. ø ≡β ø
M >>= λx. (F x) � (G x) ≡β (M >>= F) � (N >>= G)

• Commutative cuts:

let (x, y) := M in ø ≡β ø
let (x, y) := M in N1 � N2 ≡β

(let (x, y) := M in N1) � (let (x, y) := M in N2)
let (x, y) := M in {N} ≡β {let (x, y) := M in N}
let (x, y) := M in (N >>= F) ≡β let (x, y) := M in N >>= F

These are exactly the same rules as in the non-dependent case, except that we used
a let notation instead of a match-based one. Likewise, typing rules are, once again, the
same as the non-dependent case, except for a few additional bells and whistles.

212

11.3 The dependent Dialectica translation

Definition 144 (Typing rules). We add the following rules to λΠω.

Γ ` A : �i

Γ `MA : �i

Γ ` A : �i

Γ ` ø : MA

Γ `M : A

Γ ` {M} : MA

Γ `M : A Γ ` N : A

Γ `M � N : MA

Γ `M : MA Γ ` N : A→MB Γ ` A→MB : �i

Γ `M >>= N : MB

Strangely enough, we do not require the bind operator to be dependent in the trans-
lation: we only use it in a simply-typed fashion.

11.3 The dependent Dialectica translation

Actually, there is almost nothing to do to port the Dialectica translation to the purely
negative dependent case. We have chiefly to adapt our results in the untyped case. Most
of the trickery of the translation lies in the fact we allowed ourselves to use rich multiset
reductions, further resulting in preservation of β-equivalence.

11.3.1 Rationale

We give here the principles underlying what a dependent Dialectica translation is. This
can be summarized into the two main additions from the simply-typed λ-calculus into
λΠω:

• The shift from a simple arrow A→ B to a dependent product Πx : A.B;

• The need to handle properly types as terms, requiring for instance a term transla-
tion for �i and Πx : A.B.

Each of these items will be addressed separately. Let us explain how we are to proceed.

The handling of the dependent arrow turns out to be almost immediate, actually. We
recall that in the non-dependent version, we had the following type translations.

W(A→ B) :=

W(A)→W(B)
×

C(B)→W(A)→MC(A)

C(A→ B) := W(A)× C(B)

Now, the main difference comes from the fact that B may actually depend on a term
of type A. But luckily, the translation provides us with such a term, up to a violation of
the linear decomposition. Indeed, by reordering the two arguments in the reverse proof
of the arrow, and making the arrows and the product over W(A) dependent, we can pose

213

11 A dependently-typed Dialectica

W(Πx : A.B) :=

Πx : W(A).W(B)
×

Πx : W(A).C(B)→MC(A)

C(Πx : A.B) := Σx : W(A).C(B)

such that all translations of B have an x : W(A) in their scope. Note that this is not so
innocuous from the point of view of linear logic: we broke the factorization through the
linear decomposition without any remorse. Nonetheless, the translation is still inspired
by a linear decomposition, so we are not that heterodox.

The translation of types as term may seem more difficult at first sight, but we are
actually rather constrained. First, it is legitimate that in the above explanation, we
ruthlessly gave the type translation in terms of W(−) and C(−) without explaining how
they make sense in the current setting. The relevant question here is: how should we be
translating types to accommodate the legacy translations W(−) and C(−)?
There is a sensible answer. We can simply identify the translation of types seen as

terms with the pair of their W(−) and C(−) type translations. This is actually fairly
standard. When translating dependent type theories, one usually translates types so as
to pack any additional information about this type into the type-as-term translation.
For instance, the dependent forcing translation of [63] packs types with a proof that they
are monotonous, something which is usually proven externally in simply-typed variants.
Thus we are no exception.
Hence, the type translations can be reduced to macros, typically by enforcing

A• := (W(A),C(A))

for any type A. This allows to define W(−) and C(−) from (−)• rather than as an
external translation. Therefore, we simply pose

W(A) := fst A•

C(A) := snd A•

and we are done.
While we actually already defined (Πx : A.B)• in the previous paragraph, one can

wonder what the translation �i• could be. From what we just said, looking at the typing
rule �i : �j for i < j, we have the constraints

�i• : fst �j•

snd �i• : �k

for some k. As we will see, the practical choice for snd �i• is essentially irrelevant, as
long as it is a type. This is why we simply pose

�i• := (�i ×�i,�i)

214

11.3 The dependent Dialectica translation

which satisfies the constraints.

Finally, we did not talk at all about the reverse translation for types. There does
not seem to be a lot of design space for it. The simplest choice to do is to deny any
computational content to types, that is, we morally enforce

Ax := λπ. ø

when A is a closed type.

11.3.2 The dependent Dialectica

We summarize all of our rationale given in the previous section in one definition. This is
straightforward.

Definition 145 (Dependent Dialectica). We mutually define the translations (−)• and
(−)x by induction below, where W(M) := fst M• and C(M) := snd M•.

x• := x

(λx.M)• := (λx.M•, λx π.Mx π)

(M N)• := fst M• N•

(Πx : A.B)• :=

 Πx : W(A).W(B)

×
Πx : W(A).C(B)→MC(A)

 ,

Σx : W(A).C(B)

(�i)

• := (�i ×�i,�i)

xx := λπ. {π}

xy := λπ. ø

(λy.M)x := λ(y, π). tx π

(M N)x := λπ. (snd M• N• π >>= λρ.Nx ρ) � (Mx (N•, π))

(Πx : A.B)x := λπ. ø

(�i)x := λπ. ø

This is almost the same as the simply-typed translation, except for the commuta-
tions explained before, and the special handling of types. As usual, we used generalized
patterns in λ-abstraction, properly defined as an abstraction followed by a let-matching.

Theorem 29 (Computational soundness). If M ≡β N then

M• ≡β N•

Mx ≡β Nx

215

11 A dependently-typed Dialectica

Proof. Essentially the same proof as the simply-typed case. All the auxiliary lemmas
pass just through. We just need to have a look at the status of those lemmas on the two
new syntactic types constructs �i and Πx : A.B.

• Emptiness lemma is trivial on syntactic types, because they have already an empty
translation.

• Substitution lemma is hardly more difficult to prove. Commutation with the for-
ward translation is obvious, while commutation with the reverse translation always
collapses to an empty term λπ. ø.

• Adding types as terms does not add any supplementary redex, only the context
rules. By construction there is nothing to prove.

The previous theorem finally allows us to state and prove the soundness of typing of
our translation.

Theorem 30 (Typing soundness). Assume Γ `M : A, then

W(Γ) `M• : W(A)

W(Γ) `Mx : C(A)→MC(U)

when (x : U) ∈ Γ and where W(Γ) stands for the pointwise application of W(−) to Γ.

Proof. By induction on the typing derivation. We also need to prove at the same time
that the translation preserves well-formedness of contexts, but it is actually obvious. We
focus on the most interesting cases.

• Assume Γ ` �i : �j . We first need to show that W(Γ) ` (�i)
• : W(�j) which is

equivalent by unfolding and conversion to W(Γ) ` (�i ×�i,�i) : �j ×�j . This is
easily proven thanks to the induction hypotheses.

We also need to prove that W(Γ) ` (�i)x : C(�j)→MC(U). This simply unfolds
to W(Γ) ` λπ. ø : �j → MC(U) which is once again easily typed, owing to the
fact that U was present in the well-formed environment Γ, so that it is a type and
the above arrow is well-typed.

• Assume Γ ` Πx : A.B : �max(i,j). We need to prove

W(Γ) `

 Πx : W(A).W(B)

×
Πx : W(A).C(B)→MC(A)

 ,

Σx : W(A).C(B)

 : W(�max(i,j))

which amounts to

W(Γ) `

 Πx : W(A).W(B)
×

Πx : W(A).C(B)→MC(A)

 : �max(i,j)

216

11.4 Practical feasibility

W(Γ) ` Σx : W(A).C(B) : �max(i,j)

which are in turn easily derived from the hypotheses.

The reverse translation is handled just as in the previous case.

• Conversion rule is handled thanks to the computational soundness theorem.

• Other cases are similar to the simply-typed case, except for additional well-formedness
of types and contexts.

There are several remarks to make here. As already mentioned before, the precise
choice for C(�i) does not really matter, as long as it is a type. We could have chosen a unit
type if λΠ×ω was equipped with one. In any case, we never construct them whatsoever.
All the magic comes from the fact that our translation preserves β-equivalence, allowing

us to make the conversion rule work unmodified. As we will see in the next section, this
can represent an issue.

11.4 Practical feasibility

The translation provided in the previous section is explicitly branded as a proof-of-
concept. If we wanted to implement it in an actual proof assistant such as Coq for
instance, we would quickly stumble upon both practical and theoretical issues.

11.4.1 Church-style encoding

For decidability purposes, most of the proof systems based on the Curry-Howard corre-
spondence use Church-style terms, that is, terms which carry type annotations. Typi-
cally, λ-abstractions are required to be annotated as λx : A.M , and pattern matchings
are annotated with the return type of their branches.
It seems our translation can be adapted to this setting, at the cost of a more technical

definition. Indeed, we would need the whole typing derivation to provide the translation.
Think for instance about the application case Γ `M N : B[x := M]. Without the actual
type of the application, we would not be able to write out the reverse translation

(M N)x := λπ : C(B)[x := M•]. . . .

because we would need to annotate the λ. This is surely workable, but this requires
a rather heavily annotated system. Annotation should also be put on the multiset-
operating constructions to retrieve decidability.
Likewise, this would imply that the proof of preservation of β-equivalence and preser-

vation of typing to be done mutually recursively, because only equality over well-typed
terms, or at least annotated enough, would make sense.
This would have required a lot of technical details, and this is why we did not push

the current attempt further, although we believe this particular point to be the easiest
to overcome.

217

11 A dependently-typed Dialectica

11.4.2 Actual multisets

The implementation of multisets is the most delicate detail of the issues of our proof of
concept. First, being a quotient, it is difficult to encode it without losing canonicity of
the representation. We could think of it as an opaque datatype with built-in equivalence,
but that would require a dedicated system.
We actually do not even know if the equivalence of two well-typed terms according to

the rules given at definition 143 is decidable. If this were not the case, it would put a
threat upon the feasibility of our translation.

An alternative path that seems more reasonable is the conjoint use of higher inductive
types [105] to represent multisets, together with encoding tricks à la Oury [91] to get rid
of the necessity of built-in equivalence rules to make the conversion rule go through.

• Higher inductive types, also known as HITs, are a recent byproduct of the research
program of homotopic type theory [105]. They provide an elegant way to build the
long-awaited quotients in type theory. HITs can be seen as inductive types forced
to obey additional equality rules, thus effectively producing a quotient. Our finite
multisets naturally fit in this framework, as they are but lists up to commutation.
This would not give us the definitional equations we hope for though, as they only
allow for additional propositional equalities over the considered objects.

• To work around the definitional equality requirement, we can probably use exten-
sionality encodings, as described in [91] and used in the dependent forcing encod-
ing [63] for instance. The main idea of these encodings is that conversion rules in
the term are made relevant, by replacing it with a rewriting over a propositional
equality constructed from the fact that the source terms are β-equivalent. This
is more involved than it sounds, because this equality percolates throughout the
term. Nonetheless, our translation seems particularly fitted for this kind of tricks.

Alas, we do not have a perfectly working translation at hand, but we hope that the
above ideas will allow us to transport the dependent Dialectica translation in an actual
implementation of dependent type theory.

11.5 Towards dependent elimination

Even putting aside the issues of the translation, our source system λΠω was totally devoid
of any positive types, and therefore did not feature any type of dependent elimination.
Dependent elimination is essential in the daily use of dependent type theory, so we ought
to check whether it can be adapted to the dependent Dialectica translation.
The answer is disappointing: we probably cannot, at least as is. We hint in the

remaining of this section at the root of this impossibility, by focusing on the archetypal
sum type.

Definition 146 (Plain sum type). We extend terms of λΠω and λΠ×ω with the sum type
as follows.

218

11.5 Towards dependent elimination

• Terms are extended as follows.

M,N,A,B := . . . | A+B | inl M | inr M | match M with [x 7→ N1 | y 7→ N2]

• The following typing rules are added.

Γ ` A : �i Γ ` B : �i

Γ ` A+B : �i

Γ ` A+B : �i Γ `M : A

Γ ` inl M : A+B

Γ ` A+B : �i Γ `M : B

Γ ` inr M : A+B

Γ `M : A+B

Γ, x : A ` N1 : C

Γ, y : B ` N2 : C Γ ` C : �i

Γ ` match M with [x 7→ N1 | y 7→ N2] : C

• The usual reduction and congruence rules are added both to λΠω and λΠ×ω together
with the commutative cuts for the sum type from definition 117 in λΠ×ω .

Note with attention how the elimination rule remains non-dependent.
We can indeed translate the above extension according to the simply-typed translation

given at section 10.1.

Definition 147. We extend translation 145 with the following translations.

(A+B)• :=

(
W(A) + W(B),

(W(A)→MC(A))× (W(B)→MC(B))

)
(inl M)• := inl M•

(inr M)• := inr M•

(match M with [x 7→ N1 | y 7→ N2])• := match M• with [x 7→ N1
• | y 7→ N1

•]

(A+B)z := λπ. ø

(inl M)z := λ(ϕ,ψ). ϕ M• >>= λχ.Mz χ

(inr M)z := λ(ϕ,ψ). ψ M• >>= λχ.Mz χ

(match M with [x 7→ N1 | y 7→ N2])z := λπ. (match M• with [x 7→ N1z π | y 7→ N2z π])
�

(Mz ((λx.N1x π), (λy.N2y π)))

This is a direct adaptation of the principles we exposed before. Apart from the type
A+B which is translated according to the usual type scheme, the other terms keep the
same translation as in the non-dependent case.

219

11 A dependently-typed Dialectica

Proposition 93. The soundness theorems hold in the system with sums.

Proof. This is almost immediate for computational soundness, by applying the soundness
result from the non-dependent setting. We only have to check that the translations for
A + B also respect it, which is, as in the negative fragment, merely a matter of staring
at the translated terms (no additional redexes and trivial congruence closure).
Typing soundness goes through without much effort. The proof is similar to the

simply-typed extended system, except for the following points.

• We have to check that the translations of A+B have the right type, which is true
by construction (a pair of types, and an empty term).

• Additional typability constraints not present in the simply-typed case come as usual
from the hypothesis of well-formedness of the environment.

The issue is more stringent whenever trying to interpret dependent elimination, because
it simply does not typecheck. Let us look at the example to grasp the nature of the failure.
Assume we replace the elimination rule of the sum type both in λΠω and λΠ×ω with the
one below

Γ `M : A+B

Γ, x : A ` N1 : C[z := inl x]

Γ, y : B ` N2 : C[z := inr y] Γ, z : A+B ` C : �i

Γ ` match M with [x 7→ N1 | y 7→ N2] : C[z := M]

where z is fresh. Then all the previous translated terms typecheck except for the reverse
translation of the pattern-matching. Let us consider the translation of the above rule,
and let us put one annotation in the resulting term to see why.

λπ : W(C[z := M•]). (match M• with [x 7→ N1z π | y 7→ N2z π])
�

(Mz ((λx.N1x π), (λy.N2y π)))

The stack π has to have type W(C[z := M]) to conform with the soundness theorem.
The problem stems from the fact that N1 and N2 are in turn expecting a term of type
W(C[z := inl x]) and W(C[z := inr y]) respectively, so that the terms Niz π, N1x π and
N2y π are ill-typed. This is not much of an issue in the left side of the union, because
one can recover the typability by making explicit a commutative cut in the translation,
resulting in the following term.

λπ. ((match M• with [x 7→ N1z | y 7→ N2z]) π)
�

(Mz ((λx.N1x π), (λy.N2y π)))

This is a standard technique of dependently-typed programming language, nicknamed
the convoy pattern by Chlipala [28]. The real problem comes from the second component.
Indeed, in the term Mz ((λx.N1x π), (λy.N2y π)) there is no way to relate the type of

220

11.5 Towards dependent elimination

π to the sum contained in M . This is because Mz actually implements internally an
elimination by means of a CPS-like construction, as witnessed by the reverse translation
of the corresponding values:

(inl M)z := λ(ϕ,ψ). ϕ M• >>= λχ.Mz χ

(inr M)z := λ(ϕ,ψ). ψ M• >>= λχ.Mz χ

Here, the pair (ϕ,ψ) can be seen as the current continuation of the sum. The core
issue is that the type of this continuation is totally unrelated to the actual value of the
corresponding term, as we have

C(A+B) := (W(A)→MC(A))× (W(B)→MC(B))

while we would rather like this product to look like an elimination on the current hole,
intuitively of the form

C(A+B) := match (·) with [x 7→MC(A) | y 7→MC(B)]

where (·) is the value currently being built. The presence of this pattern-matching in the
type should allow us to keep track of the internal elimination performed by M . We still
do not know how to fix our translation though, as making the type translation depend
on the term being built is a real can of worms that resists our understanding. Chapter 12
explains in more details to which extent the above translation is actually a CPS, and
provides more hints at how to cope with the dependent elimination.

That is why the current state of the translation is disappointing. It allows to somehow
translate the negative fragment of dependent type theory, as well as positive connectives,
but does not interpret the dependent elimination that one would expect in this setting.

221

12 Decomposing Dialectica: Forcing,
CPS and the rest

On appelle passoires du premier ordre
les passoires qui ne laissent passer ni
les nouilles, ni l’eau.

Prof. Shadoko about zoology.

This chapter is dedicated to the study of some linear decompositions, particularly aris-
ing from commutative monads, and their relation with the Dialectica translation. This
will provide us with a way to construct program translations compatible with dependently
typed systems.
We will hint at a way to reconstruct the Dialectica translation by successive refinements

of seemingly lesser importance. The computational intuition of the KAM simulation
theorem will be a great support in the design of such translations. Indeed, this will prove
of greater help than just reasoning with types.

12.1 Overview

The study of the Dialectica translation in this thesis has been particularly influenced by
the work of Krivine [71] and Miquel [81] on forcing in the realm of classical realizability,
as well as its application to dependent type theory due to Jaber et al. [63].
The forcing translation was invented by Cohen [30] to build a model of ZFC disproving

the Continuum Hypothesis, a longstanding question that had been formalized by Hilbert
himself as the first problem for the twentieth century.
Seen as a program translation, it is essentially the same as the Kripke model construc-

tion [67] that was designed as a complete model for (a modal extension of) intuitionistic
propositional logic. We will use interchangeably the names forcing and Kripke model in
the remainder of this chapter.
At the type level, it can be thought of as an indexed translation, relating types with

so-called worlds, that are equipped with a particular order. Whenever a world w and a
type A are related, we say that w forces A, or equivalently that A is valid at w. The trick
is that while provable formulae are valid at any world, some unprovable formulae may be
valid from a certain world onwards. When at the right world, this allows to prove more
formulae, and, in particular, in the historical case, to negate the Continuum Hypothesis.
As shown by Krivine and Miquel, the underlying translation at the level of terms is

rather dull. Indeed, it is no more than the usual reader monad described at Section 3.3.
The readable cell of the translation contains the current world, and may be updated

223

12 Decomposing Dialectica: Forcing, CPS and the rest

almost like the usual reader monad. The subtlety dwells in the fact that this cell can
only be updated monotonously w.r.t. the order of worlds.

The forcing translation is interesting because, in addition to disproving the Continuum
Hypothesis as well as being a complete model of intuitionistic logic, it also allows inter-
esting new features, such as step-indexing, as well as providing a natural way to compute
normalization-by-evaluation [20, 62, 1].
It is also folklore that the Kripke models factor through a linear decomposition. This

is another common point with the Dialectica translation. While the linear decomposition
of Kripke models is a useful heuristic tool, it seems not to have been studied in detail in
the literature. We will recall it in this chapter.

Those two aspects, namely, the computational explanation through the KAM and the
linear logic decomposition explain why it is natural to study the relationship between
the Dialectica translation and the forcing translation.
We will show that there is a strong kinship linking forcing, CPS and the Dialectica

translation, as soon as one considers first-class stacks.

12.2 The simplest forcing: the reader monad

We recall that given a fixed type R, the reader monad over R defined as TA := R→ A is
a commutative monad, so it naturally gives rise to a linear decomposition. It is actually
a degenerated case of the Kripke model construction, as we will see in the next section.
The reader monad can be seen as adding an additional essentially read-only memory cell
of type R.
For now, we quickly give the reader monad translation both in call-by-name and in

call-by-value. In the following, we assume given some fixed type R. We also assume a
variable ω not appearing in the source terms.

12.2.1 Pseudo-linear translation

Without additional structure on the type R, there is no true linear translation, in the
sense that we do not interpret full classical linear logic. We can nonetheless interpret the
infamous intuitionistic fragment of linear logic.
These intuitionistic linear types are precisely the ones generated by the grammar given

below.
A,B := α | A(B | 1 | A⊗B | 0 | A⊕B | !A

The translation we provide does not have much to do with linear logic, actually. There
is no such thing as real negative types, and the dual construction is just absent.
It is rather about using a language with a built-in monad. As we define it below, the

! connective marks where we introduce the monad constructor. This may seem rather
silly, but with incremental refinement, this construction is going to start to make sense
in a linear fashion.

224

12.2 The simplest forcing: the reader monad

Definition 148 (Pseudo-linear translation). Given a linear type A, we define the intu-
itionistic type W(A) by induction over A as follows.

• W(α) := α

• W(0) := 0

• W(A⊕B) := W(A) + W(B)

• W(1) := 1

• W(A⊗B) := W(A)×W(B)

• W(A(B) := W(A)→W(B)

• W(!A) := R→W(A)

For now, there is no such thing as a counter type. We will be introducing them later
on.
We did not specify the rules of the intuitionistic system, so there is no soundness

theorem to state. There is no term in sight either, as we only gave the type translation.
The main use of this type translation is as a heuristic tool, plugged with a given

decomposition of intuitionistic logic into linear logic. This is the topic of the next sections.

12.2.2 Call-by-name reader translation

In this section, we look at the composition of the call-by-name linear decomposition cou-
pled with the pseudo-linear translation of the reader monad. We unfold this composition
in the definition given below.

Definition 149 (Type translation). The translation W([[−]]n) has the following unfold-
ings.

W([[A→ B]]n) := (R→W([[A]]n))→W([[B]]n)

W([[1]]n) := 1

W([[A×B]]n) := (R→W([[A]]n))× (R→W([[B]]n))

W([[0]]n) := 0

W([[A+B]]n) := (R→W([[A]]n)) + (R→W([[B]]n))

Basing ourselves on this type translation allows to write out a term translation easily.

Definition 150 (Term translation). Let ω be a reserved term variable. We define the
translation (−)• by induction on λ-terms.

225

12 Decomposing Dialectica: Forcing, CPS and the rest

x• := x ω

(λx. t)• := λx. t•

(t u)• := t• (λω. u•)

()• := ()

(t, u)• := (λω. t•, λω. u•)

(inl t)• := inl (λω. t•)

(inr t)• := inr (λω. t•)

(match t with () 7→ u)• := match t• with () 7→ u•

(match t with (x, y) 7→ u)• := match t• with (x, y) 7→ u•

(match t with [·])• := match t• with [·]

(match t with [x 7→ u1 | y 7→ u2])• := match t• with [x 7→ u1
• | y 7→ u2

•]

We can dissert a bit about this translation. First, all rules that would correspond
to a promotion rule in the source linear calculus are matched with a corresponding
closure over the variable ω. This thunking property allows to freeze computations waiting
for the current cell so that they can be given this cell later on. This phenomenon
appears at changes of polarity, i.e. in the application rule as well as the introduction of
constructors. This acknowledges the fact that in call-by-name, arguments of functions
as well as subcomponents of positive constructors are never forced1 unless they appear
in head position.
The variable translation is the only one to feature this forcing, because it is the precise

moment when the thunked terms appear in a needed position, so that they need the
content of the reader cell.
The other cases are plain commuting with the translation, because the reader cell does

not interfere with them.

The preservation of typing by this translation is almost trivial, having been designed
precisely by following the typing intuition.

Proposition 94 (Typing soundness). Assume Γ1, . . . ,Γn ` t : A. Then

R→W([[Γ1]]n), . . . , R→W([[Γn]]n), ω : R ` t• : W([[A]]n)

Proof. By induction on the typing derivation.

More interestingly, we also recover the preservation of β-equivalence through the trans-
lation. The most technical thing to prove is yet-another substitution lemma.

Proposition 95 (Substitution lemma). Assume t and r two λ-terms. Then

(t[x := r])• ≡β t•[x := λω. r•]

1In the computational meaning, a term which is deplorably ambiguous with the forcing translation
described in the next section.

226

12.2 The simplest forcing: the reader monad

Proof. By induction on t. We crucially need the substituted term in the right-hand side
to be closed w.r.t. ω for this to hold. Luckily, we prepended the translated term with a
λ-abstraction on ω. We detail the cases of the pure λ-calculus fragments, as other cases
are treated alike.

• Case x. The left-hand side gives immediately

(x[x := r])• ≡β r•

while the right-hand side is

x•[x := λω. r•] ≡β (x ω)[x := λω. r•] ≡β (λω. r•) ω ≡β r•

• Case λy. t. We have

((λy. t)[x := r])• ≡β (λy. t[x := r])• ≡β λy. (t[x := r])• ≡β λy. t•[x := λω. r•]

from which we conclude immediately.

• Case t u. This case is the one requiring the closure of the term λω. r• w.r.t. to ω.
We have for the left-hand side

((t u)[x := r])• ≡β (t[x := r] u[x := r])•

≡β (t[x := r])• (λω. (u[x := r])•)
≡β t•[x := λω. r•] (λω. u•[x := λω. r•])
≡β (t• (λω. u•))[x := λω. r•]

from which we easily conclude. Note that the transition from the penultimate line
to the last one is only valid because the bound ω present in u• does not appear
free in λω. r•. This was the point of closing the substituend w.r.t. ω.

Preservation of β-equivalence comes for free by applying the above lemma.

Theorem 31 (Computational soundness). If t ≡β u, then t• ≡β u•.

Proof. For redexes, it is sufficient to unfold the definitions and apply the substitution
lemma, while for contextual rules, this is immediate.

12.2.3 Call-by-value reader translation

The call-by-value translation is likewise obtained by choosing the [[−]]v decomposition
over the [[−]]n one.

Definition 151 (Type translation). The translation W([[−]]v) has the following unfold-
ings.

227

12 Decomposing Dialectica: Forcing, CPS and the rest

W([[A→ B]]v) := R→W([[A]]v)→W([[B]]v)

W([[1]]v) := 1

W([[A×B]]v) := W([[A]]v)×W([[B]]v)

W([[0]]v) := 0

W([[A+B]]v) := W([[A]]v) + W([[B]]v)

Term translation is almost as easy as in the call-by-name case, if not easier.

Definition 152 (Term translation). Let ω be a reserved term variable. We define the
translation (−)• by induction on λ-terms.

x• := x

(λx. t)• := λω x. t•

(t u)• := t• ω u•

()• := ()

(t, u)• := (t•, u•)

(inl t)• := inl t•

(inr t)• := inr t•

(match t with () 7→ u)• := match t• with () 7→ u•

(match t with (x, y) 7→ u)• := match t• with (x, y) 7→ u•

(match t with [·])• := match t• with [·]

(match t with [x 7→ u1 | y 7→ u2])• := match t• with [x 7→ u1
• | y 7→ u2

•]

As usual when studying call-by-value, the translation verifies some nice properties
when applied to values.

Proposition 96. If v is a value, then ω is not free in v•.

Proof. Straightforward induction.

Once again, typing preservation by this translation is immediate.

Proposition 97 (Typing soundness). Assume Γ1, . . . ,Γn ` t : A. Then

W([[Γ1]]v), . . . ,W([[Γn]]v), ω : R ` t• : R→W([[A]]v)

Likewise, for any value v such that Γ1, . . . ,Γn ` v : A, we have

W([[Γ1]]v), . . . ,W([[Γn]]v) ` v• : W([[A]]v)

The substitution lemma holds, adapted to the call-by-value case, that is, when only
substituting values.

228

12.3 Forcing in more detail

Proposition 98 (Substitution lemma). Let t be a term and v a value. Then

(t[x := v])• ≡β t•[x := v•]

Proof. Direct induction on the term t. The essential point here is that translated values
do not contain the free variable ω, as in the call-by-name translation, so that we can
push them under ω-bindings without any concern.

Theorem 32 (Computational soundness). If t ≡βv u then t• ≡β u•.

Proof. Essentially an application of the substitution lemma.

12.3 Forcing in more detail

As explained by Krivine [71] and Miquel [81], forcing is no more than a refinement of
the reader monad, where the type R is given more structure. Namely, it is enriched with
an order, and all updates of the cell must be monotonous w.r.t. this order. They rather
present it as a dedicated slot on the stack, because they are working in a classical setting
where the relative order of the reader and continuation effect handlers must be made
explicit, but there is no such choice in an intuitionistic setting.

12.3.1 Linear translation

This is better explained by making explicit the linear type translation. In order to be
able to talk about the order over R, we need a first-order typing system2, though we do
not really bother about it in this section. Indeed, we only want the reader to get a taste
of the translation without dwelling too much on details. Thus we assume we are now in
a dependently typed system, featuring a relation

≤ : R→ R→ Prop

which is reflexive and transitive, i.e. there exist two terms with the following types.

refl : ∀ω : R.ω ≤ ω
trans : ∀ω1 ω2 ω3 : R.ω1 ≤ ω2 → ω2 ≤ ω3 → ω1 ≤ ω3

Because of this dependency, types may now mention the ambient cell of type R being
read. As in the case of the simple reader, we name this ambient cell using the dedicated
ω variable.

Definition 153. The linear translation for the forcing translation is defined inductively
below. We insist on the fact that ω is in general free in this translation.

• W(α) := α

2We do not make explicit the system here, but any extension of the simply-typed λ-calculus with a
dependent arrow should be enough. We stick to a Curry-style calculus for its simplicity, and the fact
that the computational content of the term is not buried under type annotations.

229

12 Decomposing Dialectica: Forcing, CPS and the rest

• W(0) := 0

• W(A⊕B) := W(A) + W(B)

• W(1) := 1

• W(A⊗B) := W(A)×W(B)

• W(A(B) := W(A)→W(B)

• W(!A) := ∀ω′ : R.ω′ ≤ ω → (W(A)[ω := ω′])

As one can see, this translation is essentially the same one as the one given by the
reader. The only change takes place at the level of the ! connective. There, we just made
the R → − dependent and stuffed an additional lesser-than condition inside it. As we
will manipulate quite often the free ω variable of the type translation, we use a proper
notation.

Notation 12. We will write Wω′(A) for W(A)[ω := ω′] for the sake of conciseness.

In the remaining of this section, we will quickly look at the term translation in call-
by-name and call-by-value. The treatment of the dependency in the call-by-value setting
has been thoroughly described in [63], as it raises issues of its own. In particular, lots of
tricks have to be considered to handle properly the translation, especially carrying a lot
of equalities around to emulate convertibility.
As this is only an overview, and we are actually only concerced about the computational

content, we will just give the shape of the terms without further care of design flaws that
would happen in a fully dependent setting.
For the sake of readability, we will write the dependently-typed terms refl and trans

with implicit arguments, that is, we will omit the leading applications of arguments of
type R when writing terms. We will reserve the ω letter for variables of type R, and we
will use the convention that terms of type ω1 ≤ ω2 for some ω1 and ω2 are written in the
fraktur typeface p, q, etc.

12.3.2 Call-by-name decomposition

As done before, we first make explicit the translation on types.

Definition 154 (Type translation). The translation W([[−]]n) has the following unfold-
ings.

Wω([[α]]n) := α

Wω([[A→ B]]n) := (∀ω′. ω′ ≤ ω →Wω′([[A]]n))→Wω([[B]]n)

Wω([[1]]n) := 1

Wω([[A×B]]n) := (∀ω′. ω′ ≤ ω →Wω′([[A]]n))× (∀ω′. ω′ ≤ ω →Wω′([[B]]n))

Wω([[0]]n) := 0

Wω([[A+B]]n) := (∀ω′. ω′ ≤ ω →Wω′([[A]]n)) + (∀ω′. ω′ ≤ ω →Wω′([[B]]n))

230

12.3 Forcing in more detail

The term translation is more involved than in the plain reader case, because it requires
substituting all free variables of the translated term when applying what would come from
a promotion rule in the corresponding linear sequent. There are various ways to present
this operation. One could use a substitution threaded along the translation, but we
rather choose to stick to a global operation done at boxing time.

Definition 155 (Lift). Let t be a λ-term and ω some variable. Assume that the free
variables of t range over ω, x1, . . . , xn. Assume another term p. We write ↑pω t for

↑pω t := t[xi := λω′ q. xi ω
′ (trans q p)]

for some fresh variables ω′ and q.

We now turn to the term translation itself.

Definition 156 (Term translation). The translation t• is defined by induction on t as
follows.

x• := x ω refl

(λx. t)• := λx. t•

(t u)• := t• (λω p. ↑pω u•)

()• := ()

(t, u)• := (λω p. ↑pω t•, λω p. ↑pω u•)

(inl t)• := inl (λω p. ↑pω t•)

(inr t)• := inr (λω p. ↑pω t•)

(match t with () 7→ u)• := match t• with () 7→ u•

(match t with (x, y) 7→ u)• := match t• with (x, y) 7→ u•

(match t with [·])• := match t• with [·]

(match t with [x 7→ u1 | y 7→ u2])• := match t• with [x 7→ u1
• | y 7→ u2

•]

Note that this definition by itself is actually badly specified, as the toplevel ω actually
appears in the boxed terms of the form λω p. ↑pω t• because the type of p involves it, so
that the trans operator mentions it as an implicit argument. This is actually not a real
issue because the actual type of the terms p are enough to desambiguate this collision.
We could have given a presentation with De Bruijn indices, wich would have resolved all
the ambiguities, but this would not give any valuable intuition of what is going on in the
skeleton of the translation.
As for the type translation, if we wanted to be totally out of any such issue, we should

parameterize the translation by the name of the dedicated variable ω, so that we would
not have to rename this variable explicitly on the fly.

If we look at this translation from a higher level, we see that this is really an en-
riched version of the reader monad. The main difference lies in the fact that we have
to keep track of the monotonous conditions imposed on the readable cell. From the

231

12 Decomposing Dialectica: Forcing, CPS and the rest

linear logic side, the distinction appears when playing with exponential rules, that is,
in call-by-name, in the variable case (which features weakening and dereliction) and in
the application case (which features contraction and promotion). Only the two latter
rules are observable in the forcing translation: dereliction corresponds to reflexivity of
the relation, while promotion is implemented by the lift operation which is no more that
a refined transitivity.

As we did not fully specify the system we were working on, hence any results about
typing soundness is actually somewhat void. Nonetheless, for any sensible instance of
such a system, the results would hold. Recall that this section does not aim at providing
a faithful account of this translation, but rather a rough description that will ultimately
justify our journey through the Dialectica decomposition.
In order to show the typing soundness for the whole translation, we first need to show

that the lifting operation preserves the typing through the translation.

Proposition 99. Let t be a term of type

ω : R, ~xi : (∀ω′ : R.ω′ ≤ ω → Γi) ` t : A

then we have

ω : R, ~xi : (∀ω′ : R.ω′ ≤ ω → Γi) ` λω p. (↑pω t) : ∀ω̂ : R. ω̂ ≤ ω → A[ω := ω̂]

Proof. By induction on the term t. The only interesting case is the variable case xi,
where we have

↑pω xi ≡ λω′ q. xi ω′ (trans q p)

so we conclude by typing of the trans term, as p : ω̂ ≤ ω and q : ω′ ≤ ω̂.

The typing soundness is then a mere corollary of this proposition.

Proposition 100 (Typing soundness). If Γ ` t : A, then

ω : R, ~x : Wω(![[Γ]]n) ` t• : Wω([[A]]n)

Proof. By induction on the typing derivation. The cases which are not trivial are either
the variable case, or the cases involving lifting. The former amounts to observe that in
the translation, variables from the environment have type

xi : Wω(![[Γi]]n) ≡ ∀ω′ : R.ω′ ≤ ω →Wω′([[Γi]]n)

so that by applying them to the current cell value and reflexivity one obtains the correct
type. The latter ones are handled thanks to the previous lemma.

Assuming enough reduction properties on the refl and trans terms, we can also recover
preservation of β-equivalence by the translation. The required equations are actually
expected. We want those terms to be compatible with the semantic of the underlying
order, namely

232

12.3 Forcing in more detail

trans refl p ≡β p
trans p refl ≡β p

trans (trans p q) r ≡β trans p (trans q r)

This is similar to the properties of multisets in the Dialectica translation, where refl
would have the rôle of {·} and trans the one of >>=. Indeed, the first pair is induced
by the translation of the dereliction, while the second is by promotion. Moreover, both
structures can be thought of as a monad over the ambient category of types and terms.
We will push this idea further in the next sections.

Proposition 101 (Lifting). Let t be a term. Then the following equalities hold.

↑refl
ω t• ≡β t•

↑(trans p q)
ω t• ≡β ↑qω ↑pω t•

Proof. As usual, because of the definition of lifting, it is sufficient to look at the case of
free variables of t• (and hence of t). We know that all free variables x in t• distinct from
ω are in an application of the form x ω0 r (where ω0 may be ω). Hence, through the
lifting of refl we get

(λω′ q. x ω′ (trans q refl)) ω0 r ≡β x ω0 (trans r refl) ≡β x ω0 r

so that, in the end, the lifted term is unchanged. The same arguments allows to conclude
for the lifting of trans.

Proposition 102 (Substitution lemma). Let t and r be λ-terms. Then the following
equality holds.

(t[x := r])• ≡β t•[x := λω p. ↑pω r•]

Proof. By induction on the term t. The arguments are essentially the same as for the
reader translation.

The reduction lemma follows immediately.

Proposition 103. If t ≡β u then t• ≡β u•.

Proof. As usual.

This concludes the presentation of the call-by-name variant of the forcing translation.
Miquel’s presentation [81] in the framework of classical realizability is also call-by-name,
although it is defined in a classical setting. The linear decomposition can be tweaked to
accommodate this fact and recover this particular variant. We advocate the call-by-name
variant over the call-by-value one, because, as we will see in the next section, it is lighter
to use, at least for the negative fragment, a recurring phenomenon in translations arising
from linear decompositions. In particular, we would like this section to offer a little more
visibility to the call-by-name forcing, which is the oft-forgotten flavour of forcing in the
literature.

233

12 Decomposing Dialectica: Forcing, CPS and the rest

12.3.3 Call-by-value decomposition

The call-by-value presentation is the standard one for Kripke models. This is unfortunate,
because as we will see, this implies more technical apparatus at the level of terms than for
the call-by-name translation. Conversely, the type translation is more straightforward.
We first head to give the expanded type translation.

Definition 157 (Type translation). The translation W([[−]]v) has the following unfold-
ings, using the already mentioned indexed notation.

Wω([[α]]v) := α

Wω([[A→ B]]v) := ∀ω′. ω′ ≤ ω →Wω′([[A]]v)→Wω′([[B]]v)

Wω([[1]]v) := 1

Wω([[A×B]]v) := Wω([[A]]v)×Wω([[B]]v)

Wω([[0]]v) := 0

Wω([[A+B]]v) := Wω([[A]]v) + Wω([[B]]v)

The traditional presentation of the term translation relies on the following monotonicity
lemma. This lemma is useless in the call-by-name case, where its equivalent is embodied
by the lifting operation.

Proposition 104 (Monotonicity). For all type A, there is a term runA with the following
type.

` ∀ω1 ω2. ω2 ≤ ω1 →Wω1([[A]]v)→Wω2([[A]]v)

Proof. By induction on A. The only non-trivial case is the arrow case, so we detail it.
We pose

runA→B := λω1 ω2 (p : ω2 ≤ ω1).
λf : Wω1([[A→ B]]v).
λω3 (q : ω3 ≤ ω2) (x : Wω3([[A]]v)). f ω3 (trans q p) x

and it is easy to see that the above term has the right type.

The linear decomposition sheds an interesting light upon the meaning of this lemma.
Indeed, this theorem is, up to a reordering of universal quantifications, no more than the
evaluation property from Section 3.4.2. When writing it alternatively as

` ∀ω1.Wω1([[A]]v)→ (∀ω2. ω2 ≤ ω1 →Wω2([[A]]v))

then we clearly recognize that this is the translated formulation of the sequent

` [[A]]v (![[A]]v

234

12.3 Forcing in more detail

This is no mere coincidence: the uses of the monotonicity lemma in the historical
presentation correspond precisely to the uses of the evaluation property in the soundness
proof of the call-by-value linear decomposition. There is a remarkable issue raised by
the monotonicity lemma, though. As easily observed, it breaks the parametricity of the
translation, because runA is only defined for a given type A that we will need to have
at hand to be able to define the translation. This defect is absent in the call-by-name
presentation. Such an itch is similar to the need of typing in the historical Dialectica
translation to create merging and dummy terms.
To cope with this limitation, we assume in the remaining of this section that the

variables of the source terms are annotated with their simple type, i.e. we are considering
simply-typed terms in Church-style. Annotations will be left implicit whenever they
are not useful, and we will consider that fresh variables appearing in the target of the
translation are not wearing any annotation. This will simplify the forecoming definitions,
even though we could present them in a purely formal way.

Using these typing annotations, we can construct a lifting operation similar to the
call-by-name ↑pω(−), but requiring the typing annotations.

Definition 158 (Lift). We define the call-by-value lift ⇑pω′ t as follows:

⇑pω′ t := t[xi
X := runX ω ω′ p xi]

where xi ranges over the annotated free variables of type X of the term t.

As usual regarding the translation of whole sequents, there is a choice to be made on
the exact placement of exponential modalities, already described at Section 3.4.2. The
presentation given by Jaber et al. is based on the alternative decomposition, but we will
stick to the standard one, because we find it to be somehow easier to define w.r.t. the
definitions we already gave in the call-by-value reader and in the call-by-name forcing
cases.

Definition 159 (Term translation). The translation t• is defined by induction on t as
follows.

x• := x

(λx. t)• := λω′ p.⇑pω′(λx. t
•′)

(t u)• := t• ω refl u•

()• := ()

(t, u)• := (t•, u•)

(inl t)• := inl t•

(inr t)• := inr t•

(match t with () 7→ u)• := match t• with () 7→ u•

(match t with (x, y) 7→ u)• := match t• with (x, y) 7→ u•

(match t with [·])• := match t• with [·]

(match t with [x 7→ u1 | y 7→ u2])• := match t• with [x 7→ u1
• | y 7→ u2

•]

235

12 Decomposing Dialectica: Forcing, CPS and the rest

Here, t•′ stands for t•[ω′ := ω].

Proposition 105 (Typing soundness). If Γ ` t : A, then

ω : R, ~x : Wω([[Γ]]v) ` t• : Wω([[A]]v)

We could formulate a computational soundness theorem, but we believe this particular
case to be well-known enough not to deserve further careful study. We only wanted to
point out at the details of implementation arising from the call-by-value linear decom-
position.
The call-by-value presentation, albeit the most used one, is not without issues. In

particular, it imposes that all translated types must respect the monotonicity conditions.
In complicated settings, like the translation acting on CIC described by Jaber et al. [63],
this forces the term translation to embed a lot of additional information, including the
fact that all types are monotone. We believe that the call-by-name presentation is bet-
ter behaved and the resulting translation would probably be slightly lighter and more
amenable.

12.3.4 Forcing you to repeat: a computational stuttering

As discovered by Krivine and Miquel, the call-by-name forcing translation can be seen as
a program transformation that adds a reserved cell atop the KAM stack. A translated
program t• would then somehow ignore this stack as a meaningful argument, but would
still modify it on the fly. Indeed, the simulation theorem for the forcing translation states
that assuming some reduction r of the KAM

〈(t, σ) | π〉 r−→ 〈(u, τ) | ρ〉

then the forcing-translated process now performs a reduction of the form

〈(t•, σ•) | ω · π•〉
r•

−→∗ 〈(u•, τ•) | (r ? ω) · ρ•〉

where r ? ω stands for a modification of ω depending on the nature of the reduction rule
r considered. The very nature of the cell and the particular implementation of the r ? ·
operation is left open, as long as it satisfies some well-behavedness axioms. One can use
it for logical purpose (proof of the independence of CH), computational purpose (NBE)
or quantitative purpose (as in monitoring algebras [24]).
In its utmost embodiment, one can think of this cell as a reification of the current

state of the machine. Indeed, if we forgot about the typing of this cell, we could just
consider that it contains a process, and that the r ? · operator is no more than the mere
performance of this reduction rule to the process to which it is applied. In this case, if
the cell is initially filled with the process itself, then it will always contain a copy of the
original process at the current point of execution. That is, all processes would be of the
form

〈(t•, σ•) | [[〈(t, σ) | π〉]] · π•〉

236

12.4 A proto-Dialectica: the silly stack reader

for some t, σ and π where [[·]] stands for some syntactic reification of the process as a
λ-term. The monotonous constraint on the use of the cell is then reduced to the inverse
reduction relation, i.e.

[[〈(t, σ) | π〉]] ≤ [[〈(u, τ) | ρ〉]] := 〈(u, τ) | ρ〉 −→∗ 〈(t, σ) | π〉

and thus the constraint on the variable is a promise that it will be fed with a latter stage
of the computation.

In other words, the essence of the forcing translation is computational stuttering, i.e.
duplicating the computation: to a meta-level reduction of the machine corresponds an
object-level reified reduction of the original process.

12.4 A proto-Dialectica: the silly stack reader

We will not push the forcing translation to its actual limit, which is explained in Sec-
tion 12.3.4. This would be rather subtle to type correctly, and we would surely need
some form of dependent typing. Anyway, we will not prove so extremists in our use, for
we will not reify the whole process, but rather the current stack only.
Indeed, we can consider that the ability to access the current stack of the process is

the quintessential component of the Dialectica translation seen in its rawest form. Once
we can grab it, it is sufficient to have a way to store it somewhere in order to write the
reverse translations (−)x. While the storing part can be worked around easily (using
a global mutable memory for instance), the stack access part is fairly more involved.
We propose in this section a naive approach to this problem, stemming in the forcing
translation.

12.4.1 A first step into linearity

Contrarily to the usual forcing translation which has a fixed type for the cell, we will
take inspiration from the stuttering intuition, and decide that it contains a stack of the
(dual) type of the term currently in head position.
To this end, and in a fashion similar to the Dialectica translation, we need to introduce

a new family of types C(−) standing for stacks of a given type. Now is the precise point
where we fall into the realm of linear logic, and not just a fancy notation for a monadic
decomposition. It is indeed one of the strength of linear logic to realize the existence of
proper dual types, not hidden under some unnatural encoding disguise.
The leading idea is that we are going to adapt the interpretation of the ! connective,

which is the one introducing accesses to the readable cell, so that the type of the cell is
the dual of the current term. Formally, we go from the forcing interpretation

Wω(!A) := ∀ω′ : R.ω′ ≤ ω →Wω′(A)

to the stack reader interpretation

W(!A) := C(A)→W(A)

237

12 Decomposing Dialectica: Forcing, CPS and the rest

The monotonicity constraint has vanished in the process, for the same reason the
orthogonality did in the case of the Dialectica translation, that is, namely because it is
useless when only interested in typing and computational soundness. The C(A) is to be
fed with the current stack of the process when a dereliction of the exponential occurs.
We will concentrate first on the purely negative fragment, as the design choices arising

from positive connectives will appear to be tricky. The interpretation of the sufficient
fragment of (intuitionistic) linear types is given below.

Definition 160 (Type interpretation). We define the types W(A) and C(A) by mutual
induction on A as follows.

W(α) := α C(α) := α⊥

W(A(B) := W(A)→W(B) C(A(B) := W(A)× C(B)
W(!A) := C(A)→W(A) C(!A) := C(A)

Here, α⊥ stands for an arbitrary type fixed for each base type α.

The interpretation of witnesses is, up to the change in the interpretation of ! described
above, the same as above. The counter interpretation is self-explanatory for the arrow,
as we really want to have first-class stacks.

12.4.2 Call-by-name translation

Let us give a closer look at the result of this translation when composed with the call-
by-name decomposition. This is just a subtle variant of the reader monad actually.

Proposition 106. The translation W([[−]]n) has the following unfolding.

W([[A→ B]]n) := (C([[A]]n)→W([[A]]n))→W([[B]]n)
C([[A→ B]]n) := (C([[A]]n)→W([[A]]n))× C([[B]]n)

Sequents Γ ` t : A are translated to

(C([[Γ]]n)→W([[Γ]]n)), ω : C([[A]]n) ` t• : W([[A]]n)

The ω variable in the sequent translation stands for the current content of the cell,
that is, the current stack of the process, hence its type. While the above type translation
is rather close to the reader monad, the term translation is more refined, because we
need to modify the content of the cell so that it always matches the current stack of the
process. To this end, we will keep in mind the reduction rules of the KAM. We give the
translation below, and explain it afterwards.

Definition 161 (Term translation). We define the (−)• translation on λ-terms by in-
duction below.

x• := x ω
(λx. t)• := λx. (λω. t•) (snd ω)
(t u)• := (λω. t•) ((λω. u•), ω) (λω. u•)

238

12.4 A proto-Dialectica: the silly stack reader

The term translation is justified as follows. In call-by-name, a variable contains a
thunked object, so that we need to feed it with the current cell. This is exactly as in the
usual reader monad, which explains the variable translation.
The translation of the λ-abstraction is justified by the KAM rule

〈(λx. t, σ) | c · π〉 −→ 〈(t, σ + (x := c)) | π〉

as the stack against which the t term will be cut in λx. t is no more than the second
component of the current stack. The translation features a redundancy, because we would
like to identify x with fst ω. This little defect will be the source of a later amelioration.
The most intricate case is, as usual in call-by-name, the application case. We recall

that the associated KAM rule is of the form

〈(t u, σ) | π〉 −→ 〈(t, σ) | (u, σ) · π〉

As in the case of the reader and forcing translation, the argument passed to the function
is thunked by the abstraction over ω. Yet, we need to change the current stack of the
t term, as witnessed by the KAM rule. Its argument in the translation is then no more
than the stack corresponding to u · π, where u is once again thunked.

As expected, the translation preserves typing.

Proposition 107. If Γ ` t : A, then

(C([[Γ]]n)→W([[Γ]]n)), ω : C([[A]]n) ` t• : W([[A]]n)

Proof. By induction on the typing derivation.

The substitution lemma from the reader translation also holds.

Proposition 108. Assume t and r two λ-terms. Then

(t[x := r])• ≡β t•[x := λω. r•]

Proof. Essentially the same proof as the reader translation. We have a little more ω-
boxing occurring, but this does not matter, as the term substituted is still ω-closed.

The preservation of β-equivalence follows directly.

Proposition 109. If t ≡β u then t• ≡β u•.

Proof. We only look at the case of the reduction β-redex, which is as usual the only
interesting one. We have

((λx. t) u)• ≡β (λω x. (λω. t•) (snd ω)) ((λω. u•), ω) (λω. u•)
≡β (λx. (λω. t•) ω) (λω. u•)
≡β (λx. t•) (λω. u•)
≡β t•[x := λω. u•]
≡β (t[x := u])•

which concludes the proof.

239

12 Decomposing Dialectica: Forcing, CPS and the rest

12.4.3 Reading the stacks

Let us see what we gained through this translation. As advertised at the beginning of
this chapter, the goal of this series of refined translation is to recover a way to observe
the current stack of the process. We can indeed add in the source λ-calculus such an
operator that will be easily interpreted through the stack reader translation.
As in the Dialectica translation, we need to give a way to talk about the type of stacks

in the source language. We will still use the ∼A notation for the stacks of dual type A.

Definition 162 (λω-calculus). We define the λω-calculus as the usual simply-typed λ-
calculus extended on types and terms as follows.

A,B := . . . | ∼A

t, u := . . . | read x in t

The typing rules are extended with the following inference rule.

Γ, x : ∼A ` t : A

Γ ` read x in t : A

We also need to inspect the stacks generated by our new construct. There is no pairs
in the source calculus, so that we need to resort to an impredicative encoding to destruct
arrow stacks. This is why we also assume a constant

observe→,A,B,R : ∼(A→ B)→ (A→ ∼B → R)→ R

for all A, B and R.
In the following we omit the indexes of the observe term for readability.

The semantics of this extended language is the one defined by its translation through
the stack reader transformation.

Definition 163. The λω-calculus is translated into the λ-calculus with pairs as follows.

• For the λ-calculus fragment, see the previous translation.

• The translation of type ∼A is morally given by its linear decomposition, i.e. we
would like to have

[[∼A]]n := [[A]]n
⊥

and derive the interpretation by composition with W(−) and C(−). This does not
work because we need to assert that stacks are values in call-by-name, and therefore
they do not require the access to the current stack themselves. There is no way
to overcome this defect without further polarizing our source calculus, so we work
around this by postulating the type of stacks of stacks to be trivial, i.e.

W([[∼A]]n) := C([[A]]n)
C([[∼A]]n) := 1

240

12.4 A proto-Dialectica: the silly stack reader

which breaks the linear decomposition and forces to see the W([[−]]n) and C([[−]]n)
translations as a whole.

• As for term translation, we pose

(read x in t)• := t•[x := λ(). ω]

(observe→)• := λα k. match α () with (x, α) 7→ k (x, ((λ(). α), ω)) x (λ(). α)

Luckily, the extended translation is respectful of the type translation.

Proposition 110. The extended constructs above have the right type through the trans-
lation, i.e. the rules described above are admissible in the source system.

Proof. By construction.

The actual logical expressiveness provided by these operators is actually quite dis-
appointing. Indeed, if look at the typing rule for the term read x in t together with
the elimination over stacks of arrow type, one can easily observe that it amounts to the
following generalized rule

Γ, A1, . . . , An,∼B ` B
Γ ` A1 → . . . → An → B

as the only connective of our language is the arrow. This means that reading the stack
does not provide us with anything else that what we could achieve through repeated
λ-abstraction. Thus we did not get anything logically. This was somehow expected. In
some sense, we have recovered the read-only part of the µ binder from the λµ-calculus,
acting as an infinitarily expanded λ-abstraction, but we lack the way to reinstate stack
types as the current continuation. Consequently, stack types are not very useful.

12.4.4 Handling positive connectives

Positive connectives raise their own issues, as it is the norm in call-by-name. It is
fairly obvious that we want to translate witness types of positive by themselves, up
to introduction of bang connectives, as in the Dialectica translation.
The central question is rather what content we should be giving to the types C(P)

where P is a positive type.
We can try to understand it by looking at the shape of positive stacks in the KAM. As

explained in Section 10.1.2, positive stacks are functional objects rather than first-order
ones. They are indeed generated by the grammar

π, ρ := . . .
| () 7→ (t, σ) · π
| (x, y) 7→ (t, σ) · π
| [·]
| ([x 7→ t1 | y 7→ t2], σ) · π

241

12 Decomposing Dialectica: Forcing, CPS and the rest

where the variables are bound in the body of the pattern-matching branches. The prob-
lem is that the typing rules of those objects embed existential types. For instance, the
pair eliminator had type

σ ` Γ Γ, x : A, y : B ` u : C ` π : C

` (x, y) 7→ (u, σ) · π : A×B

where the type C of u is absent from the resulting type for the stack (forgetting about
closures, that were already collapsed in the translation). That means that, assuming our
target language features some form of existential types, we would like to have morally

C(A×B) := ∃C.W(A)×W(B)→W(C)× C(C)

but this is not possible, because C quantifies over source types, not over actual types of
the target language. One could work around this by setting

C(A×B) := ∃α.∃β.W(A)×W(B)→ α× β

but that would mean loosing the knowledge that α and β share a duality relation. To the
best of our understanding, there is no way to ensure this fact in a simply-typed system.

In any case, the information that is retrievable from such a type is meager: the exis-
tential quantification makes the return value of the function uninformative. This is why
we adopt here an especially brutal point of view: we pose the counter types of positive
to be uninformative.

Definition 164 (Positive type translation). We extend the type translation of the pre-
vious section as follows.

W([[1]]n) := 1 C([[1]]n) := 1
W([[0]]n) := 0 C([[0]]n) := 1
W([[A+B]]n) := (C([[A]]n)→W([[A]]n)) + (C([[B]]n)→W([[B]]n)) C([[A+B]]n) := 1
W([[A×B]]n) := (C([[A]]n)→W([[A]]n))× (C([[B]]n)→W([[B]]n)) C([[A×B]]n) := 1

Strangely enough, this allows the trivialized translation to go through just fine.

Definition 165 (Extended term translation). We extend the translation of the previous
section with the following.

()• := ()
(t, u)• := (λω. t•, λω. u•)
(inl t)• := inl (λω. t•)
(inr t)• := inr (λω. t•)
(match t with () 7→ u)• := match (λω. t•) () with () 7→ u•

(match t with (x, y) 7→ u)• := match (λω. t•) () with (x, y) 7→ u•

(match t with [·])• := match (λω. t•) () with [·]
(match t with [x 7→ u1 | y 7→ u2])• := match (λω. t•) () with [x 7→ u1

• | y 7→ u2
•]

242

12.4 A proto-Dialectica: the silly stack reader

Remark in the translation how positive values, by definition inert, drop the current
stack, as all of their subterms are closed over ω. Dually, pattern-matching provides terms
being eliminated with a dummy stack under the form of a empty tuple.

All the expected theorems are still true in this extended version, which is not that
surprising, because of the trivial way we intepret counters of positives.

Proposition 111. The following lemmas hold:

• Preservation of typing

• Substitution lemma

• Preservation of β-equivalence

Proof. Essentially as for the base case.
We were guided by a linear decomposition, so this prevents us from many mistakes.

In particular, the fact that we close terms w.r.t. ω at polarity changes is a key point for
the validity of the substitution lemma (and thus for preservation of β-equivalence).

There is no real interest in providing an operator in the base language to intepret
stacks of positive type, because they are, as justified before, irrelevant in our current
formulation. It is reasonable to believe that this system is, by itself, quite useless. Indeed
stacks are lost each time the current term is in evaluation position, that is, when we cross
a pattern-matching in call-by-name: the current continuation of a term being evaluated
to a value collapses to the unit type.

12.4.5 An attempt at call-by-value

If we try to apply the same principles to an equivalent call-by-value translation, we
rapidly hit a wall. There are two ways to try to adapt the translation, and they are all
defective in some sense.
The first, sensible, way to extend it is to consider the call-by-value linear decomposi-

tion and to see what we recover from it. This is immediate, and we get the following
interpretations for the witness and counter types.

W([[A→ B]]v̂) := (C([[A]]v̂)→W([[A]]v̂))→ C([[B]]v̂)→W([[B]]v̂)
C([[A→ B]]v̂) := (C([[A]]v̂)→W([[A]]v̂))× C([[B]]v̂)

Sequents Γ ` t : A are likewise translated as follows.

(C([[Γ]]v̂)→W([[Γ]]v̂)), ω : C([[A]]v̂) ` t• : W([[A]]v̂)

If we try to formulate the corresponding term translation, what we get is a bit surpris-
ing. We give such a translation below.

Definition 166 (Term translation). The tentative call-by-value term translation is de-
fined by induction as follows.

243

12 Decomposing Dialectica: Forcing, CPS and the rest

x• := x ω
(λx. t)• := λxω. t•

(t u)• := (λω. t•) ((λω. u•), ω) (λω. u•) ω

This translation is so close to the call-by-name one that it even starts to smell fishy.
There is nothing similar to what our intuition would have told us to expect to find in a
call-by-value stack reader translation.

• There is no appearance of negative stacks featuring some form of higher-order
terms.

• Stacks are essentially threaded along and never actually built. The application case
does make the stack grow, but there is no phenomenon indicating that the terms
are forced in sight.

• Values do not correspond to our intuition either. They are waiting for a stack,
because they are always banged by the extruding translation. This conflicts with
our point of view of values as inert object.

• For all these reasons, the abstract machine suggested by this translation is way too
close to the KAM.

We can formulate soundness theorems for this interpretation, but we do not consider
it to be worthwhile, for it does not feature the properties we would like to arise in a
call-by-value setting.

There is another way to tackle a call-by-value stack reader. Rather than basing our-
selves on the linear decomposition, we can try to guess what the call-by-value stacks look
like. As hinted by the Dialectica translation, and by duality considerations, call-by-value
stacks are functional objects waiting for the current value to return.
If we go this way, the issue of interpretation of positive types arise immediately, and

we can simply repeat the impediments described in Section 12.4.4, namely that the only
information we get back when observing a stack is some uninformative existential type.
So it seems this is a no-go.
Thus both approaches lead to a failure. The problem seems to stem from the fact that

we do not enforce sufficient duality in the type translation, so that continuations that
happen to be actual functions are bound to be degenerate. To overcome this issue, we
need something that looks less intuitionistic.

12.5 From forcing to CPS

We present in this section a translation inspired by the previous one, but trying to fix the
defects of the latter. Surprisingly enough, while it is inspired by a mix between Kripke
model style translation and stack observation, it turns out it is actually a close variant
of the Lafont-Reus-Streicher CPS [72], and that it is a linear simplification of the Kripke
translation found in [61] where the Kripke frame of discourse is the algebra of types.

244

12.5 From forcing to CPS

12.5.1 Summary of the issues

The previous stack reader translation suffers from several defects.

• First, on the negative fragment, it is redundant. The translation of the λ-abstraction
discards the top of the stack ω

(λx. t)• := λx. (λω. t•) (snd ω)

because it is actually the same as the argument being provided to the function, if
we think of it in the KAM.

This is mirrored in the translation of the application

(t u)• := (λω. t•) ((λω. u•), ω) (λω. u•)

that duplicates its argument u both as an argument of the function and the top of
the stack.

• Second, the translation of positive types is not satisfactory. Stacks of positive types
are just erased into the unit type. This is not what we would like to have.

The solution to this problem comes from a careful scrutiny of the type of stacks. Why
did we choose to erase positive stacks? Because they hide an existential type that we do
not know how to handle well. Instead of trying to bury it under an existential, let us
rather expose it it in the type of the stack being constructed. Namely, let us consider
a type variable ‚ that will act as the final return type of our stack. For instance, the
empty stack will naturally be given this type, as

` ε : ‚
and likewise, the return type of positive stacks will be set to ‚.

We wish to apply a nifty trick though: paralleling the quantification over later worlds
at each bang connective in the Kripke models, we are going to quantify over such ‚
return type whenever linear logic tells us to do so. Meanwhile, the redundancy of the
negative fragment is going to be conflated by a mere polarization argument: negative
terms are the ones that may access the current stack, and in particular they actually do
not need the argument of the function that they can retrieve on the stack.
The global result is that we recover in both cases a complete model for intuitionis-

tic logic, where the completeness proof performs a kind of internal normalization-by-
evaluation. Though not totally unexpected, we believe this is an interesting result. It
seems that, even if a lot of close variants exist in the folklore, to the best of our knowledge
this particular translation was unknown in the literature. Amongst similar results in the
current zeitgeist, see for instance Dagand and Scherer [100].

Definition 167 (Target language). We need a target language featuring second-order
quantification. The language we use for the target is the extension of the λ-calculus

245

12 Decomposing Dialectica: Forcing, CPS and the rest

with inductive types we have been using for a while together with implicit second-order
quantifications, that is, we keep terms as is, and we extend types as

A,B := . . . | ∀α.A

and typing rules with the two following rules.

Γ ` t : A α fresh in Γ

Γ ` t : ∀α.A
Γ ` t : ∀α.A

Γ ` t : A[α := T]

The fact second order quantification is transparent allows to keep terms uncluttered
from typing details, in practice displaying their proximity to the stack reader translation.

12.5.2 Call-by-name

Definition 168 (Type translation). We define mutually recursively two translations
W(!A) and C‚(A), where C‚(A) has ‚ as a free type variable.

W(!A) := ∀‚.C‚(A)→‚
C‚(α) := α→‚
C‚(A→ B) := W(!A)× C‚(B)

C‚(1) := 1→‚
C‚(A×B) := W(!A)×W(!B)→‚
C‚(0) := 0→‚
C‚(A+B) := W(!A) + W(!B)→‚

As one can witness, for the negative fragment, this is a small variation on the call-by-
name stack reader, where we changed the interpretation of the bang connective. Instead
of

W(!A) := C(A)→W(A)

we now have
W(!A) := ∀‚.C‚(A)→‚

with a quantification inspired by Kripke models.

Definition 169 (Term translation). As in the reader case, we assume a reserved variable
ω, and we define the translation on terms (−)• by induction on the term.

246

12.5 From forcing to CPS

x• := x ω
(λx. t)• := match ω with (x, ω) 7→ t•

(t u)• := (λω. t•) ((λω. u•), ω)
()• := ω ()
(t, u)• := ω ((λω. t•), (λω. u•))
(inl t)• := ω (inl (λω. t•))
(inr u)• := ω (inr (λω. u•))
(match t with () 7→ u)• := (λω. t•) (λ(). u•)
(match t with (x, y) 7→ u)• := (λω. t•) (λ(x, y). u•)
(match t with [·])• := (λω. t•) (λ[·])
(match t with [x 7→ u1 | y 7→ u2])• := (λω. t•) (λ[x 7→ u1

• | y 7→ u2
•])

This translation keeps all the nice properties of its close relative, the stack reader
translation. We write them down below.

Proposition 112 (Typing soundness). If Γ ` t : A then for all ‚
W(!Γ), ω : C‚(A) ` t• : ‚

Proof. By induction on the typing derivation. We detail a bit the interesting details
on the second-order operations, for they give good insights on the relation between this
translation and the Kripke one.

• Variable case: similarly to call-by-name Kripke models that use reflexivity of the
relation on this case, we use elimination of universal quantification.

• λ-abstraction: no modification of the current ‚ type (no exponential operation on
this rule).

• Application: universal quantification over the argument of the application, similarly
to the lift from Kripke models and promotion in linear decomposition.

• Introduction of positives: universal quantification over the subcomponents, for the
same reason as application.

• Elimination of positives: same situation as the λ-abstraction.

Proposition 113 (Substitution lemma). For all terms t and r, we have

(t[x := r])• ≡β t•[x := λω. r•]

Proof. By induction on t. As in the reader translation, everything goes through owing to
the fact that λω. r• is closed w.r.t. ω, allowing to make the substitution commute with
the surrounding context.

Proposition 114 (Computational soundness). If t ≡β u then t• ≡β u•.

247

12 Decomposing Dialectica: Forcing, CPS and the rest

Proof. Almost direct application of the substitution lemma.

The really interesting fact about this forcing-like CPS comes from the fact it is actually
complete for intuitionistic logic.

Theorem 33 (Typing completeness). For all term t s.t.

W(!Γ) ` t : W(!A)

there exists a term t0 s.t.
Γ ` t0 : A

Actually, we will be proving a more precise formulation of this theorem, which is
very similar to normalization-by-evaluation theorems. We define indeed two translations
↓ΓA(−) and ↑ΓA(−) by induction on an environment Γ and a type A. For the sake of
simplicity, we identify the source language as a subset of the target language, and we see
these translations as acting from and to the target language.

Definition 170 (Reflect-Reify). Assuming an environment Γ and a simple type A, we
define the translation ↓ΓA(−) and ↑ΓA(−) by mutual induction on Γ and A.

↓Γα t := [t]↓Γ (λx. x)

↓ΓA→B t := λx. ↓Γ,x:A
B (λω. t (x, ω))

↓Γ1 t := [t]↓Γ (λ(). ())

↓ΓA×B t := [t]↓Γ (λ(x, y). (↓A x, ↓B y))

↓Γ0 t := [t]↓Γ (λ[·])
↓ΓA+B t := [t]↓Γ (λ[x 7→ inl (↓A x) | y 7→ inr (↓B y)])

↑Γα t := λω. ω [t]↑Γ
↑ΓA→B t := λ(x, ω). (↑Γ,x:A

B (t x)) ω

↑Γ1 t := λω. match [t]↑Γ with () 7→ ω ()

↑ΓA×B t := λω. match [t]↑Γ with (x, y) 7→ ω (↑A x, ↑B y)

↑Γ0 t := λω. match [t]↑Γ with [·]
↑ΓA+B t := λω. match [t]↑Γ with [x 7→ ω (inl (↑A x)) | y 7→ ω (inr (↑B y))]

[t]↓Γ := t[xi := ↑Γi xi]
[t]↑Γ := t[xi := ↓Γi xi]

This recursive definition is well-founded, because even if the current environment can
grow, it only does so with strict subtypes of the type under focus. This parallels the
fact we are actually building a cut-free proof, which therefore enjoys the subformula
property. Note that all variables introduced in the above definition are fresh except for
the dedicated ω variable.

248

12.5 From forcing to CPS

Proposition 115. If Γ,∆ ` t : A then

W(!Γ),∆ ` ↑ΓA t : W(!A)

and dually if W(!Γ),∆ ` t : W(!A) then

Γ,∆ ` ↓ΓA t : A

Proof. By mutual induction on A and Γ. Let us treat in detail the arrow case, which is
the most complicated one because it features a modification of the environment.

• Assume Γ,∆ ` t : A→ B. We must show that

W(!Γ),∆ ` λ(x, ω). (↑Γ,x:A
B (t x)) ω : ∀‚.W(!A)× C‚(B)→‚

which amounts to proving that

W(!Γ), x : W(!A),∆ ` ↑Γ,x:A
B (t x) : W(!B)

By induction hypothesis on B, it is sufficient to prove

Γ, x : A,∆ ` t x : B

which is in turn easily derived from the leading assumption because x is not free
in t.

• Assume W(!Γ),∆ ` t : W(!(A→ B)). We must show that

Γ,∆ ` λx. ↓Γ,x:A
B (λω. t (x, ω)) : A→ B

which is equivalent to

Γ, x : A,∆ ` ↓Γ,x:A
B (λω. t (x, ω)) : B

Applying the induction hypothesis on B, we now have to prove

W(!Γ), x : W(!A),∆ ` λω. t (x, ω) : W(!B)

which is once again a straightforward derivation using the starting typing hypoth-
esis on t and the fact that x is not free in t.

The completeness theorem is actually an instance of the above proposition, by taking
the empty environment, and setting t0 := ↓A t.
Remark 18. Actually, we do not use the full power of impredicative second-order quantifi-
cation in the completeness theorem. If we were to adapt this translation to a type theory
with a hierarchy of types, it seems it would pass through without further modification of
the type quantification. The types we use as instances of universal quantifications live
at the level of the quantified type indeed. We leave this adaptation to further work.

249

12 Decomposing Dialectica: Forcing, CPS and the rest

There are quite a lot of things to say about this CPS. We detail here some points we
want to discuss or at least highlight.
First, a comforting theorem that we know to hold: assuming enough typed equational

theory (essentially η-expansion on arrows and positives) one can show that the pair
↑A(−) and ↓A(−) form a retraction on typed terms. This is quite reassuring, as it
indicates that the translations essentially did nothing to the source term, except for
potential supplementary computations. We do not detail this theorem here, because it
relies on explicitly typed terms and equations, which would go against the presentation
we used throughout this thesis.

The similarity between our completeness theorem and normalization-by-evaluation is
striking. This is not surprising, as it is folklore that completeness of Kripke models
actually implement a normalization-by-evaluation algorithm. As our CPS is inspired by
a linear decomposition of Kripke models, this similarity was somehow expected. There
are differences, though. Standard Kripke models (and thus forcing) is call-by-value, while
our translation is call-by-name, making it closer to Krivine and Miquel’s classical variant
of forcing. Moreover, the usual dialectic between a semantic and a syntactic world that
is at the root of NBE is totally absent here. Our transformation is a CPS, and as such
it is a translation between programming languages.
The translation is also very close to the one proposed by Ilik [61] in Kripke models,

although our motivations are very different: we want to provide the basic components
allowing to reconstruct the Dialectica translation. Furthermore, we are basing ourselves
on linear logic rather that trying to cope with the defects of Kripke models.
Our CPS also has close ties with delimited continuations, as found in [56]. The under-

lying CPS is the same, namely the Lafont-Reus-Streicher one, but our translation inserts
reset operators by quantifying over all possible return types at polarity changes. This is
even more obvious in the call-by-value version.

The fact that the CPS is complete for intuitionistic logic may seem a rebuttal, as we
usually do program translations to recover additional logical expressive power. Nonethe-
less, this does not mean that we cannot use locally classical reasoning that would get
erased by normalization. In particular, we can still observe the current stack by means
of the dedicated ω variable, as in the stack reader translation. In addition, as the trans-
lation is a true CPS, it may be possible to reinstate stacks in precise conditions, though
we did not study the details of this possibility.
We can nonetheless tweak the CPS to handle a given monad, by interleaving a monadic

layer in lieu of the bare‚ type. This effectively turns all‚ right of an arrow into T ‚ for
some monad T . The translation is essentially similar, except for some additional monadic
glue. The resulting translation actually encodes a call-by-name variant of standard direct-
stylization of monads as found in Filinski’s seminal paper [41].

Finally, the whole path that led us to this translation is rooted in the ideas of classical
realizability, and in particular forcing in this context. The notation ‚ for the return
type is no coincidence. We believe that we can apply back the findings of this CPS into

250

12.5 From forcing to CPS

classical realizability. In particular, we conjecture that changing the falsity interpretation
of the arrow to handle the universal quantification from our CPS in the following way

‖A→ B‖‚ :=

(⋂
‚
|A|‚

)
· ‖B‖‚

amounts to enforce an intuitionistic semantic for the arrow, where the ‚ index insists on
the dependency of the intepretation on the particular pole, and the intersection ranges
over upward closed poles.

12.5.3 Call-by-value

We give here the call-by-value, that we get almost for free thanks to the linear decom-
position. As usual, because we switched polarities, everything is reversed in the type
translation: witness types are defined according to their generating values, and counters
are defined as ‚-returning functions.

Definition 171 (Type translation). We define mutually recursively two translations
W(A) and C‚(A), where C‚(A) has ‚ as a free type variable.

W(α) := α

W(A→ B) := ∀‚.W(A)× C‚(B)→‚
W(1) := 1

W(A×B) := W(A)×W(B)

W(0) := 0

W(A+B) := W(A) + W(B)

C‚(A) := W(A)→‚
This type translation is much more standard for a call-by-value CPS than our call-

by-name CPS. Usually, one uncurries the product type in the witness translation of the
arrow, but this hides the fact this translation comes from a linear decomposition.
As one can observe, call-by-value stacks are functional objects, a fact which corresponds

with the usual intuition that identifies call-by-value continuations with functions.

Definition 172 (Term translation). We define the translation on terms (−)• by induc-
tion on the considered term, with the usual special variable ω. We use the notation t#

for (λω. t•) (λx. x).

251

12 Decomposing Dialectica: Forcing, CPS and the rest

x• := ω x
(λx. t)• := ω (λ(x, ω). t•)
(t u)• := (λω. t•) (λf. f (u#, ω))
()• := ω ()
(t, u)• := ω (t#, u#)
(inl t)• := ω (inl t#)
(inr u)• := ω (inr u#)
(match t with () 7→ u)• := (λω. t•) (λ(). u•)
(match t with (x, y) 7→ u)• := (λω. t•) (λ(x, y). u•)
(match t with [·])• := (λω. t•) (λ[·])
(match t with [x 7→ u1 | y 7→ u2])• := (λω. t•) (λ[x 7→ u1

• | y 7→ u2
•])

This CPS has a very special flavour, up to the point where one could deny the fact that
this is a CPS. Indeed, the translation does not take position for any order of reductions.
This is obvious when one looks at the translation of the pair, which is totally symmetrical.
This is in turn made possible thanks to the translation (−)# that acts as reset operator
from the world of delimited translations, hence the notation.

Proposition 116 (Typing soundness). If Γ ` t : A then for all ‚
W(Γ), ω : C‚(A) ` t• : ‚

Proof. By induction on the typing derivation.

A completeness theorem similar to the call-by-name case can be proved in the very
same way. We do not give the details here for they would give no particular hindsight
into the translation. Likewise, computational soundness follows immediately, but we do
not think that spelling it out will help the understanding of the principles we want to
highlight. The call-by-name case by itself already exposed much of the structure we
wanted to present, so that we will not pursue into this direction.

12.6 Towards Dialectica

We now turn back to the Dialectica translation, and look at it with the new knowledge
we acquired from the previous sections. We will compare it in particular with the call-
by-name CPS presented just above.
The two translations share indeed a striking similarity. The reverse translation from

the Dialectica interpretation and the CPS itself have the same encoding for stacks in the
negative fragment, and a very similar one for positive types. This is better witnessed by
recalling the counter translations below.

Dialectica Lafont-Reus-Streicher

A→ B W(A)× C(B) W(A)× C‚(B)

A×B W(A)×W(B)→
{

MC(A)
MC(B)

W(A)×W(B)→‚

252

12.6 Towards Dialectica

This kinship is undoubtedly due to the fact that those two translations factor through
a linear decomposition. It seems that the Dialectica translation has something which
makes it more general that the simple CPS, though. Indeed, while the CPS only cares
about the return type of the expression, the Dialectica translation also manages the
manipulation of the environment of the term through the reverse term translations.
This hints at the fact that one should be able to retrieve a variant of the Dialectica

translation by carefully choosing a monad whose exact type depends on the environment
of the term to compose with the CPS. Typically, one would want to translate a sequent
Γ ` t : A into

W(!Γ) ` t• : C‚(A)→‚×MC‚(Γ1)× . . . ×MC‚(Γn)

so that the forward and reverse translation would be conflated into a unique translation.
The implicit universal quantification over ‚ would allow to retrieve the forward trans-
lation by an astute choice of return type, and each reverse translation would be reduced
to a projection of this term. The problem with this idea is that it requires to heavily
modify the interpretation of the types, and there is no particular instantiation that seems
to work. Updating from the CPS

W(A→ B) := ∀‚.W(A)× C‚(B)→‚
C‚(A→ B) := W(A)× C‚(B)

into a tentative reconstructed Dialectica

W(A→ B) := ∀‚.W(A)× C‚(B)→‚×MC‚(A)
C‚(A→ B) := W(A)× C‚(B)

does not allow to interpret the application rule in a satisfactory way. Indeed, considering
the translated terms

W(!Γ) ` t• : W(A)× C‚(B)→‚×MC‚(Γ1)× . . . ×MC‚(Γn)

W(!Γ) ` u• : C‚(A)→‚×MC‚(Γ1)× . . . ×MC‚(Γn)

one can see that there is no way to merge the stacks coming from t and the ones from u,
not only because their return type ‚ differs (u is fed to t with a universally quantified
‚) but also simply because t loses the stacks produced by u. There is no a priori reason
for the two terms to depend on the same variables.
The KAM intuition tells us that the W(A) should be interpreted not as closed terms,

but rather as closures, so that it should take an additional parameter Γ indicating the
type of the free variables this term depends on. A likely translation for the arrow would
then be

WΓ(A→ B) := ∀‚. ∀∆.W∆(A)× C‚(B)→‚×MC‚(∆)×MC‚(Γ)
C‚(A→ B) := (∃∆.W∆(A))× C‚(B)

where Γ and ∆ range over a given notion of first-class environments. Although seemingly
sensible, we do not see any way to make this particular translation work, and in particular

253

12 Decomposing Dialectica: Forcing, CPS and the rest

how to encode environments as first-class objects in the target. This is why it seems
difficult to synthesize a proper Dialectica-like translation from our stack-reading CPS,
even though the two display a close relationship.
In any case, the Dialectica translation features a special handling of the environment

which is absent from the CPS. We conjecture that the linear logic exponential is the con-
nective which is the root of this particular handling, as witnessed by the W([[A→ B]]n)
and C([[A×B]]n) types, whose translation make explicit the appearance of the environ-
ment. Such a property is quite uncommon in the translations from the literature, which
tend to care only about the return type of the object. In addition, in the proposed
environment-caring translations proposed above, there seems to be a natural duality in
call-by-name: while counters are parameterized by a return type, witnesses are them-
selves parameterized by the closure they depend on. There is probably a deep connection
with the KAM environments hidden in plain sight there.

There is still a little remark to be made. Building upon the CPS translation, it is
easy to observe that the Dialectica translation can be adapted to handle naturally the
quantification over the ‚ type. In the presentation we gave, this type is fixed as in
the Lafont-Reus-Streicher CPS. As seen in the interpretation of C(1) in Section 10.1, the
particular return type of the Dialectica translation is always set to the unit type 1. There
is no reason for such an arbitrary choice, and the translation can perfectly accommodate
a variable return type. It is sufficient indeed to tweak the type translations of the arrow
as follows

W(A→ B) := (W(A)→W(B))× (W(A)→ ∀‚.C‚(B)→MC‚(A))
C‚(A→ B) := W(A)× C‚(B)

to recover a kind of delimited Dialectica. The term translation is the same, because the
second-order quantifications and eliminations are transparent. This suggests that call-
by-name delimited continuations as described by Herbelin and Ghilezan [56] naturally
fit in the Dialectica framework. Note that this may interfere with the interpretation
of Markov’s principle, which relies on a particular choice of ‚ to work. We leave this
remark for future work.
As for the completeness of the variant of the Lafont-Reus-Streicher CPS w.r.t. in-

tuitionistic provability, we conjecture that a small variant of our Dialectica could be
complete for linear logic provability. It is indeed a phenomenological observation that
many of the the instances of models of linear logic from the literature can be seen as a
special case of the double-glueing construction, itself being ultimately a generalization of
the Dialectica translation in a categorical setting [58]. Such a Dialectica variant could be
probably designed as a free model of linear logic featuring its rawest ingredients, namely
a commutative monad equipped with a built-in notion of duality. It seems that the Di-
alectica we have at hand already provides those basic blocks, so that such a model may
not be that far away.

254

13 Conclusion
(An unmatched left parenthesis creates
an unresolved tension that will stay
with you all day.

Randall Munroe about the scientific process.

Looking at a mathematical object with a modern eye can often bring out a brand new
way to think of it. This is quite remarkably the case for the Dialectica translation: had it
not been conceived half a century before Krivine realizability, one could probably think
that it had been influenced by the latter. It is quite fascinating to witness that this
translation can be reworded seamlessly as an untyped program translation using precise
concepts such as closures and stacks.
Revealing that the Dialecticta translation could be considered as a translation per-

taining to the classical realizability realm is the core result of this thesis, although this
statement actually covers quite a few distinct achievements. To start with, observing
that the realizers given by the historical translation were broken w.r.t. their operational
behaviour was the first step into a deeper glance at their actual computational content.
We are still puzzled by the fact that this syntactical misdemeanour was never recognized
as such. The second step consisted in realizing that the Diller-Nahm variant almost
solved this issue, even though once again nobody ever advertized this fact, because it
had been built for totally unrelated motivations.
Once the operational issue was solved, everything followed naturally. The KAM simu-

lation is straightforward as soon as one thinks of counters as stacks, which is an immediate
reflex for anyone acquainted with classical realizability. The design of a dependent version
is also direct, owing to the fact that the Dialectica translation is essentially intuitionistic.
Moreover, the variants of the Dialectica are provided for free, thanks to the various linear
decompositions we know of.
All these small results put side by side give a broader understanding of the Dialectica

as a program translation taking stacks to be a serious matter. Even more interestingly,
its careful study shows that there is still interest to look at it from the Curry-Howard
point of view. We shortly summarize here the questions that arise from our modern
description.

• Why does the Dialectica ignore sequentiality while still sticking to a particular
calling convention? This seems to be a property stemming from linear logic itself,
which is somehow the finest way to endow a calculus with a particular semantic
without committing to a given order of reduction. It should be interesting to look
at other commutative effects to see if there is such a simple way to encode them

255

13 Conclusion

syntaxically through linear logic. The opposite issue, namely to sequentialize the
Dialectica translation, is not devoid of interest either.

• What is the general way to describe environment-aware translations? It looks like
there are a few such instances in the literature, but they are made in a mostly
ad-hoc way. In particular, call-by-need is a contrived example of semantics relying
heavily on the ability to manipulate the environment as a first-class object [13]. A
deep scrutiny of the way the Dialectica handles this as well as a clarification of its
relation to the KAM should provide hindsights to design call-by-need reductions
based on logical principles.

• Why do CPS-like translations, including Dialectica, fail at allowing dependent elim-
ination? Even when they feature a mostly intuitionistic content, the dependency
cannot pass through because of subtle typing mismatches. A naive way, that ap-
pears to be really difficult to implement properly, is to make the (implicit or not)
return type of the translation depend on the object being built when it is positive.
This suggests systems based on sequent calculus rather than natural deduction.
Although there are some attemps to do so, they remain essentially rudimentary.

• What is the exact relationship between delimited control and linear logic? As shown
in the last chapter, there is a broad continuum of translations that revolve around
Dialectica. Some of them can be easily equipped with delimited control. As the
modified CPS we obtained is complete for intuitionistic provability thanks to a very
coarse use of delimitation, we believe that a fine-grained Dialectica featuring first-
class delimited continuations may turn out to be complete for linear provability.
There is a potential connection with the famous encoding due to Filinski [41], but
restricted to commutative monads rather than arbitrary ones. A more recent work
due to Munch [84, 85] seems to indicate that linearity can indeed be described by a
semantic property deeply related to delimited contexts. Providing an answer to the
above question may appear really difficult, but the hindsights given by our various
decompositions should help to progress in that direction.

All these questions, albeit unanswered, have been clarified by the present thesis, as
it gave us a handful of starting hints waiting to be analyzed and hopefully exploited
to provide answers to them. We would be glad if this thesis were to sprout a renewed
interest in research directions that have been given up for some time, as well as giving
brand new areas to explore. We shall mention the computational interpretation of linear
logic for the first point, and more intuitionistic variants of Krivine’s realizability for the
second one. In any case, science progresses by leaps. Let us just be patient.

256

Bibliography

[1] Andreas Abel. Normalization by Evaluation: Dependent Types and Impredicativity.
Habilitation Thesis. May 2013.

[2] Yehoshua Bar-Hillel Abraham A. Fraenkel and Azriel Levy. “Foundations of Set
Theory Second Revised Edition”. In: vol. 67. Studies in Logic and the Foundations
of Mathematics. Elsevier, 1973. doi: http://dx.doi.org/10.1016/S0049-
237X(08)70329-X.

[3] Beniamino Accattoli. “An abstract factorization theorem for explicit substitu-
tions”. In: 23rd International Conference on Rewriting Techniques and Applica-
tions (RTA’12). Nagoya, Japan, May 2012.

[4] Beniamino Accattoli, Pablo Barenbaum, and Damiano Mazza. “Distilling Abstract
Machines (Long Version)”. In: CoRR abs/1406.2370 (2014).

[5] Beniamino Accattoli and Delia Kesner. “The permutative lambda calculus”. In:
18th International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning - LPAR-18. Merida, Venezuela, Mar. 2012.

[6] Beniamino Accattoli and Delia Kesner. “The Structural λ-Calculus”. In: CSL.
2010, pp. 381–395.

[7] Beniamino Accattoli and Ugo Dal Lago. “Beta Reduction is Invariant, Indeed”.
In: Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS). Vienna, Austria, July 2014. doi: 10.1145/
2603088.2603105.

[8] Beniamino Accattoli and Ugo Dal Lago. “On the Invariance of the Unitary Cost
Model for Head Reduction (Long Version)”. In: CoRR abs/1202.1641 (2012).

[9] Beniamino Accattoli and Luca Paolini. “Call-by-Value solvability, revisited”. In:
11th International Symposium on Functional and Logic Programming - FLOPS
2012. Kobe, Japan, May 2012.

[10] Beniamino Accattoli et al. “A nonstandard standardization theorem”. In: The
41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014. 2014, pp. 659–
670. doi: 10.1145/2535838.2535886.

[11] Zena M. Ariola and Matthias Felleisen. “The call-by-need lambda calculus”. In:
Journal of Functional Programming 7.3 (1997), pp. 265–301. issn: 0956-7968. doi:
http://dx.doi.org/10.1017/S0956796897002724.

257

http://dx.doi.org/http://dx.doi.org/10.1016/S0049-237X(08)70329-X
http://dx.doi.org/http://dx.doi.org/10.1016/S0049-237X(08)70329-X
http://dx.doi.org/10.1145/2603088.2603105
http://dx.doi.org/10.1145/2603088.2603105
http://dx.doi.org/10.1145/2535838.2535886
http://dx.doi.org/http://dx.doi.org/10.1017/S0956796897002724

Bibliography

[12] Zena M. Ariola, Hugo Herbelin, and Alexis Saurin. “Classical Call-by-need and
duality”. In: Typed Lambda Calculi and Applications. Vol. 6690. Lecture Notes in
Computer Science. Springer, 2011.

[13] Zena M. Ariola et al. “Classical call-by-need sequent calculi: The unity of semantic
artifacts”. In: Functional and Logic Programming - 11th International Symposium,
FLOPS 2012, Kobe, Japan, May 23-25, 2012. Proceedings. Ed. by Tom Schrijvers
and Peter Thiemann. Vol. 7294. Lecture Notes in Computer Science. Springer,
2012, pp. 32–46. isbn: 978-3-642-29821-9.

[14] Zena M. Ariola et al. “The Call-by-Need Lambda Calculus”. In: Symposium on
Principles of Programming Languages, POPL 1995. Ed. by Ron K. Cytron and
Peter Lee. ACM Press, 1995, pp. 233–246. isbn: 0-89791-692-1.

[15] Jeremy Avigad and Solomon Feferman. “Gödel’s Functional (‘Dialectica’) Inter-
pretation”. In: Handbook of Proof Theory. Ed. by Samuel R. Buss. Amsterdam:
Elsevier Science Publishers, 1998, pp. 337–405.

[16] Andrew Barber. Dual Intuitionistic Linear Logic. Tech. rep. University of Edin-
burgh, 1996. url: http://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-
347/index.html.

[17] H. P. Barendregt. The Lambda Calculus Its Syntax and Semantics. Revised. Vol. 103.
North Holland, 1984.

[18] Henk Barendregt et al. “Lambda Calculi with Types”. In: Handbook of Logic in
Computer Science. Oxford University Press, 1992, pp. 117–309.

[19] N. Benton and P. Wadler. “Linear logic, monads and the lambda calculus”. In: Pro-
ceedings of the 11th IEEE Symposium on Logic in Computer Science, Brunswick,
New Jersey. IEEE Press, July 1996.

[20] U. Berger and H. Schwichtenberg. “An inverse of the evaluation functional for
typed lambda -calculus”. In: [1991] Proceedings Sixth Annual IEEE Symposium
on Logic in Computer Science. Amsterdam, Netherlands: IEEE Comput. Sco.
Press, July 18, 1991, pp. 203–211. isbn: 0-8186-2230-X. doi: 10.1109/lics.
1991.151645.

[21] Bodil Biering. “Dialectica Interpretations: A Categorical Analysis”. PhD thesis.
IT University, 2008.

[22] George Boole. Investigation of The Laws of Thought On Which Are Founded the
Mathematical Theories of Logic and Probabilities. 1853.

[23] Breuvart and Pagani. “Relational semantics for bounded calculus”. Draft. 2015.

[24] Alois Brunel. “The Monitoring Power of Forcing Transformation”. PhD thesis.
Univ. Paris Nord, 2014.

[25] Aloïs Brunel et al. “A Core Quantitative Coeffect Calculus”. In: Proceedings of
ESOP. Ed. by Z. Shao. Vol. 8410. Lecture Notes in Computer Science. Springer,
2014, pp. 351–370.

258

http://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347/index.html
http://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347/index.html
http://dx.doi.org/10.1109/lics.1991.151645
http://dx.doi.org/10.1109/lics.1991.151645

Bibliography

[26] Georg Cantor. “Ueber unendliche, lineare Punktmannichfaltigkeiten”. In: Mathe-
matische Annalen 15.1 (1879), pp. 1–7. issn: 0025-5831. doi: 10.1007/BF01444101.

[27] Stephen Chang and Matthias Felleisen. “The Call-by-need Lambda Calculus, Re-
visited”. In: European Symposium on Programming, ESOP 2012. Lecture Notes in
Computer Science. Springer, 2012.

[28] Adam Chlipala. Certified Programming with Dependent Types. http://adam.
chlipala.net/cpdt/. MIT Press, 2011. url: %7Bhttp://adam.chlipala.net/
cpdt/%7D.

[29] A. Church. “A Set of Postulates for the Foundation of Logic”. In: Annals of Math-
ematics 33.2 (1932), pp. 346–366.

[30] P.J. Cohen. Set theory and the continuum hypothesis. Mathematics lecture note
series. W. A. Benjamin, 1966.

[31] H.P. Cooke and H. Tredennick. Aristotle: The Organon. Aristotle: The Organon
v. 2. Harvard University Press.

[32] Thierry Coquand. “An Analysis of Girard’s Paradox”. In: LICS. IEEE Computer
Society, 1986, pp. 227–236.

[33] Thierry Coquand and Gerard Huet. “The Calculus of Constructions”. In: Inf.
Comput. 76.2-3 (Feb. 1988), pp. 95–120. issn: 0890-5401. doi: 10.1016/0890-
5401(88)90005-3. url: http://dx.doi.org/10.1016/0890-5401(88)90005-3.

[34] Roberto Di Cosmo. The Linear Logic Primer. 1992.

[35] Pierre-Louis Curien and Hugo Herbelin. “The duality of computation”. In: Pro-
ceedings of the Fifth ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP ’00), Montreal, Canada, September 18-21, 2000. 2000, pp. 233–
243. doi: 10.1145/351240.351262. url: http://doi.acm.org/10.1145/
351240.351262.

[36] Vincent Danos, Hugo Herbelin, and Laurent Regnier. “Game Semantics & Ab-
stract Machines”. In: Logic in Computer Science, LICS. 1996, pp. 394–405.

[37] Vincent Danos and Laurent Regnier. “Head Linear Reduction”. Unpublished. 2004.

[38] Olivier Danvy and Kevin Millikin. “A Rational Deconstruction of Landin’s SECD
Machine with the J Operator”. In: Logical Methods in Computer Science 4.4
(2008). doi: 10.2168/LMCS- 4(4:12)2008. url: http://dx.doi.org/10.
2168/LMCS-4(4:12)2008.

[39] Olivier Danvy et al. “Defunctionalized Interpreters for Call-by-need evaluation”.
In: Functional and Logic Programming Symposium, FLOPS 2010. Lecture Notes
in Computer Science. Springer, 2010.

[40] Justus Diller. “Eine Variante zur Dialectica-Interpretation der Heyting-Arithmetik
endlicher Typen”. German. In: Archiv für mathematische Logik und Grundlagen-
forschung 16.1-2 (1974), pp. 49–66. issn: 0003-9268. doi: 10.1007/BF02025118.
url: http://dx.doi.org/10.1007/BF02025118.

259

http://dx.doi.org/10.1007/BF01444101
http://adam.chlipala.net/cpdt/
http://adam.chlipala.net/cpdt/
%7Bhttp://adam.chlipala.net/cpdt/%7D
%7Bhttp://adam.chlipala.net/cpdt/%7D
http://dx.doi.org/10.1016/0890-5401(88)90005-3
http://dx.doi.org/10.1016/0890-5401(88)90005-3
http://dx.doi.org/10.1016/0890-5401(88)90005-3
http://dx.doi.org/10.1145/351240.351262
http://doi.acm.org/10.1145/351240.351262
http://doi.acm.org/10.1145/351240.351262
http://dx.doi.org/10.2168/LMCS-4(4:12)2008
http://dx.doi.org/10.2168/LMCS-4(4:12)2008
http://dx.doi.org/10.2168/LMCS-4(4:12)2008
http://dx.doi.org/10.1007/BF02025118
http://dx.doi.org/10.1007/BF02025118

Bibliography

[41] Andrzej Filinski. “Representing Monads”. In: Proceedings of the Twenty-First An-
nual ACM Symposium on Principles of Programming Languages. ACM Press,
1994, pp. 446–457.

[42] Gottlob Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache
des reinenDenkens. Halle: Verlag von Louis Nebert, 1879.

[43] Jean-Yves Girard. “A New Constructive Logic: Classical Logic”. In: Mathemat-
ical Structures in Computer Science 1.3 (1991), pp. 255–296. doi: 10 . 1017 /
S0960129500001328. url: http://dx.doi.org/10.1017/S0960129500001328.

[44] Jean-Yves Girard. “Linear Logic”. In: Theor. Comput. Sci. 50 (1987), pp. 1–102.

[45] Jean-Yves Girard. “Linear Logic: Its Syntax and Semantics”. In: Proceedings of
the Workshop on Advances in Linear Logic. New York, NY, USA: Cambridge
University Press, 1995, pp. 1–42. isbn: 0-521-55961-8.

[46] Jean-Yves Girard. The Blind Spot: Lectures on Logic. European Mathematical
Society, 2011.

[47] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. New York,
NY, USA: Cambridge University Press, 1989. isbn: 0-521-37181-3.

[48] J.Y. Girard. “Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur”. PhD thesis. 1972.

[49] V. Glivenko. “Sur Quelques Points de la Logique de M. Brouwer”. In: Bulletins de
la classe des sciences. 5th ser. 15 (1929), pp. 183–188.

[50] K. Gödel. “Zur intuitionistischen Arithmetik und Zahlentheorie”. In: Ergebnisse
eines mathematisches Kolloquiums 4 (1932), pp. 34–38.

[51] Kurt Gödel. “Über eine bisher noch nicht benützte Erweiterung des finiten Stand-
punktes”. In: Dialectica 12 (1958), pp. 280–287.

[52] Kurt Gödel. “Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme”. In: Monatshefte für Mathematik und Physik 38.1 (1931),
pp. 173–198.

[53] Timothy G. Griffin. “A Formulae-as-type Notion of Control”. In: POPL ’90. San
Francisco, California, USA: ACM, 1990, pp. 47–58. isbn: 0-89791-343-4.

[54] Timothy G. Griffin. Remarks on A Formulae-as-Types Notion of Control. 2013.

[55] Hugo Herbelin. “An Intuitionistic Logic that Proves Markov’s Principle”. In: Logic
in Computer Science, Symposium on (2010), pp. 50–56. issn: 1043-6871. doi:
http://doi.ieeecomputersociety.org/10.1109/LICS.2010.49.

[56] Hugo Herbelin and Silvia Ghilezan. “An Approach to Call-by-Name Delimited
Continuations”. In: Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2008, San Francisco, California,
USA, January 7-12, 2008. Ed. by George C. Necula and Philip Wadler. ACM, Jan.
2008, pp. 383–394. isbn: 978-1-59593-689-9.

260

http://dx.doi.org/10.1017/S0960129500001328
http://dx.doi.org/10.1017/S0960129500001328
http://dx.doi.org/10.1017/S0960129500001328
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/LICS.2010.49

Bibliography

[57] William A. Howard. “The formulas-as-types notion of construction”. In: To H. B.
Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism. Ed. by
J. P. Seldin and J. R. Hindley. Academic Press, 1980, pp. 479–490.

[58] J. M. E. Hyland. “Proof theory in the abstract”. In: Ann. Pure Appl. Logic 114.1-3
(2002), pp. 43–78.

[59] Martin Hyland and Luke Ong. “On Full Abstraction for PCF”. In: Information
and Computation 163.2 (Dec. 2000), pp. 285–408.

[60] Martin Hyland and Andrea Schalk. “Glueing and orthogonality for models of linear
logic”. In: Theor. Comput. Sci. 294.1/2 (2003), pp. 183–231.

[61] Danko Ilik. “Continuation-passing style models complete for intuitionistic logic”.
In: Annals of Pure and Applied Logic 164.6 (2013), pp. 651–662. issn: 0168-0072.
doi: http://dx.doi.org/10.1016/j.apal.2012.05.003.

[62] Danko Ilik, Gyesik Lee, and Hugo Herbelin. “Kripke Models for Classical Logic”.
In: Annals of Pure and Applied Logic 161.11 (2010). Ed. by Steffen van Bakel,
Stefano Berardi, and Ulrich Berger. Special Issue on Classical Logic and Compu-
tation, pp. 1367–1378.

[63] Guilhem Jaber, Nicolas Tabareau, and Matthieu Sozeau. “Extending Type Theory
with Forcing”. In: LICS 2012 : Logic In Computer Science. Dubrovnik, Croatia,
June 2012, pp. –. url: https://hal.archives-ouvertes.fr/hal-00685150.

[64] Jean-Yves Girard. “Proof-nets: The parallel syntax for proof-theory”. In: Logic and
Algebra. Marcel Dekker, 1996, pp. 97–124.

[65] S. C. Kleene. “On the interpretation of intuitionistic number theory”. In: The
Journal of Symbolic Logic 10 (04 Dec. 1945), pp. 109–124. issn: 1943-5886.

[66] Ulrich Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in
Mathematics. Springer Monographs in Mathematics. Springer Verlag, 2008.

[67] Saul Kripke. “A Completeness Theorem in Modal Logic”. In: J. Symb. Log. 24.1
(1959), pp. 1–14. doi: 10.2307/2964568. url: http://dx.doi.org/10.2307/
2964568.

[68] Jean-Louis Krivine. “A call-by-name lambda-calculus machine”. In: Higher-Order
and Symbolic Computation 20.3 (2007), pp. 199–207.

[69] Jean-Louis Krivine. “Classical Logic, Storage Operators and Second-Order lambda-
Calculus”. In: Ann. Pure Appl. Logic 68.1 (1994), pp. 53–78. doi: 10.1016/0168-
0072(94)90047-7. url: http://dx.doi.org/10.1016/0168-0072(94)90047-7.

[70] Jean-Louis Krivine. “Dependent choice, ‘quote’ and the clock”. In: Theor. Comput.
Sci. 308.1-3 (2003), pp. 259–276.

[71] Jean-Louis Krivine. “Realizability algebras: a program to well order R”. In: Logical
Methods in Computer Science 7.3 (2011). doi: 10.2168/LMCS-7(3:2)2011. url:
http://dx.doi.org/10.2168/LMCS-7(3:2)2011.

261

http://dx.doi.org/http://dx.doi.org/10.1016/j.apal.2012.05.003
https://hal.archives-ouvertes.fr/hal-00685150
http://dx.doi.org/10.2307/2964568
http://dx.doi.org/10.2307/2964568
http://dx.doi.org/10.2307/2964568
http://dx.doi.org/10.1016/0168-0072(94)90047-7
http://dx.doi.org/10.1016/0168-0072(94)90047-7
http://dx.doi.org/10.1016/0168-0072(94)90047-7
http://dx.doi.org/10.2168/LMCS-7(3:2)2011
http://dx.doi.org/10.2168/LMCS-7(3:2)2011

Bibliography

[72] Y. Lafont, B. Reus, and T. Streicher. Continuations Semantics or Expressing
Implication by Negation. Technical Report 9321. Ludwig-Maximilians-Universitat,
Munchen, 1993.

[73] J. Laird et al. “Weighted relational models of typed lambda-calculi”. In: 28th
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2013), 25-
28 June 2013, New Orleans, USA, Proceedings. 2013, pp. 301–310.

[74] Olivier Laurent. “A study of polarization in logic”. PhD thesis. Université de la
Méditerranée - Aix-Marseille II, Mar. 2002.

[75] Xavier Leroy. The ZINC experiment: an economical implementation of the ML
language. Technical report 117. INRIA, 1990.

[76] Paul Blain Levy. “Call-by-push-value”. PhD thesis. Queen Mary, University of
London, 2001.

[77] Zhaohui Luo. “ECC, an Extended Calculus of Constructions”. In: LICS. IEEE
Computer Society, 1989, pp. 386–395.

[78] John Maraist, Martin Odersky, and Philip Wadler. “The Call-by-Need lambda-
Calculus”. In: Journal of Functional Programming 8.3 (1998), pp. 275–317.

[79] Gianfranco Mascari and Marco Pedicini. “Head linear reduction and pure proof
net extraction”. In: Theoret. Comput. Sci. 135.1 (1994), pp. 111–137.

[80] Paul-andré Melliès. “Categorical semantics of linear logic”. In: Interactive Mod-
els of Computation and Program Behaviour, Panoramas et Synthèses 27, Société
Mathématique de France 1–196. 2009.

[81] Alexandre Miquel. “Forcing as a Program Transformation”. In: LICS. IEEE Com-
puter Society, 2011, pp. 197–206. isbn: 978-0-7695-4412-0.

[82] Alexandre Miquel. “Relating Classical Realizability and Negative Translation for
Existential Witness Extraction”. In: Typed Lambda Calculi and Applications, 9th
International Conference, TLCA 2009, Brasilia, Brazil, July 1-3, 2009. Proceed-
ings. 2009, pp. 188–202. doi: 10.1007/978-3-642-02273-9_15. url: http:
//dx.doi.org/10.1007/978-3-642-02273-9_15.

[83] Eugenio Moggi. “Notions of Computation and Monads”. In: Inf. Comput. 93.1
(1991), pp. 55–92.

[84] Guillaume Munch-Maccagnoni. “Focalisation and Classical Realisability”. In: Com-
puter Science Logic, 23rd international Workshop, CSL 2009, 18th Annual Con-
ference of the EACSL, Coimbra, Portugal, September 7-11, 2009. Proceedings.
2009, pp. 409–423. doi: 10.1007/978-3-642-04027-6_30. url: http://dx.doi.
org/10.1007/978-3-642-04027-6_30.

[85] Guillaume Munch-Maccagnoni. “Formulae-as-Types for an Involutive Negation”.
In: Proceedings of the joint meeting of the Twenty-Third EACSL Annual Con-
ference on Computer Science Logic and the Twenty-Ninth Annual ACM/IEEE
Symposium on Logic in Computer Science (CSL-LICS). 2014.

262

http://dx.doi.org/10.1007/978-3-642-02273-9_15
http://dx.doi.org/10.1007/978-3-642-02273-9_15
http://dx.doi.org/10.1007/978-3-642-02273-9_15
http://dx.doi.org/10.1007/978-3-642-04027-6_30
http://dx.doi.org/10.1007/978-3-642-04027-6_30
http://dx.doi.org/10.1007/978-3-642-04027-6_30

Bibliography

[86] Guillaume Munch-Maccagnoni. Lambda-calcul, machines et orthogonalité. Unpub-
lished. 2011.

[87] Guillaume Munch-Maccagnoni. “Syntax and Models of a non-Associative Compo-
sition of Programs and Proofs”. PhD thesis. Univ. Paris Diderot, Dec. 2013.

[88] Mitsuhiro Okada. “Phase semantic cut-elimination and normalization proofs of
first- and higher-order linear logic”. In: Theoretical Computer Science 227.1-2
(1999), pp. 333–396. issn: 0304-3975. doi: http://dx.doi.org/10.1016/S0304-
3975(99)00058-4.

[89] Paulo Oliva. “Unifying Functional Interpretations”. In: Notre Dame Journal of
Formal Logic 47.2 (Apr. 2006), pp. 263–290. doi: 10.1305/ndjfl/1153858651.
url: http://dx.doi.org/10.1305/ndjfl/1153858651.

[90] Paulo Oliva and Thomas Streicher. “On Krivine’s Realizability Interpretation of
Classical Second-Order Arithmetic”. In: Fundam. Inform. 84.2 (2008), pp. 207–
220. url: http://iospress.metapress.com/content/f51774wm73404583/.

[91] Nicolas Oury. “Extensionality in the Calculus of Constructions”. English. In: Theo-
rem Proving in Higher Order Logics. Ed. by Joe Hurd and TomMelham. Vol. 3603.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2005, pp. 278–
293. isbn: 978-3-540-28372-0. doi: 10.1007/11541868_18. url: http://dx.doi.
org/10.1007/11541868_18.

[92] Valeria de Paiva. “A Dialectica-like Model of Linear Logic”. In: Category Theory
and Computer Science. Ed. by David H. Pitt et al. Vol. 389. Lecture Notes in
Computer Science. Springer, 1989, pp. 341–356.

[93] Valeria de Paiva. “The Dialectica Categories”. In: Categories in Computer Science
and Logic: Proc. of the Joint Summer Research Conference. Ed. by J. W. Gray
and A. Scedrov. Providence, RI: American Mathematical Society, 1989, pp. 47–62.

[94] Michel Parigot. “Lambda-Mu-Calculus: An algorithmic interpretation of classical
natural deduction”. English. In: Logic Programming and Automated Reasoning.
Ed. by Andrei Voronkov. Vol. 624. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 1992, pp. 190–201. isbn: 978-3-540-55727-2. doi: 10.1007/
BFb0013061. url: http://dx.doi.org/10.1007/BFb0013061.

[95] Pierre-Marie Pédrot. “A Functional Functional Interpretation”. In: Proceedings of
the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS). CSL-LICS ’14. Vienna, Austria: ACM, 2014,
77:1–77:10. isbn: 978-1-4503-2886-9. doi: 10.1145/2603088.2603094. url: http:
//doi.acm.org/10.1145/2603088.2603094.

[96] Laurent Regnier. “Lambda-calcul et réseaux”. PhD thesis. Univ. Paris VII, 1992.

[97] Laurent Regnier. “Une équivalence sur les lambda-termes”. In: Theoretical Com-
puter Science 126 (1994), pp. 281–292.

263

http://dx.doi.org/http://dx.doi.org/10.1016/S0304-3975(99)00058-4
http://dx.doi.org/http://dx.doi.org/10.1016/S0304-3975(99)00058-4
http://dx.doi.org/10.1305/ndjfl/1153858651
http://dx.doi.org/10.1305/ndjfl/1153858651
http://iospress.metapress.com/content/f51774wm73404583/
http://dx.doi.org/10.1007/11541868_18
http://dx.doi.org/10.1007/11541868_18
http://dx.doi.org/10.1007/11541868_18
http://dx.doi.org/10.1007/BFb0013061
http://dx.doi.org/10.1007/BFb0013061
http://dx.doi.org/10.1007/BFb0013061
http://dx.doi.org/10.1145/2603088.2603094
http://doi.acm.org/10.1145/2603088.2603094
http://doi.acm.org/10.1145/2603088.2603094

Bibliography

[98] John C. Reynolds. “Towards a theory of type structure”. In: Programming Sym-
posium, Proceedings Colloque sur la Programmation, Paris, France, April 9-11,
1974. 1974, pp. 408–423. doi: 10.1007/3-540-06859-7_148.

[99] Bertrand Russell. The Principles of Mathematics. 1903.

[100] Gabriel Scherer and Pierre-Evariste Dagand. “Normalization by realizability also
evaluates”. In: JFLA. 2015.

[101] Vincent Siles and Hugo Herbelin. “Pure Type System Conversion is Always Ty-
pable”. In: J. Funct. Program. 22.2 (Mar. 2012), pp. 153–180. issn: 0956-7968.
doi: 10 . 1017 / S0956796812000044. url: http : / / dx . doi . org / 10 . 1017 /
S0956796812000044.

[102] Thomas Streicher and Ulrich Kohlenbach. “Shoenfield is Gödel after Krivine”. In:
Math. Log. Q. 53.2 (2007), pp. 176–179.

[103] Kazushige Terui. “Computational ludics”. In: Theor. Comput. Sci. 412.20 (2011),
pp. 2048–2071. doi: 10.1016/j.tcs.2010.12.026.

[104] A. M. Turing. “Computability and lambda-definability”. In: The Journal of Sym-
bolic Logic 2 (04 Dec. 1937), pp. 153–163. issn: 1943-5886. doi: 10.2307/2268280.

[105] The Univalent Foundations Program. Homotopy Type Theory: Univalent Founda-
tions of Mathematics. Institute for Advanced Study: http://homotopytypetheory.
org/book, 2013.

[106] Christopher P. Wadsworth. “Semantics and pragmatics of the lambda-calculus”.
PhD thesis. Programming Research Group, Oxford University, 1971.

[107] Noam Zeilberger. “Polarity and the Logic of Delimited Continuations.” In: LICS.
IEEE Computer Society, 2010, pp. 219–227. isbn: 978-0-7695-4114-3.

264

http://dx.doi.org/10.1007/3-540-06859-7_148
http://dx.doi.org/10.1017/S0956796812000044
http://dx.doi.org/10.1017/S0956796812000044
http://dx.doi.org/10.1017/S0956796812000044
http://dx.doi.org/10.1016/j.tcs.2010.12.026
http://dx.doi.org/10.2307/2268280
http://homotopytypetheory.org/book
http://homotopytypetheory.org/book

	Introduction
	Prolegomena
	The -calculus
	The archetypal -calculus
	Reductions and strategies
	Typing
	Datatypes

	A minimalistic taste of logic
	The programmer's bar talk
	Propositional logic
	First-order logic

	The Curry-Howard isomorphism
	A significant insignificant observation
	From proofs to programs
	From programs to proofs

	Abstract machines
	The Krivine machine
	Krivine realizability

	Linear Logic
	Syntax
	Formulae
	Proofs

	Polarization
	A bit of category theory
	Intuitionistic and classical decompositions
	The call-by-name decomposition
	The call-by-value decomposition
	Classical-by-name

	Dependent type theory
	Term in types: a bird's-eye notion of dependency
	The issue of universes
	Dependent elimination

	Effects and dependency
	Dependent Monads: a naive generalization
	Indexed CPS

	Logical by need
	An implicit tension
	Linear head reduction
	A brief history of the unloved linear head reduction
	The old-fashioned linear head reduction

	Lazy evaluation
	Linear head reduction versus call-by-need
	A modern reformulation of linear head reduction
	Reduction up to -equivalence
	Closure contexts
	The lh-calculus
	LHR with microscopic reduction

	Towards call-by-need
	Weak linear head reduction
	Call-by-value linear head reduction
	Closure sharing
	wls is a call-by-need calculus
	From miscroscopic LHR to Ariola-Felleisen calculus

	Classical Linear Head Reduction
	Classical by Need
	Weak classical LHR
	Call-by-value weak classical LHR
	Call-by-Need in a Classical Calculus
	Comparison with existing works

	Dialectica: a historical presentation
	Intuitionistic arithmetic
	System T
	HA + T
	Gödel's motivations
	Gödel's Dialectica
	Sequences
	Witnesses and counters
	Interpretation
	Soundness theorem

	A bit of classical logic
	Irrelevant types
	Markov's principle
	Independence of premise

	A proof-theoretical Dialectica translation
	Down with System T
	A proof system over +
	Dialectica with inductive types
	Witnesses and counters
	Orthogonality
	Interpretation

	Linear Dialectica
	The linear decomposition
	Factorizing

	A not-so proof-theoretical translation

	A realizability account
	Introducing multisets
	Motivations
	Formal definition
	A taste of déjà-vu
	The whereabouts of orthogonality

	The call-by-name translation
	Type translation
	Term translation
	Typing soundness
	Computational soundness

	KAM simulation
	Stacks as first-class objects
	Realizability interpretation
	When Krivine meets Gödel
	An unfortunate mismatch
	A quantitative interpretation?

	Variants of the Dialectica translation
	Call-by-name positive connectives
	Dynamics
	Extended KAM
	Type translation
	Term translation
	Computational soundness
	Stack translation
	Extended KAM simulation
	Recursive types

	A glimpse at the resulting logic
	Dialectica as a side-effect
	Markov's principle
	Independence of premise

	Classical-by-name translation
	The -calculus
	Classical KAM
	Type translation
	Term translation
	Computational soundness
	KAM simulation

	Call-by-value translation
	Call-by-value
	Type translation

	A dependently-typed Dialectica
	A simple framework:
	The target system
	Dependent pairs
	Multisets

	The dependent Dialectica translation
	Rationale
	The dependent Dialectica

	Practical feasibility
	Church-style encoding
	Actual multisets

	Towards dependent elimination

	Decomposing Dialectica: Forcing, CPS and the rest
	Overview
	The simplest forcing: the reader monad
	Pseudo-linear translation
	Call-by-name reader translation
	Call-by-value reader translation

	Forcing in more detail
	Linear translation
	Call-by-name decomposition
	Call-by-value decomposition
	Forcing you to repeat: a computational stuttering

	A proto-Dialectica: the silly stack reader
	A first step into linearity
	Call-by-name translation
	Reading the stacks
	Handling positive connectives
	An attempt at call-by-value

	From forcing to CPS
	Summary of the issues
	Call-by-name
	Call-by-value

	Towards Dialectica

	Conclusion

