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Proof assistants based on dependent type theory, such as Coq, Lean and Agda, use different universes to
classify types, typically combining a predicative hierarchy of universes for computationally-relevant types,
and an impredicative universe of proof-irrelevant propositions. In general, a universe is characterized by its
sort, such as Type or Prop, and its level, in the case of a predicative sort. Recent research has also highlighted
the potential of introducing more sorts in the type theory of the proof assistant as a structuring means
to address the coexistence of different logical or computational principles, such as univalence, exceptions,
or definitional proof irrelevance. This diversity raises concrete and subtle issues from both theoretical and
practical perspectives. In particular, in order to avoid duplicating definitions to inhabit all (combinations of)
universes, some sort of polymorphism is needed. Universe level polymorphism is well-known and effective
to deal with hierarchies, but the handling of polymorphism between sorts is currently ad hoc and limited in
all major proof assistants, hampering reuse and extensibility. This work develops sort polymorphism and its
metatheory, studying in particular monomorphization, large elimination, and parametricity. We implement
sort polymorphism in Coq and present examples from a new sort-polymorphic prelude of basic definitions
and automation. Sort polymorphism is a natural solution that effectively addresses the limitations of current
approaches and prepares the ground for future multi-sorted type theories.
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1 Introduction

Proof assistants based on dependent type theory, such as Coq [The Coq Development Team 2022],
Lean [Moura and Ullrich 2021] and Agda [Bove et al. 2009], rely on universes to classify types. For
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instance, the natural number 1 is of type N, noted 1 : N, and N itself is of type Type, i.e., N : Type.
The question is then what is the type of Type itself? The original impredicative approach of Martin-
Löf setting Type : Type results in various logical paradoxes such as Girard’s paradox [Girard 1972],
a type theoretic counterpart to Russel’s paradox of set theory [Russell 1903]. A standard approach
to ensure logical consistency is to equip the type theory with a hierarchy of universes Type𝑙 , where
each universe is indexed by a universe level 𝑙 . In this predicative approach, which can be traced
back to the seminal work of Russell [1903] on type theory, the type of the universe at level 𝑙 is the
universe above, i.e., Type𝑙 : Type𝑙+1. In dependent type theories, this means in particular that the
dependent function type must live at least in the greatest level of its domain and codomain types;
i.e., given 𝐴 : Type𝑙𝐴 and 𝐵 : Type𝑙𝐵 , we have Π(𝑥 : 𝐴). 𝐵 : Typemax(𝑙𝐴,𝑙𝐵 ) .
In the Calculus of Constructions, Coquand and Huet [1988] introduce an additional universe

for proof-irrelevant propositions Prop that is impredicative, therefore a quantification over all
propositions in Prop is itself a proposition in Prop. One of the motivations for this proof-irrelevant
universe is to characterize terms that play no computational role in the semantics of a program
and can therefore be erased during extraction [Letouzey 2004]. With these different universes, it is
important to clarify the terminology: a universe consists of a sort and a (universe) level. For instance,
Type0 is a universe of sort Type and level 0. For an impredicative universe, the level is irrelevant,
so we can refer to Prop as both a sort and a universe.

In the presence of these two sorts Type and Propwith important semantic differences (irrelevance),
care must be taken to properly specify their interaction. While it is perfectly fine to eliminate data
from Type to Prop, the other direction from Prop to Type must be compatible with the irrelevant
nature of Prop’s inhabitants. In the Calculus of Inductive Constructions [Paulin-Mohring 2015],
which underlies systems such as Coq and Lean, this is ensured by a syntactic condition known as
singleton elimination: eliminating an inductive type in Prop to some universe Type𝑙 is allowed only
if the inductive type has at most one constructor, whose arguments are also in Prop.
Additionally, the presence of two sorts raises software engineering issues due to the potential

duplication of definitions. For instance, consider the dependent pair inductive type Σ(𝑎 : 𝐴) 𝐵,
which takes two arguments that live in some universes 𝐴 : 𝒰1 and 𝐵 : 𝒰2, and inhabits some
universe 𝒰3. If all sort combinations are to be supported, this leads to 23 = 8 copies of the inductive
type definition. Coq and Lean adopt different techniques to avoid this combinatorial explosion
by introducing some form of polymorphism, such as subtyping, but they are both too ad-hoc
and limited to properly address duplication in a manner that is robust and scalable. Due to these
limitations, some duplication remains in Coq, which in turn trickles down onto complex parts of
the theorem proving infrastructure, such as generalized rewriting for setoids.

Scaling to more than two sorts is also crucial, because Type and Prop are not the only sorts that
one may want in a proof assistant. For instance, Gilbert et al. [2019] proposed the impredicative
universe SProp with definitional proof irrelevance, now implemented in Coq, Lean and Agda.1
Since version 8.10, Coq therefore supports three distinct sorts, raising the combinatorial issue of
the dependent pair inductive type to 33 = 27 possible combinations. Several other research projects
have advocated for distinct sorts, such as the two-level type theory 2LTT to separate univalent
and strict types [Annenkov et al. 2023], implemented in Agda, or the reasonably exceptional type
theory RETT with separate exceptional and pure types [Pédrot et al. 2019]—a construction also
used in the reasonably gradual type theory GRIP [Maillard et al. 2022]. Refinements of the existing
Type/Prop distinction have also been studied by Keller and Lasson [2012] for their development of
parametricity in an impredicative sort, and Winterhalter [2024] for ghost types.

1This universe is called Prop in both Lean and Agda.
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Supporting multiple sorts in proof assistants requires proper support for polymorphism in
order to avoid duplication. Universe polymorphism has been studied previously by Sozeau and
Tabareau [2014]—and is readily implemented in Coq and Lean—but the somewhat misleading
name hides the fact that it only considers polymorphism for universe levels, not sorts. This work
develops the missing ingredient: SortPoly, a theory of sort polymorphism, addressing subtle issues of
typing for sort-polymorphic universes and dependent functions, as well as properly characterizing
the necessary conditions for matching on (i.e., eliminating) sort-polymorphic inductive types. We
additionally report on the practical implementation of sort polymorphism in the Coq proof assistant
by drawing examples from a newly-implemented prelude that covers core inductive types like
equality and dependent pairs, as well as sort-polymorphic generalized rewriting for setoids.

Outline of the paper. § 2 reviews the current polymorphism mechanisms of Coq and Lean,
highlighting the need for a more systematic solution. Then, we demonstrate the efficacy of the sort
polymorphic approach through a new sort-polymorphic prelude featuring basic definitions and
automation in Coq with §3, before introducing the formal system SortPoly itself in §4. The peculiar
status of large elimination in our system is explored in §5. Moving on to theoretical properties of
SortPoly, §6 delves into the process of monomorphization, where SortPoly terms are transformed
back to a simpler one; while §7 investigates a novel form of parametricity regarding sorts. We
then give multiple example instances of this system in §8, and the implementation of SortPoly is
covered in §9. We conclude with related (§10) and future (§11) work.

Version information. The Coq code in this paper has been typechecked using a modified Coq that
includes multiple changes publicly proposed for addition: algebraic universes, local sort declaration,
removal of the standard library. This version of Coq along with the new sort polymorphic prelude
are available at https://zenodo.org/records/13939644. SortPoly itself is supported by Coq since
8.19.0, but these changes, while not strictly necessary for small examples, are important features
that simplified writing the new prelude. The Lean code in this paper was typechecked using Lean
version 4.8.0.

2 The Need for Sort Polymorphism

Existing proof assistants have long recognized the need for some form of polymorphism to tackle
the duplication of definitions entailed by the presence of the two sorts Type and Prop. We now
review the different approaches taken in Coq (§2.1) and in Lean (§2.2), highlighting their limits.2
We end by reviewing challenges and principles steering the development of sort polymorphism
(§2.3).

2.1 Coq: Subtyping and Template Polymorphism

In Coq, the historical approach adopted to limit the duplication issue is to declare that Prop is a
subtype of Type. Consider the definition of the equality inductive type, declared to take A in Type
and eventually inhabiting Prop:
Inductive eq (A : Type) (x : A) : A → Prop := eq_refl : x = x

Subtyping makes it possible to use eq with A in Prop to talk about equality of propositions, in
particular equality of equalities:
Theorem eq_trans_refl_l A (x y:A) (e:x=y) : eq_trans eq_refl e = e.

2Agda does not have any sort polymorphism yet, although the developers have expressed interest towards implementing
such amechanism (see Agda issue https://github.com/agda/agda/issues/3328).We do not know of any examples of duplication
in Agda libraries, as its other sorts Prop and SSet are not accessible by default and have not seen much adoption yet.
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Expressiveness issues. Subtyping of Prop into Type alone is far from providing a satisfactory
solution in terms of expressiveness. To illustrate, consider the following definition of dependent
pairs defined in Type:
Inductive sigT (A : Type) (B : A → Type) : Type :=

| existT : forall (a:A), B a → sigT A B.

Via subtyping alone, picking both A in Prop and a predicate B over A also in Prop would yield a
type in Type. This does not reflect the most precise valid sort, in this case Prop. In general, this
problem calls for bounded subtype polymorphism; Coq uses a mechanism known as template

polymorphism, which (apart from dealing with universe levels) can be seen to implement bounded
subtype polymorphism for the specific case Prop <: Type.3 Therefore, whenever the subtyping rule
has been used on every argument declared as Type, the resulting sort is Prop.
Subtyping, combined with template polymorphism, provides an ad-hoc form of genericity for

definitions. However, this does not fully address the exponential blow-up problem for defining
dependent pairs. For instance, the encoding of an existential quantification in Prop:
Inductive ex (A : Type) (P : A → Prop) : Prop :=

ex_intro : forall (x:A), P x → exists y, P y.

cannot be defined using sigT because the resulting universe is smaller than the universe of one
of the arguments. This issue manifests in the standard library of Coq with duplicated definitions
such as sigT, ex and the subset type sig.

Interaction with inference and unification. Another issue with subtyping and template polymor-
phism is its poor interaction with unification and inference of implicit arguments (denoted with _).
Consider the following:
Check (forall P:_, P → (P ∧ P)).

Because P appears on the left-hand side of an arrow, the implicit argument (_) is determined to
be a universe. Coq then eagerly chooses the seemingly more general sort Type for the universe.
As a result, this leads to a type mismatch because the conjunction operator requires the sort Prop,
and Type is not a subtype of Prop. Having Coq choose eagerly Prop is not a reasonable option
either: all relevant computations on datatypes would then need to be explicit about their universe.
A placeholder that can be later instantiated with both Type and Prop is needed.

Automation infrastructure. The issue of code duplication becomes more problematic when build-
ing automation infrastructure. For instance, the Coq infrastructure for generalized rewriting with
setoid relations needs to distinguish between relations in Prop (i.e., of type 𝐴 → 𝐴 → Prop) and
relations in Type (i.e., of type 𝐴 → 𝐴 → Type). As a result, the whole infrastructure for setoid
rewriting—which consists of around 2000 lines of Coq definitions and proofs, as well as 2000 lines
of code for the OCaml plugin—is duplicated.

Scalability. The subtyping approach does not scale to more sorts. For instance, Gilbert et al. [2019]
showed that in order to keep conversion efficiently decidable, the universe of proof-irrelevant
propositions SProp cannot be defined as a subtype of Type. This means that even generalizing
template polymorphism to bounded subtype polymorphism would not be possible in this case, and
thus SProp was added to Coq at first without any kind of support for polymorphism. In addition,
because extending the infrastructure for setoid rewriting to deal with a new sort like SProp would
have required yet more invasive changes in the OCaml plugin, such tactics still do not support
3In essence, the signature of sigT that template polymorphism supports could be written with bounded subtype polymor-
phism as: (A: t <: Type) → (B: A → t <: Type) → t (pseudo-syntax)
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SProp after almost 4 years. In practice, these duplication and unification limitations have hampered
adoption of SProp, as well as recent and future proposals for other sorts (e.g., [Annenkov et al.
2023; Maillard et al. 2022; Pédrot et al. 2019]).

2.2 Lean: Encoding Sorts with Universe Levels

Instead of using subtyping, Lean adopts an alternative approach that consists in encoding the two
different sorts in a single linear universe hierarchy:

Prop : Type 0 : Type 1 : Type 2 : ...

This hierarchy is implemented with the built-in Sort u, with Prop and Type l being respectively
aliases for Sort 0 and Sort (l + 1). The following definition of equality:

inductive eq (A : Sort l) (x : A) : A -> Prop := | refl : eq A x x

can then be applied to both propositions and types, enabling the formation of higher equalities. A
theorem similar to eq_trans_refl_l mentioned above can indeed be stated, where equality on x

and y live in Sort (l+1) and the higher equality lives in Sort 0, i.e., Prop.

Expressiveness issues. The encoding technique does not support the definition of a single versatile
version of dependent pairs. Indeed, the following definition:

inductive sigma (A : Sort i) (B : A -> Sort j) : Sort k :=

| pair : forall (a:A), B a -> sigma A B

is rejected by the typechecker, stating that Sort k is not necessarily Prop but may very well be.
This error occurs because Lean is unable to generate a valid elimination principle for the inductive
type: some instantiations of k would invalidate the singleton elimination principle.

One could imagine extending Lean such that it generates various dedicated elimination principles
for each of the the valid combinations, depending on whether k = 0 or k = k' + 1. This would be
similar to the generative template-based polymorphism of languages like C++.

Scalability challenges. There is another source of complexity of the encoding approach used by
Lean, which manifests in the management of the typing rule for dependent functions. Indeed,
as recalled in the introduction, the typing rule for functions is different whether the sort of the
codomain is Prop or not because Prop is impredicative:

Γ ⊢ 𝐴 : Type i Γ, 𝑥 : 𝐴 ⊢ 𝐵 : Type j
Γ ⊢ Π(𝑥 : 𝐴). 𝐵 : Type (max i j)

∀-pred
Γ ⊢ 𝐴 : Type l Γ, 𝑥 : 𝐴 ⊢ 𝐵 : Prop

Γ ⊢ Π(𝑥 : 𝐴). 𝐵 : Prop
∀-imp

To properly handle both cases when generalizing to Sort l, Lean introduces a special operation
imax such that imax i 0 = 0 and imax i j = max i j when j ≠ 0. With this operation, the two
typing rules of dependent functions can be factorized as:

Γ ⊢ 𝐴 : Sort i Γ, 𝑥 : 𝐴 ⊢ 𝐵 : Sort j

Γ ⊢ Π(𝑥 : 𝐴). 𝐵 : Sort (imax i j)
∀-gen

This solution complexifies the decision procedure for universe level equality. More importantly,
encoding different sorts via an encoding in terms of universe levels and an adjustment of level-
related operators (such as imax) does not scale well with the addition of other sorts in the theory.
Merging the two notions amounts to constructing a bijective encoding of N × 𝑘 into N which, even
if theoretically possible, does not provide the right level of abstraction. For instance, detecting that
two universes live in the same sort but at different levels would be difficult to handle through such
an encoding.
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2.3 Towards Sort Polymorphism

The presence of some mechanisms in both Coq and Lean to attempt to generically handle the two
different sorts Type and Prop, and ideally more, acknowledges the need for polymorphism not only
at the level of universe levels but also at the level of sorts. We have seen that both proof assistants
tackle the problem in ways that are unsatisfactory.

This work proposes to introduce proper support for sort polymorphism in proof assistants via a
theory named SortPoly, as a complementary mechanism to universe level polymorphism [Sozeau
and Tabareau 2014]. Specifically, we develop prenex sort polymorphism as a natural solution to
resolve the issues of existing techniques. In order to achieve sort polymorphism in type theory, we
need to answer several questions:
(1) What is the type of a sort-polymorphic universe?
(2) What is the generic typing rule for a sort-polymorphic dependent function?
(3) How to deal uniformly with both predicative and impredicative sorts?
(4) When can we eliminate a sort-polymorphic inductive type?
(5) What is the status of large elimination for an arbitrary sort?

To answer these questions, we are guided by two main principles:
• Genericity: typing rules must be generic with respect to sorts, in the sense that typing rules
should not depend on specific sorts.

• Monomorphization: every complete instantiation of a sort-polymorphic term must give rise
to a valid term in the type theory without sort polymorphism.

Monomorphization is a foundational principle and a central property to ensure the equi-consistency
of the sort polymorphic type theory with the original type theory. In other words, sort polymor-
phism must not introduce any new proofs of false.
The genericity principle, on the other hand, is not foundational. It is a design choice aimed at

ensuring the scalability of the approach and facilitating compatibility with other properties of the
type theory. For instance, Lean’s approach with Sort u does not adhere to this principle, which
complicates the introduction of new sorts and the addition of properties like the cumulativity of
the Type hierarchy, as discussed previously.
Following these guidelines, in a nutshell, we introduce sort variables 𝑠 that range over a set of

sorts that includes at least Type. A universe 𝒰𝑠
𝑙
is parametrized by both a sort 𝑠 and level 𝑙 . When, for

instance, the sort is Type we recover the standard universe hierarchy of types ofMLTT [Martin-Löf
1971]. Then, the typing rule for the universe needs to be compatible at least with the two rules
Type l:Type (l+1) and Prop:Type 0.

Regarding the typing rule for dependent functions, as we want the system to be parametric
with respect to the sort, we are forced to consider the predicative case as a default. In all possible
instantiations from the literature, the sort of a dependent function is inherited from the sort of
its codomain. This leads to the following (simplified) typing rules for universes and dependent
function:

Γ ⊢ 𝒰𝑠
𝑙
: 𝒰Type

𝑙+1

Univ-simp
Γ ⊢ 𝐴 : 𝒰𝑠

𝑙
Γ, 𝑥 : 𝐴 ⊢ 𝐵 : 𝒰𝑠′

𝑙 ′

Γ ⊢ Π(𝑥 : 𝐴). 𝐵 : 𝒰𝑠′

max 𝑙 𝑙 ′

Forall-simp

But then, there is a tension to be solved: there is a mismatch when the universe is impredicative.
Fortunately, we can take a lesson from Voevodsky’s propositional resizing axiom [Univalent Foun-
dations Program 2013], which states that the type of (homotopical) propositions at a universe level
𝑙 is equivalent to propositions at any other level 𝑙 ′. To achieve impredicativity at a sort 𝑠 , we can
thus simply postulate that 𝒰𝑠

𝑙
is convertible to 𝒰𝑠

𝑙 ′ for any 𝑙, 𝑙
′.
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For the question of elimination, we observe that the only universally valid principle is that an
inductive type residing in a sort 𝑠 can always be eliminated into a motive that also resides in the
same sort. For instance, P \/ Qmay be eliminated to prove Q \/ P in the same sort Prop. Therefore,
this is the only generic elimination rule that can be added while preserving the monomorphization
principle. Of course, additional specific elimination rules, such as singleton elimination for Prop in
Coq or empty elimination for SProp, remain valid for their respective ground sorts.

This means that the sort of a universe being Type has the consequence that a universe does not
support large eliminations (i.e., elimination into arbitrary large universes) for all its inductive types
by default. This phenomenon is expected since already in the case of Prop and SProp, this would be
incompatible with their proof irrelevant interpretations. Indeed, large elimination for all inductive
types in Prop would make it possible to prove that a proof of P \/ Q that proves P is different from
a proof that proves Q. For Prop, large elimination is only supported for inductive types that satisfy
singleton elimination.

Finally, to recover large elimination for every inductive type, some specific ground sorts can be
equipped with an internal universe structure. We defer the presentation of this notion to §5.
We implemented the proposed sort polymorphism in Coq, and subsequently used it to write a

new prelude library of basic definitions and automation, as illustrated in the next section.

3 A Journey in the Realm of SortPoly

This section presents the new sort and universe level polymorphic prelude of the Coq proof
assistant. We start with simple definitions and basic types, then move on to general structures like
(positive and negative) dependent pairs. Then we focus on the peculiarities of the sort polymorphic
equality, showing that we can derive its groupoid laws in a general fashion. Finally, we present the
unification of setoid rewriting into a single polymorphic version.

3.1 Basic Definitions

Similarly to the prenex universe level polymorphism of Sozeau and Tabareau [2014], we extend the
Coq proof assistant to allow definitions to bind sort variables that can then be used in universes or
to instantiate other parametrized definitions.
In the following Coq example of a parametric identity function, the sort s and universe level l

are bound in @{s|l|}. This identity function can then be applied to any type A from any sort:4

Definition id@{s|l|} {A : 𝒰@{s|l}} (a : A) := a.

Inductive and record types can also be parametrized by both of these, letting one define a generic
empty type, which can be instantiated to the usual False proposition in Prop and its definitionally
proof-irrelevant variant SFalse in SProp. The universe level of this definition is 0, the bottom
universe level, in all cases:
Inductive empty@{s| |} : 𝒰@{s|0} :=.

Similarly, one can define a generic unit type with a single inhabitant, which can then be instanti-
ated both to Type to recover the standard unit type and to Prop and SProp to get the usual True and
STrue propositions:
Inductive unit@{s| |} : 𝒰@{s|0} :=

tt : unit.

As we will see, sort-polymorphic booleans are useful for exceptional (§8.4) or ghost (§8.6) sorts:
4A note on the syntax: a definition takes three arguments after the @ symbol, separated by |, namely a list of sorts, a list of
universe levels, and a list of universe level constraints. A universe instance only takes the first two elements (including level
expressions in second position). The absence of data means that the list is empty.
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Inductive B@{s| |} : 𝒰@{s|0} :=

| true : B
| false : B.

Note that here, it is not possible to prove that true is different from false because not every
universe has large eliminations. In the case of SProp for instance, this is really a necessary restriction
as one can show that true and false are actually equal thanks to definitional proof irrelevance:
Lemma true_false_sprop: true@{SProp|} = false@{SProp|}.

Proof. reflexivity. Qed.

§5 explains how to recover large elimination for specific sorts using an internal universe structure.

3.2 Factorization of Structures

To exemplify the factorization of structures provided by sort polymorphism, let us focus on positive
and negative dependent pairs. Positive sort-polymorphic dependent pairs, written sigma A P, can
be defined generically over three sorts, the sort s of the type A, the sort s' of the type family P and
the sort s'' of sigma A P itself.
Inductive sigma@{s s' s''|u v| } (A:𝒰@{s|u}) (P:A → 𝒰@{s'|v}) : 𝒰@{s''|max(u,v)}

:= exist : forall x:A, P x → sigma A P.

This definition makes sense without any constraint between the three sorts. However, eliminating
a dependent pair is only valid if the motive is also of sort s'', which implies in particular that the
first projection can be defined only when s is the same sort as s''.
Definition proj1@{s s'|u v|} {A:𝒰@{s|u}} {P:A → 𝒰@{s'|v}}

(p : sigma@{s s' s|_ _} A P) : A := match p with exist a _ => a end.

Note that the second projection can be defined only when s' is the same sort as s'', and because
its type uses the first projection, it also needs s to be the same sort as s''. Therefore all three sorts
must be the same.
With this single definition of sigma, we can recover all combinations already defined in the

current prelude of Coq, such as:
• Notation sigT := sigma@{Type Type Type|_ _}.

• Notation sig := sigma@{Type Prop Type|_ _}.

• Notation ex := sigma@{Type Prop Prop|_ _}.

but also other combinations, for instance involving SProp.
From a practical standpoint, this factorization has the undeniable advantage of simplifying the

user experience, as one no longer needs to remember the numerous names of all the variants of
dependent pairs or first and second projections. It also lets library writers settle the general theory
of dependent pairs once and for all, rather than duplicating it whenever a new sort is supported.
For instance, using the sort-polymorphic equality presented in the next section, it is possible to
show generically that dependent pairs (at the same sort) satisfy associativity up to equivalence,
that is: Σ (𝑎 : 𝐴) Σ(𝑏 : 𝐵 𝑎)𝐶 (𝑎, 𝑏) ≃ Σ(𝑝 : Σ(𝑎 : 𝐴) 𝐵 𝑎)𝐶 𝑝 .5

It is also possible to derive a generic definition of negative dependent pairs using a record type.
However in that case, because projections need to always be available, the sorts of the type A, the
type family P and that of the negative pair are constrained to the same sort s:
Record sigmaR@{s|u v|} (A : 𝒰@{s|u}) (P:A → 𝒰@{s|v}) : 𝒰@{s|max(u,v)}

:= existR { fst : A ; snd : P fst }.

5C.f. sigma_hom_assoc in theories/Properties/Equivalence.v of the accompanying artifact.
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With this definition, we get an alternative version of sigma@{s s s|u v} but with definitional
extensionality for every 𝑝 of type sigmaR A P:

𝑝 ≡ existR (fst 𝑝) (snd 𝑝).

3.3 Sort Polymorphic Equality

Quite surprisingly, sort polymorphism also allows a generic equality for types at sort s, itself at
sort s'!

Inductive eq@{s s'|l|} {A:𝒰@{s|l}} (x:A) : A → 𝒰@{s'|l} :=

eq_refl : eq x x.

The elimination restrictions will prevent unusual properties of this equality at specific choices
for s' to spread back to s. But because terms of an inductive type can be eliminated to the same sort
in general, we can still recover a lot of important lemmas, like the groupoidal laws. For instance,
transitivity of equality can be proven generically.

Definition eq_trans {x y z : A} (e1 : x = y) : y = z → x = z :=

match e1 with | eq_refl _ => fun x => x end.

And then, denoting the transitivity operation by @, associativity can also be proven generically—and
more generally all standard∞-groupoid laws forMLTT’s equality type—as introduced indepen-
dently by Lumsdaine [2010] and van den Berg and Garner [2011].

Definition assoc {x y z w : A} (e1 : x = y) (e2 : y = z) (e3 : z = w) :

e1 · (e2 · e3) = (e1 · e2) · e3.

Once we instantiate this definition with specific sorts, we recover the historical Coq equality from
Type to Prop, which satisfies singleton elimination and thus can be eliminated into Type as usual.

Other instantiations are possible: the equality from Type to SProp gives us an equality satisfying
uniqueness of identity proofs (UIP)—but note that because only false in SProp can be eliminated
to Type, one cannot use such equality proofs in a relevant way to build a term in Type, only to rule
out impossible cases. However, an extension of SortPoly with the additional primitive cast from
Pujet and Tabareau [2022] would be possible, letting one use the SProp equality in Type.

3.4 Cross-Sort Equivalences

We can use the sort-polymorphic equality introduced above to define the property of being an
equivalence for a function as promoted by the Univalent Foundations Program [2013].

Record isEquiv@{sa sb se | a b|} (A : 𝒰@{sa|a}) (B: 𝒰@{sb|b}) (f : A → B) := {

sect : B → A ;

retr : B → A ;

sect_eq : f ◦ sect == id : 𝒰@{se|_};

retr_eq : retr ◦ f == id : 𝒰@{se|_};

}.

Here == denotes pointwise equality on functions. It is important to note that this definition does
not require the two types, A and B, to reside in the same sort. This allows us, for instance, to
prove that unit@{Prop} is equivalent to unit@{Type}. However, it is generally not possible to prove
that unit@{s} is equivalent to unit@{s'} for arbitrary sorts s and s' because such a proof would
necessitate eliminating from s to s' (and vice-versa). This is reassuring because the equivalence
does not hold for the sort Exc of exceptional types [Pédrot et al. 2019], where unit@{Exc} includes
an additional inhabitant.
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As mentioned in the previous section, this notion of equivalence can be stated to prove associa-
tivity of dependent pairs in a sort-polymorphic manner. It can also be used to postulate univalence
in some specific sort, so that it can be used for Homotopy Type Theory-style proofs.

3.5 A General Setoid Rewriting Library

Coq features an infrastructure to facilitate rewriting by arbitrary equivalence relations, called setoid
rewriting. Depending on the specific application under consideration, users sometimes need to
rewrite with a relation defined in Type or in Prop. As explained in §2.1, the rewriting infrastructure
currently cannot be shared, which induces serious code duplication. We now describe how sort
polymorphism can be used to define a unique generic infrastructure. We start by introducing the
notion of a relation landing in a sort s' over a type in sort s, and then defining the various properties
these relations may satisfy (here we only show reflexivity). In the following, the Sort keyword
introduces and binds sorts s, s' inside the current Section, so that all subsequent definitions are
sort-polymorphic in s, s'.
Section Defs.

Sort s s'. Universe u v.

Definition relation (A : 𝒰@{s|u}) := A → A → 𝒰@{s'|v}.

Context {A : 𝒰@{s|u}}.

Class Reflexive (R : relation A) := reflexivity : forall x : A, R x x.

All structures of the setoid infrastructure are defined using typeclasses, introduced in Coq by
Sozeau and Oury [2008]. Typeclass resolution is then used to construct the witness that rewriting is
allowed on the considered goal, in the sense that it is of the form P awith a the term to be rewritten
and P a setoid morphism (i.e., a function that sends related points in its domain to related points in
its codomain).

The definition of a setoid morphism is done in two steps. First, we define the respectful relation
on functions with notation ++> and then introduce the notion of a proper morphism when it is
reflexive with respect to the relation:
Definition respectful@{sa sb sra srb|a b ra rb|} {A : 𝒰@{sa|a}} {B : 𝒰@{sb|b}}

(R : relation@{sa sra|a ra} A) (R' : relation@{sb srb|b rb} B)

: relation (A → B) := fun f g => forall x y, R x y → R' (f x) (g y).

Notation " R ++> R' " := (@respectful _ _ (R%signature) (R'%signature))

(right associativity, at level 55) : signature_scope.

Class Proper (R : relation@{s s'|u v} A) (m : A) := proper_prf : R m m.

Arguably, this definition is quite tricky to write and read. It quantifies over sorts of the domain (sa)
and codomain (sb) of the function, as well as sorts of the corresponding relations (sra and srb). For
genericity, it quantifies in the same way on universe levels. However, from a user point of view,
this complexity is hidden: it occurs in the generic definitions of the infrastructure, but does not
manifest in its use—except if it is used to prove sort-polymorphic lemmas, of course.

It is now possible to enrich the infrastructure with a generalized version of the original duplicated
infrastructures for Type and Prop. For instance, one can show that when R and R' are partial
equivalence relations (PERs) on A and B respectively, then the relation induced by respectful on
A → B is itself a PER:
Instance respectful_per@{sa sra sb srb | a ra b rb |}

{A} (R : relation@{sa sra | a ra} A) (pera : PER R)

{B} {R' : relation@{sb srb | b rb} B} (perb : PER R') : PER (R ++> R').
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Finally, with this notion of respectful morphism, setoid_rewrite and its other derived tactics
can be adapted to handle rewriting with relations at any sort.
To illustrate the additional genericity, let us consider an example in SProp. We define a notion

of set over an ambient type A as an inductive type with two constructors for the empty set and
the addition of one element of A to a set. Then we define in SProp the predicate In a s specifying
when an element a belongs to a set s, from which we derive the notion of sameness.
Inductive set : Type :=

| Empty : set

| Add : A → set → set.

Fixpoint In (a : A) (s : set) {struct s} : SProp :=

match s with

| Empty => empty

| Add b s' => {a = b} + {In a s'}

end.

Definition same (s t : set) : SProp := forall a : A, In a s ↔ In a t.

Note that here, all operations such as + or ↔ are sort polymorphic and automatically instantiated
to SProp by the elaboration phase of Coq that resolves implicit arguments, universe and sorts
instantiations before proper typechecking. One can prove that Add is a setoid morphism where the
relation on A is equality, and the relation on set is same.
Instance Add_ext : Proper (eq ++> same ++> same) Add.

Now suppose that we have an arbitrary predicate P over set that is respectful with respect to same.
Parameter P : set → SProp.

Parameter P_ext : forall s t : set, same s t → P s → P t.

Instance P_extt : Proper (same ++> iff) P.

The setoid_rewrite tactics can then be used to prove the following lemma.
Lemma test_rewrite (a : A) (s t : set) : same s t → P (Add a s) → P (Add a t).

Proof.

intros H pas. setoid_rewrite <- H. assumption.

Qed.

We have successfully ported all standard instances for setoid rewriting into a unique sort-
polymorphic development, requiring only a few specialized instances for morphisms that involve
propositional equality in Prop, which depends on singleton elimination. As illustrated in the above
example, users of the library do not need to provide specific annotations for the required sort
instances, as they can be inferred during elaboration. The OCaml side of the rewriting plugin,
which generates Proper constraints, has been significantly simplified by retaining only the existing
universe (level) polymorphic variant. The extension from universe level to sort polymorphism
within the plugin was entirely transparent, suggesting that other plugins should be similarly
straightforward to adapt.

4 Formal Presentation of SortPoly

We now turn to the definition of a general framework for sort polymorphism, of which the Coq
implementation is just an instance.
The system is parametrized over a judgement “𝑆 ground sort” describing which ground sorts

are available. We require a specified ground sort named Type used to give a type to universes.
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𝑠 sort ∈ Θ

Θ ⊢sort 𝑠
SortVal

𝑆 ground sort
Θ ⊢sort 𝑆

GroundSort
𝑙 level ∈ Θ

Θ ⊢level 𝑙
LevelVar

Θ ⊢level 0
ZeroLevel

Θ ⊢level 𝑙
Θ ⊢level 𝑙 + 1

SuccessorLevel
Θ ⊢level 𝑙 Θ ⊢level 𝑘

Θ ⊢level max 𝑙 𝑘
JoinLevel

Fig. 1. Prenex variable rules

⊢env ·
Empty

⊢env Σ Σ |Θ𝐷 | · ⊢ 𝑏 : 𝐴
⊢env Σ, (Θ𝐷 ⊢ 𝐷 := 𝑏 : 𝐴)

Definition

⊢env Σ Σ |Θ𝐼 ⊢ Γ𝑝 Σ |Θ𝐼 | Γ𝑝 ⊢ Γ𝑖
Θ𝐼 ⊢sort 𝑠 Θ𝐼 ⊢level 𝑙 [Σ |Θ𝐼 | Γ𝑝 ⊢ Γ𝑘 ]𝑘 [Σ |Θ𝐼 | Γ𝑝 , Γ𝑘 ⊢ ®𝚤𝑘 : Γ𝑖 ]𝑘

⊢env Σ, (Θ𝐼 ⊢ 𝐼 : Γ𝑝 param → Γ𝑖 ind → 𝒰𝑠
𝑙
where [𝐶𝑘 : Π( ®𝑝 : Γ𝑝 ) ( ®𝑥 : Γ𝑘 ). 𝐼 ®𝑝 (®𝚤𝑘 [ ®𝑝, ®𝑥])]𝑘 )

Inductive

Fig. 2. Environment typing rules

Because quantification over sort variables is prenex, a key distinction arises between the global
environment, which may include sort polymorphic constants and inductive definitions, and the
current term being type-checked within a context of sort variables. This term can become sort
polymorphic once it is transformed into a definition.

We are now equipped with the necessary structures to present our sort-polymorphic type system,
in. The typing judment Σ |Θ | Γ ⊢ 𝑡 : 𝑇 is parameterized by a global context Σ of sort polymorphic
definitions and inductive declarations, a sort and universe level context Θ defined as

Θ ::= · | Θ, (𝑠 sort) | Θ, (𝑙 level)
declaring the local sort and level variables, and a local variable context Γ. The auxilliary judgment
Θ ⊢sort 𝑠 (Fig. 1) ensures 𝑠 is a declared sort variable or a ground sort, whileΘ ⊢level 𝑢 ensures that the
universe level expression 𝑢 is well-formed. Well-formed universe level expressions include declared
level variables, the bottom level 0, successor 𝑙 +1 and least upper bounds of level expressions max 𝑙 𝑘 .
We rely on an abstract judgment Θ ⊢constraint 𝑙 =𝑠 𝑙 ′ to compare level expressions, depending on the
sort 𝑠 considered. If 𝑠 is a ground impredicative sort like SProp, the judgment should always hold,
otherwise we assume that it is derivable if and only if 𝑙 and 𝑙 ′ have equal interpretations as natural
numbers for all instantiations of their level variables.

Fig. 2 describes well-formedness of the global environment. When it contains a declaration Θ𝐷 ⊢
𝐷 := 𝑏 : 𝐴, it simply states that 𝑏 must have type𝐴 in the global environment before the addition of
the declaration, with sort and universe level context Θ𝐷 and no local variables (Rule Definition).
Similarly, when the environment contains an inductive declaration (Rule Inductive), the well-
formedness premises mean: (i) the context of parameters Γ𝑝 is well typed, (ii) the context of indices
Γ𝑖 is well-typed in the local context Γ𝑝 , (iii) the sort and level of the return type are declared and
the type of each constructor is valid. Note that technically, there is also a strict positivity condition
that we do not present as it is orthogonal to sort polymorphism, see e.g., [Sozeau et al. 2019] for
additional details.
The typing rules are presented in Fig. 3 in a declarative fashion using a typed definitional

equality judgment. They are a generalization of the presentation of pCUIC [Sozeau et al. 2020;
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Sozeau and Tabareau 2014], a standard dependent type theory. The core lambda-calculus rules for
variables, abstraction, application, and conversion, including beta and eta rules, are entirely standard.
Applications of global sort polymorphic definitions and inductives (rule Env) are annotated with
a sort and level instance ®𝑝 which must correctly instantiate the declared sort and universe level
context Θ𝐶 of the definition. To factorize the rule, we introduce the notation (Θ𝐶 ⊢ 𝐶 : 𝐴) ∈ Σ,
which indicates that𝐶 is either a definition, an inductive type former or a constructor of an inductive
type defined in Σ with type 𝐴. The universe introduction rule Univ for a well-formed sort 𝑠 and
level expression 𝑙 ensures that a universe 𝒰𝑠

𝑙
inhabits 𝒰Type

𝑙+1 , using the distinguished Type sort.
Definitional equality of universes Conv-Univ only applies when the two universes are in the same
sort and uses the abstract constraint derivation judgment. For conciseness, we omit the standard
congruence rules for each type and term constructor and the closure by reflexivity, symmetry and
transitivity of the definitional equality relation.

The dependent function type Π(𝑥 : 𝐴). 𝐵 on 𝐴 : 𝒰𝑠
𝑙
and 𝐵 : 𝒰𝑠′

𝑙 ′ , lives in the sort of its codomain
𝒰𝑠′

max 𝑙 𝑙 ′ but at level the least upper bound of 𝑙 and 𝑙 ′. Its conversion rule Conv-Forall is standard.

4.1 Inductive Types

Inductives exist at every sort: it is the “allowed elimination” rules that restrict how they may be
used instead. This allowed elimination judgement, which also parameterizes our theory, has shape

Σ |Θ ⊢ elimination of 𝐼 to 𝑠 allowed

where 𝐼 is the name of a valid inductive declaration in the environment Σ, and we require that this
allowed elimination judgment is stable by substitution of sort and level variables and that the rule
SameSortElim is admissible.

Θ ⊢sort 𝑠 (_ ⊢ 𝐼 : _ param → _ ind → 𝒰𝑠
_ where _) ∈ Σ

Σ |Θ ⊢ elimination of 𝐼 to 𝑠 allowed
SameSortElim

This rule lets us write simple sort polymorphic functions on inductives as long as we stay in the
same sort, using the rule Case. The rule Iota describes the reduction of pattern-matching, which is
not affected by the extension to sort polymorphism. Likewise, the fixpoint introduction rule Fix is
unaffected. Similarly to the strict positivity condition for inductive definition, we just mention here
that fixpoint introduction is guarded. This guard condition ensures morally that every recursive
call is done on a subterm. For simplicity here, we assume a simple guard condition that ensures
that every fixpoint can be encoded with an eliminator.6

4.2 Record Types

In contrast with inductive types, record types do not necessarily exist at every sort, since they
require their projections to be typeable, which would depend on how the specific sorts interact.
For example, in pCUIC, the one field record Box (A : Type) : SProp := box {unbox : A}} cannot
possibly have a projection, since one cannot eliminate SProp into Type. Another way to understand
this is that the conversion rules for Box B and unbox would force true ≡ false in B.

For this reason, we constrain the existence of record types using an additional parameter for our
theory, the judgement

Σ |Θ ⊢ record 𝑅 allowed

where 𝑅 is a record declaration. We also assume the following rule

6The guard condition implemented in the Coq proof assistant is slightly more general, but this is orthogonal to sort
polymorphism.
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⊢env Σ
Σ |Θ ⊢ ·

EmptyCtx
Σ |Θ ⊢ Γ Θ ⊢sort 𝑠 Θ ⊢level 𝑙 Σ |Θ | Γ ⊢ 𝐴 : 𝒰𝑠

𝑙

Σ |Θ ⊢ Γ, 𝑎 : 𝐴
ExtCtx

Σ |Θ ⊢ Γ (𝑥 : 𝑇 ) ∈ Γ

Σ |Θ | Γ ⊢ 𝑥 : 𝑇
Var

Σ |Θ ⊢ Γ (Θ𝐶 ⊢ 𝐶 : 𝐴) ∈ Σ Θ ⊢ ®𝑝 : Θ𝐶

Σ |Θ | Γ ⊢ 𝐶{®𝑝} : 𝐴[Θ𝐶 := ®𝑝]
Env

Σ |Θ ⊢ Γ Θ ⊢sort 𝑠
Θ ⊢level 𝑙 Θ ⊢level 𝑙

′ Θ ⊢constraint 𝑙 =𝑠 𝑙 ′

Σ |Θ | Γ ⊢ 𝒰𝑠
𝑙
: 𝒰Type

𝑙 ′+1

Univ

Σ |Θ | Γ ⊢ 𝐴 : 𝒰𝑠
𝑙

Σ |Θ | Γ, 𝑥 : 𝐴 ⊢ 𝐵 : 𝒰𝑠′

𝑙 ′

Σ |Θ | Γ ⊢ Π(𝑥 : 𝐴). 𝐵 : 𝒰𝑠′

max 𝑙 𝑙 ′

Forall

Σ |Θ | Γ ⊢ 𝑓 : Π(𝑥 : 𝐴).𝐵 Σ |Θ | Γ ⊢ 𝑡 : 𝐴
Σ |Θ | Γ ⊢ 𝑓 𝑡 : 𝐵 [𝑥 := 𝑡]

App
Σ |Θ | Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵

Σ |Θ | Γ ⊢ 𝜆(𝑥 : 𝐴). 𝑡 : Π(𝑥 : 𝐴). 𝐵
Lambda

(Θ𝐼 ⊢ 𝐼 : Γ𝑝 param → Γ𝑖 ind → 𝒰𝑠𝐼
𝑙𝐼

where [𝐶𝑘 : Π( ®𝑝 : Γ𝑝 )Γ𝑘 . 𝐼 ®𝑝 ®𝚤𝑘 ]𝑘 ) ∈ Σ

Σ |Θ ⊢ elimination of 𝐼 {®𝑢} to 𝑠 allowed Σ |Θ | Γ, (®𝚤 : Γ𝑖 [Γ𝑝 := ®𝑝]), (𝑥 : 𝐼 {®𝑢} ®𝑝 ®𝚤) ⊢ 𝑃 : 𝒰𝑠
𝑙

Σ |Θ | Γ ⊢ 𝑐 : 𝐼 {®𝑢} ®𝑝 ®𝚤
(
Σ |Θ | Γ, Γ𝑘 ⊢ 𝑏𝑘 : 𝑃 [Γ𝑖 := ®𝚤𝑘 , 𝑥 :=𝐶𝑘 ®𝑝 ®𝚤𝑘 ]

)
𝑘

Σ |Θ | Γ ⊢ case 𝑐 return 𝑃 with ®𝑏𝑘 : 𝑃 [Γ𝑖 := ®𝚤, 𝑥 := 𝑐]
Case

Σ |Θ | Γ ⊢ 𝑇 : 𝒰𝑠
𝑙

Σ |Θ | Γ, 𝑓 : 𝑇 ⊢ 𝑡 : 𝑇 𝑡 guarded
Σ |Θ | Γ ⊢ fix 𝑓 : 𝑇 := 𝑡 : 𝑇

Fix

Σ |Θ | Γ ⊢ 𝑡 : 𝐴
Σ |Θ | Γ ⊢ 𝐴 ≡ 𝐵 : 𝒰𝑠

𝑙

Σ |Θ | Γ ⊢ 𝑡 : 𝐵
Conv

Σ |Θ ⊢ Γ Θ ⊢sort 𝑠
Θ ⊢level 𝑙 Θ ⊢level 𝑙

′ Θ ⊢constraint 𝑙 =𝑠 𝑙 ′

Σ |Θ | Γ ⊢ 𝒰𝑠
𝑙
≡ 𝒰𝑠

𝑙 ′ : 𝒰
Type
𝑙+1

Conv-Univ

Σ |Θ | Γ ⊢ 𝐴 ≡ 𝐴′ : 𝒰𝑠
𝑙

Σ |Θ | Γ, 𝑥 : 𝐴 ⊢ 𝐵 ≡ 𝐵′ : 𝒰𝑠′

𝑙 ′

Σ |Θ | Γ ⊢ Π(𝑥 : 𝐴).𝐵 ≡ Π(𝑥 : 𝐴′).𝐵′ : 𝒰𝑠′

max 𝑙 𝑙 ′

Conv-Forall

Σ |Θ | Γ, 𝑥 : 𝐴 ⊢ 𝑡 : 𝐵 Σ |Θ | Γ ⊢ 𝑎 : 𝐴
Σ |Θ | Γ ⊢ (𝜆(𝑥 : 𝐴). 𝑡) 𝑎 ≡ 𝑡 [𝑥 := 𝑎] : 𝐵 [𝑥 := 𝑎]

Beta

Σ |Θ | Γ ⊢ 𝑓 : Π(𝑥 : 𝐴). 𝐵
Σ |Θ | Γ ⊢ 𝜆(𝑥 : 𝐴). 𝑓 𝑥 ≡ 𝑓 : Π(𝑥 : 𝐴). 𝐵

Eta

(Θ𝐼 ⊢ 𝐼 : Γ𝑝 param → Γ𝑖 ind → 𝒰𝑠𝐼
𝑙𝐼

where [𝐶𝑘 : Π( ®𝑝 : Γ𝑝 )Γ𝑘 . 𝐼 ®𝑝 ®𝚤𝑘 ]𝑘 ) ∈ Σ

Σ |Θ | Γ ⊢ ®𝑝 : Γ𝑝 [Θ𝐼 := ®𝑢] Σ |Θ | Γ ⊢ ®𝚤 : Γ𝑖 [Θ𝐼 := ®𝑢, Γ𝑝 := ®𝑝]
Σ |Θ ⊢ elimination of 𝐼 {®𝑢} to 𝑠 allowed Σ |Θ | Γ, (®𝚤 : Γ𝑖 [Γ𝑝 := ®𝑝]), (𝑥 : 𝐼 {®𝑢} ®𝑝 ®𝚤) ⊢ 𝑃 : 𝒰𝑠

𝑙(
Σ |Θ | Γ, Γ𝑘 ⊢ 𝑏𝑘 : 𝑃 [Γ𝑖 := ®𝚤𝑘 , 𝑥 :=𝐶𝑘 {®𝑢} ®𝑝 ®𝚤𝑘 ]

)
𝑘

Σ |Θ | Γ ⊢ case𝐶 𝑗 {®𝑢} ®𝑝 ®𝑎 return 𝑃 with ®𝑏𝑘 ≡ 𝑏 𝑗 [Γ𝑗 := ®𝑎] : 𝑃 [Γ𝑖 := ®𝚤, 𝑥 := 𝑐]
Iota

Fig. 3. Typing rules for SortPoly (congruence rules for term formers omitted)
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Σ |Θ | Γ ⊢ U𝑠
𝑙
: 𝒰𝑠

𝑙+1
Univ

Σ |Θ | Γ ⊢ 𝐴 : 𝒰𝑠
𝑙

Σ |Θ | Γ ⊢ ⌜𝐴⌝ : U𝑠
𝑙

Code
Σ |Θ | Γ ⊢ 𝑎 : U𝑠

𝑙

Σ |Θ | Γ ⊢ El𝑎 : 𝒰𝑠
𝑙

El

Σ |Θ | Γ ⊢ 𝐴 : 𝒰𝑠
𝑙

Σ |Θ | Γ ⊢ El ⌜𝐴⌝ ≡ 𝐴 : 𝒰𝑠
𝑙

ElCode
Σ |Θ | Γ ⊢ 𝑎 : U𝑠

𝑙

Σ |Θ | Γ ⊢ ⌜El𝑎⌝ ≡ 𝑎 : U𝑠
𝑙

CodeEl

Fig. 4. Internal universes presented à la Coquand

Θ ⊢sort 𝑠 Σ |Θ | −−−−→𝑓𝑖 : 𝑇𝑖 𝑖<𝑘 ⊢ 𝑇𝑘 : 𝒰𝑠
𝑢𝑘
(∀1 ≤ 𝑘 ≤ 𝑛) 𝑛 > 0

Σ |Θ ⊢ record 𝑅 : 𝒰𝑠
_ :=mkR {−−−−→𝑓𝑘 : 𝑇𝑘 } allowed

SameSortRecord

This allows the introduction of non-empty sort polymorphic records where all projections live
in the same sort as the record itself.

5 Internal Universes and Large Elimination

In SortPoly, a sort 𝑠 only has universes 𝒰𝑠
𝑙
in the sort Type. This design is motivated by the concrete

instances SortPoly ought to generalize: already in CIC, the sorts of propositions Prop and SProp do
not feature a universe at the same sort. As a concrete consequence of this peculiarity, the theory at
each sort 𝑠 does not extend MLTT, since it is lacking a type universe at the same sort, in particular
not all sorts support large elimination [Werner 1994], meaning the ability to define (large) types by
case analysis on an inductive type.

Without a universe at hand, some basic facts that one might take for granted in type theory are
actually not provable, a simple example being ¬(true = false). To see why this statement cannot be
proven in general, consider its instance at SProp. In that setting, true and false are convertible by
definitional irrelevance and in particular propositionally equal as already explained in §3.1. In fact,
we cannot expect a non-trivial universeUSProp : SProp at SPropwithout compromising consistency,
as otherwise ⊤ ≡ ⊥ : USProp as elements of this definitionally proof-irrelevant universe.
Some specific sorts 𝑠 can however be equipped with the structure of an internal universe that

allows to reproduce the definition of anyMLTT term at sort 𝑠 . Fig. 4 describes the required data for
a universe at level 𝑙 for a sort 𝑠 . Following Gratzer et al. [2021], this presentation of universes à la
Coquand consists of a type U𝑠

𝑙
at sort 𝑠 and level 𝑙 + 1 (Univ) equipped with a decoding family El

(El) and a coding function ⌜−⌝ (Code) that form a definitional isomorphism (CodeEl, ElCode).
Fixing a sort 𝑠 and assuming an internal universeU𝑠

𝑙
, the elimination rule for inductive types Same-

SortElim stipulates in that case that inductives in 𝑠 enjoy large elimination. Using these ingredients
we can prove ¬(true ≡ false) internally to the sort 𝑠 .

Lemma 5.1 (No confusion from internal universes). Let 𝑠 be a sort that admits a universe

with large elimination (Fig. 4), then true =B𝑠 false → ⊥𝑠
holds.

Proof. By induction on true =B𝑠 false with the motive
𝑃 (𝑏 : B𝑠 ) := El

(
case𝑏 returnU𝑠

𝑙
with true =⇒ ⌜⊤⌝ | false =⇒ ⌜⊥⌝

)
it is enough to inhabit El 𝑃 true ≡ El ⌜⊤⌝ ≡ ⊤ since El ⌜𝑃 false⌝ ≡ ⊥𝑠 . The elimination on B𝑠 in
the definition of 𝑃 is valid since U𝑠

𝑙
: 𝒰𝑠

𝑙+1 and similarly for the induction on the equality. □

More generally, internal universes turn out to be the main missing element to see a sort 𝑠 as an
extension of MLTT.
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Environment monomorphization

mG (Θ𝐷 ⊢ 𝐷 := 𝑏 : 𝐴) ≜ [ℒ(Θ𝐶 ) ⊢ 𝐶®𝑠 :=mG (𝑏 [Θ𝐷 := ®𝑠]) : mG (𝐴[Θ𝐷 := ®𝑠])]®𝑠 :secsort (Θ𝐶 ,G)

mG

(
Θ𝐼 ⊢ 𝐼 : Γ𝑝 param → Γ𝑖 ind → 𝒰𝑠

𝑙

where [𝐶𝑘 : Π( ®𝑝 : Γ𝑝 ) ( ®𝑥 : Γ𝑘 ) . 𝐼 ®𝑝 (®𝚤𝑘 [ ®𝑝, ®𝑥])]𝑘

)
≜[

ℒ(Θ𝐼 ) ⊢ 𝐼®𝑠 : mG
(
Γ𝑝 [Θ𝐼 := ®𝑠]

)
param → mG (Γ𝑖 [Θ𝐼 := ®𝑠]) ind → 𝒰𝑠 [Θ𝐼 :=®𝑠 ]

𝑙
where

[(𝐶𝑘 )®𝑠 : Π( ®𝑝 : mG
(
Γ𝑝 [Θ𝐼 := ®𝑠]

)
) ( ®𝑥 : mG (Γ𝑘 [Θ𝐼 := ®𝑠])) . 𝐼®𝑠 ®𝑝 (mG (®𝚤𝑘 [Θ𝐼 := ®𝑠]) [ ®𝑝, ®𝑥])]𝑘

]
®𝑠 :secsort (Θ𝐼 ,G)

Term monomorphization

mG
(
𝐶{®𝑝}

)
≜ 𝐶®𝑠 {®𝑢} where ®𝑠 and ®𝑢 are resp. the sort and universe instances of ®𝑝

mG (𝑡) simply traverses the term 𝑡 otherwise

Fig. 5. The monomorphization process

Theorem 5.2 (Elaboration from MLTT). Let 𝑠 be a sort that admits a universe with large

elimination (Fig. 4), then any term of MLTT can be embedded into a term using the sort 𝑠 only .

Proof. All judgments Γ ⊢ 𝒥 of MLTT can be relativized to the sort 𝑠 , e.g., Γ ⊢ 𝐴 type𝑙 is
translated to Γ ⊢ 𝐴 : 𝒰𝑠

𝑙
and all types in context belong to sort 𝑠 . All the rules of MLTT remain

valid once relativized: the formation, introduction, elimination and equational rules for Π types
and inductive types in SortPoly work exactly as inMLTT when restricted to a single sort thanks
to §4.1. Universes □𝑙 in MLTT are interpreted using the assumed internal universe U𝑠

𝑙
. □

Large elimination in practice. In Coq, where the definitional equalities of Fig. 4 cannot be ex-
pressed internally, internal universes are approximated with an instance of the following typeclass:
Class LargeElimSort@{s|l|} :=

{ Univ : 𝒰@{s|l+1} ; code : 𝒰@{s|l} → Univ ; El : Univ → 𝒰@{s|l} ;

El_code A : El (code A) = A :> 𝒰@{s|l} ; code_El a : code (El a) = a :> Univ }.

Generic lemmas such as Lemma 5.1 can be proved once and for all assuming an instance.
Lemma neq_true_false@{s|u|} {H:LargeElimSort@{s|u}} : true@{s|} = false → empty@{s|}.

Technically, using a typeclass replaces the definitional isomorphism of Fig. 4 with a propositional
one. Although this can cause higher-coherence complications, the fundamental result of Hofmann
[1995] which has later been formalized by Winterhalter et al. [2019] ensures that all uses of
definitional equalities can be replaced by propositional ones (in presence of function extensionality
and UIP).

6 Monomorphization of SortPoly

In this section, we validate SortPoly by establishing two essential properties. First, we show that the
sort-monomorphic subset of the system aligns with the standard presentation, thereby maintaining
consistency with the typical type theory without sort polymorphism. For this comparison, we
refer to the universe level polymorphic pCUIC type theory defined by Sozeau and Tabareau [2014].
Second, we demonstrate that any term in our sort-polymorphic extension that does not contain
sort variables can also be defined directly without sort polymorphism, ensuring that while sort
polymorphism provides greater modularity, it does not extend the logical power of the type theory.
A key component in establishing this property is defining a monomorphization of the global context,
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which calculates all possible instantiations of sort-polymorphic definitions and inductive types
present in the global context.
In this section, we require that Prop is a ground sort, and that the allowed eliminations out of

an inductive in Prop coincide with that of pCUIC, i.e., Σ |Θ ⊢ elimination of 𝐼 to 𝑠 allowed for an
inductive 𝐼 with 𝑠𝐼 = Prop should be derivable exactly when 𝑠 = Type and 𝐼 verifies the singleton
elimination rule, or 𝑠 = Prop. In that case, the syntax of pCUIC embeds naturally into that of
SortPoly, along with its inference rules. Our first property consists in characterizing the image of
this embedding as the sort-monomorphic fragment of SortPoly.

Theorem 6.1 (Embedding of pCUIC). A judgment Σ |Θ | Γ ⊢ 𝑡 : 𝐴 where no sort variables appear

in Θ or in constants of Σ is in the image of the pCUIC embedding.

Proof sketch - see Theorem A.5. The proof proceeds first by induction on the environment Σ
and then on the typing derivation 𝑡 , exploiting the fact that each inference rule of SortPoly that
does not use a sort variable has an exact counterpart in pCUIC, thanks to the induction hypothesis
on the environment for components in Σ. □

We now turn to conservativity over the sort-monomorphic type theory. Because we use prenex
polymorphism, one simple technique at our disposal is that of monomorphization: any defined
polymorphic constant can simply be reduced to its set of possible instantiations; in particular, any
SortPoly definition 𝑡 induces a family of definitions in pCUIC for any fixed set of ground sorts G
containing those appearing in 𝑡 .
Let us introduce some notation first: for a context of prenex variables Θ, ℒ(Θ) is the same

context with sort variables removed. We write secsort (Θ,G) for the substitutions ®𝑝 from ℒ(Θ) to Θ
instantiating sort variables in Θ with ground sorts in G, leaving universe variables unchanged.

Suppose we have a typing judgment Σ |Θ | Γ ⊢ 𝑡 : 𝐴 without any sort variables of Θ occurring in
𝑡 and𝐴 and letG be the finite set of all the ground sorts appearing in Σ, Γ and 𝑡 . The monomorphiza-
tion operationmG (−) is defined inductively on environments and terms without any sort variables
using the clauses of Fig. 5. Monomorphization just traverses all term formers but constants coming
from the environment. For constant and inductive definitions, monomorphization duplicates the
definition for all possible ground instantiations of the sort variables in the environment. For an
application of a global sort polymorphic definition 𝐶{®𝑝}, the monomorphization process replaces
it with the corresponding duplicated ground definition.
Because all our rules are trivially substitutive with respect to prenex variable substitution, we

get the following theorem:

Theorem 6.2 (Monomorphization). For any term Σ |Θ | Γ ⊢ 𝑡 : 𝐴 with no sorts in Θ, so that
Θ = ℒ(Θ), we get a well-typed term, mG (Σ) |ℒ(Θ) |mG (Γ) ⊢ mG (𝑡) : mG (𝐴).

Proof sketch - see Theorem A.10. The proof proceeds by induction on the environment Σ to
show that monomorphization produces a well-formed environment containing all possible ground
instantiations of components of Σ. Then, a mutual induction on the well-formed contexts, terms and
conversion judgements is used to show that monomorphized terms are well typed. One of the key
induction cases Env relies on the aforementioned exhaustivity property of the environment. □

This property is quite strong: along with the embedding theorem, it constrains the logical power
of SortPoly, and lets us state the following corollary.

Corollary 6.3 (Eqi-consistency). If pCUIC is consistent, there does not exist a well-typed term

Σ |Θ | · ⊢ 𝑡 : ⊥𝑠

for 𝑠 ∈ Θ or 𝑠 = Type, with (𝑠 sort ⊢ ⊥ : 𝒰𝑠
0 where ·) ∈ Σ.
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[
𝒰𝑠
𝑙

]
𝜀
≜ 𝜆(𝐴0 : 𝒰𝑠0

𝑙
) (𝐴1 : 𝒰𝑠1

𝑙
). 𝐴0 → 𝐴1 → 𝒰𝑠𝜀

𝑙
for 𝑠 variable[

𝒰𝑆
𝑙

]
𝜀
≜ 𝜆(𝐴0 : 𝒰𝑆

𝑙
) (𝐴1 : 𝒰𝑆

𝑙
). 𝐴0 → 𝐴1 → 𝒰𝑆

𝑙
for 𝑆 ground

[Π(𝑥 : 𝐴) . 𝐵]𝜀 ≜ 𝜆(𝑓0 : [Π𝑥 : 𝐴. 𝐵]0) (𝑓1 : [Π𝑥 : 𝐴. 𝐵]1) .
Π(𝑥0 : [𝐴]0) (𝑥1 : [𝐴]1) (𝑥𝜀 : [𝐴]𝜀 𝑥0 𝑥1). [𝐵]𝜀 (𝑓0 𝑥0) (𝑓1 𝑥1)

[𝑥]𝜀 ≜ 𝑥𝜀

[𝜆𝑥 : 𝐴. 𝑡]𝜀 ≜ 𝜆(𝑥0 : [𝐴]0) (𝑥1 : [𝐴]1) (𝑥𝜀 : [𝐴]𝜀 𝑥0 𝑥1) . [𝑡]𝜀
[𝑡 𝑢]𝜀 ≜ [𝑡]𝜀 [𝑢]0 [𝑢]1 [𝑢]𝜀

[·]𝜀 ≜ ·
[Γ, 𝑥 : 𝐴]𝜀 ≜ [Γ]𝜀 , 𝑥0 : [𝐴]0 , 𝑥1 : [𝐴]1 , 𝑥𝜀 : [𝐴]𝜀 𝑥0 𝑥1

[·]𝜀 ≜ ·
[Θ, 𝑠 sort]𝜀 ≜ [Θ]𝜀 , 𝑠0 sort, 𝑠1 sort, 𝑠𝜀 sort
[Θ, 𝑙 level]𝜀 ≜ [Θ]𝜀 , 𝑙 level

Fig. 6. Parametricity translation for SortPoly (excerpt)

Proof. Suppose there exists such a term 𝑡 . First substitute all variable sorts in Θ with Type in 𝑡 .
Then, by monomorphization, we get a term mG (Σ) |ℒ(Θ) | · ⊢ mG (𝑡) : ⊥Type. By the embedding
property (Theorem 6.1), this gives us a proof of ⊥Type in pCUIC, which contradicts the hypothesis
that pCUIC is consistent. □

Application to extraction. Aside from its meta-theoretical interest, monomorphization allows
reusing mechanisms that exist for pCUIC terms by preprocessing terms through monomorphization.
A significant application is to define extraction of sort-polymorphic code by first monomorphizing
the global context and the term to be extracted, and then applying the extraction process, such
as the verified extraction mechanism described by Forster et al. [2024]. It is worth noting that
monomorphization can introduce an exponential increase in the size of the global context, which
might appear problematic for practical extraction. However, this is mitigated by an initial pruning
phase in the extraction process that removes all unused definitions from the global environment.
As a result, the size of the extracted code using sort-polymorphic definitions is equivalent to the
size of code extracted from sibling definitions that use directly duplicated ground definitions.

7 Parametricity for SortPoly

Parametricity is a well-known model construction that can be applied to dependent type theories
such as CIC. It allows making explicit hidden invariants of the theory, e.g., the fact that terms
cannot computationally discriminate types. In this section, we present a parametricity translation
of the SortPoly system that highlights the fact that prenex sort quantifications are parametric, i.e.,
the system does not allow non-uniform behavior for objects quantified over a sort.

7.1 Parametricity Translation

We define here the binary parametricity translation for SortPoly, based on the work of Bernardy
et al. [2012] and Keller and Lasson [2012]. This syntactic model, in the sense of Boulier et al. [2017],
is actually made of three translations [−]0, [−]1 and [−]𝜀 . We only describe [−]𝜀 for the negative
fragment of the theory in Figure 6. This construction is standard, except for the handling of sort
polymorphism, so we only gloss over the details that are unchanged w.r.t. the usual parametricity

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 76. Publication date: January 2025.



All Your Base Are Belong to 𝒰𝑠 76:19

Inductive B𝜀@{s0 s1 s𝜀| |} : B@{s0|} → B@{s1|} → 𝒰@{s𝜀|Set} :=

| true𝜀 : B𝜀 true true

| false𝜀 : B𝜀 false false.

Inductive eq𝜀@{s0 s1 s𝜀 s'0 s'1 s'𝜀|l|}

(A0 : 𝒰@{s0|l}) (A1 : 𝒰@{s1|l}) (A𝜀 : A0 → A1 → 𝒰@{s𝜀|l})

(x0 : A0) (x1 : A1) (x𝜀 : A𝜀 x0 x1) :

forall (y0 : A0) (y1 : A1) (y𝜀 : A𝜀 y0 y1),

eq@{s0 s'0|} A0 x0 y0 → eq@{s1 s'1|} A1 x1 y1 → 𝒰@{s'𝜀|l} :=

| eq_refl𝜀 : eq𝜀 A0 A1 A𝜀 x0 x1 x𝜀 x0 x1 x𝜀 (eq_refl A0 x0) (eq_refl A1 x1)

Fig. 7. Parametricity translation for two representative inductive types

model. The two translations [−]0 and [−]1 are essentially the identity, except on both term and

sort variables, which are replaced by the correspondingly annotated variables. We insist on the
novel contribution here being the translation of sort variables, which, in most type theories, is
completely absent as there are only ground universes and thus no sort variables.
The [−]𝜀 translation naturally extends to environments Σ and sort contexts Θ. Constants are

translated to themselves by the [−]𝑖 translations, and the [−]𝜀 translation of a constant 𝐶 is the
constant 𝐶𝜀 bound to the corresponding translation of the underlying body. The sort instances
must also be translated in the process, following the same pattern as for terms. Translating a sort
context triplicates all sort variables 𝑠 into three sort variables 𝑠0, 𝑠1 and 𝑠𝜀 . We abuse notations and
liberally apply [·]𝜀 to sorts, sort instances and sort contexts.
Translating inductive types works the same as usual, up to sorts. Namely, an inductive type is

translated to itself through the [−]𝑖 translations, with the sort instances translated pointwise. The
[−]𝜀 translation of an inductive type 𝐼 is another inductive type 𝐼𝜀 of the same shape, except that
it relates constructors pointwise. Once again, the major difference with the usual setting is that
sort variables are now triplicated in 𝐼𝜀 . We give two representative examples in Fig. 7. Inductive
constructors are handled like constants, i.e., their sort instance is triplicated pointwise. Case analysis
follows the same pattern, i.e., it is the same translation as the usual binary parametricity up to sort
triplication. Finally, primitive records are similarly translated in the expected way.

Theorem 7.1 (Soundness). If Σ |Θ | Γ ⊢ 𝑡 : 𝐴 then

• [Σ]𝜀 | [Θ]𝜀 | [Γ]𝜀 ⊢ [𝑡]𝑖 : [𝐴]𝑖 (for 𝑖 ∈ {0, 1})
• [Σ]𝜀 | [Θ]𝜀 | [Γ]𝜀 ⊢ [𝑡]𝜀 : [𝐴]𝜀 [𝑡]0 [𝑡]1.

Proof. The soundness theorem is proven by induction on the typing derivation. The proof is
standard and similar to the sort-monomorphic case. The projection translations are somewhat
trivial, only involving weakenings, so we focus on the [·]𝜀 translation. Furthermore, we only sketch
below the cases where a non-trivial manipulation of sort variables happens.

For the sort case, let us assume Σ |Θ | Γ ⊢ 𝒰𝑠
𝑙
: 𝒰Type

𝑙 ′+1 with 𝑙 =𝑠 𝑙 ′. This means that we must have
a kind of fixpoint property, as the translation should give:

[Σ]𝜀 | [Θ]𝜀 | [Γ]𝜀 ⊢
[
𝒰𝑠
𝑙

]
𝜀
:
[
𝒰Type
𝑙 ′+1

]
𝜀
𝒰𝑠0
𝑙

𝒰𝑠1
𝑙
.

This property holds because 𝒰𝑠0
𝑙

: 𝒰Type
𝑙 ′+1 and 𝒰𝑠1

𝑙
: 𝒰Type

𝑙 ′+1 since 𝑙 =𝑠 𝑙 ′, hence

𝜆(𝐴0 : 𝒰𝑠0
𝑙
) (𝐴1 : 𝒰𝑠1

𝑙
). 𝐴0 → 𝐴1 → 𝒰𝑠𝜀

𝑙
: 𝒰𝑠0

𝑙
→ 𝒰𝑠1

𝑙
→ 𝒰Type

𝑙 ′+1 .
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For the constant case, let us assume Σ |Θ | Γ ⊢ 𝐶{®𝑝} : 𝐴{Θ𝐶 := ®𝑝}. By definition of [Σ]𝜀 , we get

[Σ]𝜀 | [Θ]𝜀 | [Γ]𝜀 ⊢ 𝐶𝜀 {®𝑝} : [𝐴]𝜀 {Θ𝐶 :=
[
®𝑝
]
𝜀
}.

For the pattern-matching case, the proof is the usual one, except that we must additionally check
that elimination is still allowed for the translated sorts. Since both the return sort of the inductive
and the sort of the return type of the pattern-matching only depend on the [·]𝜀 component, this is
indeed the case. □

7.2 Use Case: Detecting Pure Functions in an Exceptional World

Standard parametricity is commonly employed to demonstrate that type-polymorphic functions
cannot utilise their polymorphic arguments in a specific manner. A classic example is a function
of type ∀𝛼, 𝛼 → 𝛼 , where parametricity ensures that such a function must be equivalent to the
identity function.
Parametricity for sort polymorphism has a distinct flavor. It ensures that sort-polymorphic

functions cannot exploit their polymorphic universes in a specific way. For example, in the case
of the exceptional sort Exc (§ 8.4), parametricity guarantees that a sort-polymorphic function
instantiated at Exc is pure—in the sense that it maps non-exceptional values to non-exceptional
values.

Let us illustrate this concept with an example using natural numbers. An inhabitant of N𝜀@{s0 s

1 s𝜀} n0 n1 can be understood as a proof that the integers n0 and n1 essentially represent the same
integer, up to the sort they live in. Under this interpretation, we can make use of the parametricity
translation to demonstrate that sort-polymorphic expressions cannot computationally depend
on their sort parameters. For instance, consider Θ := 𝑠 sort and a sort-polymorphic polynomial
expression 𝑃 , such as fun n => 15 + n^2 + 3 * n^5, of type:

·,N |Θ | · ⊢ 𝑃 : N{𝑠} → N{𝑠}.

According to parametricity soundness (Theorem 7.1), we obtain a sort-polymorphic proof:

[·,N]𝜀 | [Θ]𝜀 | · ⊢ [𝑓 ]𝜀 : Π(𝑛0 : N{𝑠0}) (𝑛1 : N{𝑠1}) (𝑛𝜀 : N𝜀 {𝑠0, 𝑠1, 𝑠𝜀 } 𝑛0 𝑛1).
N𝜀 {𝑠0, 𝑠1, 𝑠𝜀 } (𝑃{𝑠0} 𝑛0) (𝑃{𝑠1} 𝑛1)

By instantiating [𝑃]𝜀 with 𝑠0 = Type, 𝑠1 = Exc and 𝑠𝜀 = Type, we deduce that 𝑃{Exc} is pure. This
conclusion arises because being related to a Type-integer is equivalent to being pure.

8 Instances of SortPoly

The SortPoly system can be instantiated with many different ground sorts; in this section we briefly
present several key examples.

8.1 SimpleMLTT with Predicative SProp

As a first example, we can simply instantiate SortPoly with two ground sorts Type and SProp, and
add the following rule SProp to the theory:

Σ |Θ | Γ ⊢ 𝐴 : 𝒰SProp
𝑙

Σ |Θ | Γ ⊢ 𝑎 : 𝐴 Σ |Θ | Γ ⊢ 𝑏 : 𝐴
Σ |Θ | Γ ⊢ 𝑎 ≡ 𝑏 : 𝐴

SProp

We expect this type theory to enjoy the same important meta-theoretical properties of MLTT.

Conjecture 8.1. The type-checking problem for SortPoly MLTT is decidable.
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The proposed proof method to establish this conjecture builds upon the standard logical relations
argument traditionally used to prove normalization inMLTT, as well as the decidability of type-
checking through a bidirectional algorithm, such as the one mechanized by Adjedj et al. [2024];
Pujet and Tabareau [2022]. The key distinction here is the inclusion of prenex quantification over
sort variables. However, since prenex quantification represents a restricted form of polymorphism,
constants always appear directly with the specific instances of their sort variables. To address
this, we only need to provide a logical relations interpretation for all possible instantiations of
sort-polymorphic types. For ground sorts, this follows the usual construction. For sort variables,
the interpretation aligns with that of Type. Additionally, a sort substitution operation is required
to adapt the logical relation predicate of a type at a sort 𝑠 to its corresponding predicates at all
ground sorts. This is necessary to interpret the Env rule. In the type theory under consideration,
this substitution operation is straightforward: it acts as the identity when the ground sort is Type
and as a projection that removes some data in the case of SProp.

8.2 Sort-Polymorphic pCUIC
The pCUIC type theory of Sozeau and Tabareau [2014] can be extended to an instance of SortPoly
with ground sorts Type and Prop. A couple of ingredients are needed: first, a subtyping relation
≤𝑐 accounting for cumulativity in pCUIC, with 𝒰Type

𝑢 ≤𝑐 𝒰Type
𝑣 iff 𝑢 ≤ 𝑣 . Then, we also need to

take care of Prop, more specifically impredicativity and the singleton elimination rule. For the
former, we add the conversion rule that 𝒰Prop

𝑙
≡ 𝒰Prop

𝑙 ′ : 𝒰Type
𝑙+1 for all 𝑙, 𝑙 ′ by adding a new universe

constraint Θ ⊢constraint 𝑙 =Prop 𝑙
′ which is the used by the rule Conv-Univ. We also add a rule for

allowed eliminations that permits inductives in Prop to be eliminated in Type if they follow the
singleton elimination principle. Thus, the universe Prop of pCUIC can now be represented by 𝒰Prop

0 .
Sort-polymorphic pCUIC can also be extended to contain SProp, like in the type theory of Gilbert

et al. [2019], by adding an extra impredicative ground sort with the definitional irrelevance rule
SProp, and an extra allowed elimination rule for empty inductive types in SProp.

Sort-polymorphic pCUIC with SProp has been implemented in Coq since version 8.19, and was
used to mechanize the examples of this paper.

Record types in Coq. InCoq parlance, records denote non-recursive, single-constructor inductives,
among which only some can have primitive projections giving them a definitional eta-rule. In
Coq, conversion has historically been untyped, preventing some records from having primitive
projections, although it is not a theoretical limit of the type theory. The most significant example is
the empty record, i.e., the unit type: it is not the case in Coq that two variables of the unit type are
definitionally equal. The reason behind this deficiency is that, when encountering a conversion
problem 𝑎 ≡ 𝑏 between two neutrals of a record type, Coq has to give an answer without any
type information. In the current implementation, Coq simply returns whether the two terms are
syntactically equal. For record types with at least one non-definitionally irrelevant field, this is
compatible with having an eta rule, since their eta-expansions could not be convertible if they are
not syntactically equal anyways. This breaks down once all fields are definitionally irrelevant (in
particular if there are no fields): the eta-expansions could become equal. Because of this, Coq’s
conversion algorithm is incompatible with the latter record types having primitive projections.

Sort polymorphism introduces additional subtleties into the primitive projections rules, because
one now has to check first whether the projections would follow the allowed eliminations rules
(for example a record in SProp cannot project one of its Type fields, as it has been squashed), and
second whether any possible instance of sort variables would lead to a situation described above.
To illustrate, consider a Σ-type with output sort 𝐶 , with components resp. of sorts 𝐴 and 𝐵:
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Σ |Θ | Γ ⊢ 𝐴 : 𝒰Exc
𝑙

Σ |Θ | 𝑒 ⊢ E :
Σ |Θ | Γ ⊢ raise 𝑒 : 𝐴

Raise

(Θ ⊢ 𝐼 : Γ𝑝 param → Γ𝑖 ind → 𝒰Exc
𝑢𝐼

where [𝐶𝑘 : Π( ®𝑝 : Γ𝑝 )Γ𝑘 , 𝐼 ®𝑝 ®𝚤𝑘 ]𝑘 ) ∈ Σ
Σ |Θ | Γ ⊢ 𝑐 : 𝐼 ®𝑝 ®𝚤 Σ |Θ | Γ, (®𝚤 : Γ𝑖 ), (𝑥 : 𝐼 ®𝑝 ®𝚤) ⊢ 𝑃 : 𝒰𝑠

𝑙

Σ |Θ | Γ, Γ𝑘 ⊢ 𝑏𝑘 : 𝑃 [Γ𝑖 := ®𝚤𝑘 , 𝑥 :=𝐶𝑘 ®𝑝 ®𝚤𝑘 ]𝑘 Σ |Θ | Γ, 𝑒 : E ⊢ 𝑏err : 𝑃 [Γ𝑖 := ®𝚤, 𝑥 := raise 𝑒]

Σ |Θ | Γ ⊢ trymatch 𝑐 return 𝑃 with ®𝑏𝑘 catch𝑏err : 𝑃 [Γ𝑖 := ®𝚤, 𝑥 := 𝑐]
Catch

Fig. 8. Exceptional type theory rules

𝐴 𝐵 𝐶 Primitive projections allowed?
SProp SProp Type no
Type SProp Type yes
𝑞 𝑞′ 𝑞′′ no
𝑞 𝑞 𝑞 yes

The criterion employed is the following: (i) When the record inhabits Type, it can have primitive
projections if and only if at least one of its field is relevant (e.g., in Type or SProp); (ii) When the
record inhabits a sort variable 𝑞, it can have primitive projections if and only if all of its fields also
inhabit the same sort 𝑞.

8.3 Lean

A Lean-like type theory proves to be a simpler instance of SortPoly than pCUIC, mostly because it
lacks the more complex features of pCUIC like cumulativity. Take for ground sorts Prop and Type,
with Prop definitionally proof irrelevant with a variation of rule SProp, and impredicative with the
following variation of Voevodsky’s propositional resizing axiom [Univalent Foundations Program
2013]:

Σ |Θ | Γ ⊢ 𝐴 : 𝒰Prop
𝑙

Σ |Θ | Γ ⊢ 𝐴 : 𝒰Prop
𝑙 ′

Resizing

One important difference with Coq though is that Lean does not have the case construct, and
instead relies on a translation of fixpoints to eliminators, which are primitive. While the generation
of eliminators is not the concern of this paper, we can comment on which eliminators can be
expected to exist in general: for a generic inductive type that is created in a variable sort 𝑠 , we can
expect eliminators from 𝑠 to 𝑠 , or Type to 𝑠 for general 𝑠 , and Prop to Type if the inductive satisfies
singleton elimination, i.e., following exactly the “allowed elimination” rule for this theory.

8.4 Exceptional Type Theory

Exceptional type theory (ExTT) [Pédrot and Tabareau 2018] introduces the ability to raise and catch
exceptions to standard CIC. To support consistent reasoning about exceptional terms, Pédrot et al.
[2019] further proposed a multi-sorted theory, the Reasonably Exceptional Type Theory (RETT).

SortPoly can accommodate a simple version of RETT, by considering just two sorts, Type for
pure terms and Exc for exceptional terms, adding the rules of Figure 8. In this theory, one has access
to exceptions at the sort Exc using Raise, but to preserve the consistency of the theory at Type,
eliminations of inductive types of the former sort into the latter have to provide a clause to handle

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 76. Publication date: January 2025.



All Your Base Are Belong to 𝒰𝑠 76:23

exceptions. Note that empty@{Exc} is inhabited but empty@{Type} is not. Furthermore, Exc can be
equipped with an internal universe, which makes it possible to prove that:

Lemma noconfExc : forall b:B@{Exc}, b = true \/ b = false : 𝒰@{Exc}.

The fact that noconfExc is provable is unsurprising, as the proof term simply raises an exception
when b is itself an exception, which is possible because we inhabit equality in Exc.

However, a similar lemma is not provable for equality in Type because pattern matching is
disallowed and one has to use trymatch instead, which requires to account for the additional case
of exceptions. Thus, the lemma that can be proven is:

Lemma noconf: forall b:B@{Exc}, b = true \/ b = false \/ exists e, b = raise e : Type.

SortPoly can also accommodate the third sort introduced in RETT, the mediation layer Med,
which corresponds to the parametric fragment of ExTT. RETT additionally supports modalities
to handle parametricity and navigate between the three layers. While these modalities can be
integrated into the core SortPoly framework, they are orthogonal to its primary design.

8.5 Sets and Homotopy Type Theory

Another type theory that we can consider is one that has a stratified system of set-like types and
of general∞-groupoid types. To this end, we consider SortPoly with ground sorts Set and Space,
and add UIP to Set. We then let Space eliminate into Set, but not the other way around. This is
in stark contrast with the 2-Level Type Theory of Annenkov et al. [2023], where it is possible to
eliminate Set into Space, but without there being a way of transforming a type at Set into a type at
Space—the so-called fibrant replacement.
These differences can be explained by our use case: while their intended model is that of non-

fibrant and fibrant types in a model category (e.g., simplicial sets with the Quillen model structure)
or more generally in a category of fibrant objects, ours is that of the inclusion of types of homotopy
level 0 in all types. This highlights why their argument against the existence of a fibrant replacement
does not apply in our case. In particular, for 𝐼 , the standard fibrant interval with a canonical path
0 ≡ 1, their model lets one distinguish 0 from 1 when viewing 𝐼 as a non-fibrant type; our model
instead simply squashes the type, so 0 becomes equal to 1.

8.6 Erasable and Ghost Type Theories

The Prop/Type distinction of Coq is used to extract dependently-typed programs to their computa-
tional content, erasing proofs and type annotations [Forster et al. 2024; Letouzey 2004; Sozeau et al.
2019], as used for example by the CompCert verified C compiler [Leroy 2009]. This distinction is
however not fine grained enough to remove all the non-computationally relevant annotations from
source programs. Typically, indices of inductive types that are only used for type-checking purposes
but not for computation (e.g., length-indexed containers) are still passed around in extracted code
as one cannot distinguish them to be computationally irrelevant, as already noticed by Brady et al.
[2004].

Refinements of the theory have been proposed by Keller and Lasson [2012], introducing a distinct
sort Set to classify computationally-relevant data while keeping Type for erasable types, such that
e.g., natural numbers defined in the Type hierarchy could not be eliminated to produce values of
sort Set. Again, elimination restrictions would help mediate between the different sorts.
For example, one could define a type family fin for finite numbers (either as a subset type or

inductive family) of type nat@{Type|0} → 𝒰@{Set|0} and provide an equality test:

Definition fin_eq {n m : nat@{Type|0}} : fin n → fin m → B@{Set|0} := ...
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The elimination constraints ensure that the indices 𝑛 and𝑚 cannot be eliminated to produce
the boolean result, and would therefore be soundly erased by extraction. Introducing a distinction
between Set and Typewithout duplicating code, for instance, in arithmetic involving computational
and erasable natural numbers, necessitates the use of sort polymorphism.

A related refinement is proposed by Winterhalter [2024], introducing a new sort for ghost types,
with an even more aggressive erasure of ghost data when checking definitional equality. We believe
that this work could also be formulated as an instance of SortPoly.

9 Implementing SortPoly in the Coq Proof Assistant

We now detail the integration of sort polymorphism into the Coq proof assistant. The implementa-
tion was carried out in multiple stages to ensure control and manageability at each step.

Sort unification variables. First, the elaboration system (as opposed to kernel type checking) was
extended with sort unification variables. This change allows the decision of which concrete sort to
use for a universe to be deferred. For instance, in the following code already mentioned in §2.1:

Check (forall P:_, P → (P ∧ P)).

the type of P must be a universe on the left of the arrow, and is later forced to be Prop by being
used in a conjunction. This change was released in Coq 8.18.0 (September 2023).

Since elaboration shares types and code with the kernel (notably basic substitution implementa-
tions and reduction machines), some kernel modifications were necessary. Most of the changes were
concentrated in the elaboration universe engine, which has been adapted to unify sort variables.

Themain change (PR 16903) had a diffstat of +600, -166 lines (including test changes and additions).
A follow-up change with a diffstat of +1054, -895 lines (PR 18938) cleaned up the API and fixed
unification bugs introduce in the previous change where a sort variable was unified with SProp but
unification did not properly substitute it in the relevance marks used to efficiently implement proof
irrelevance, leading to incompleteness as the un-substituted marks were considered proof relevant.

Sort-polymorphic definitions and restricted inductive types. Next, prenex sort quantification was
added to global definitions and inductive types. Initially, inductive types were restricted to a constant
sort to simplify the implementation of elimination restrictions. This change (PR 17836) affected
many lines of code (+4487, -2455, with the main commit comprising +2923, -1217). The modification
was relatively straightforward: in many instances where previously a single piece of data (typically
names) was managed for universe levels, this change introduced a second piece for sort variables.

Fully sort-polymorphic inductive types. PR 18331 (+593, -200 lines) extended inductive types
to support variable conclusion sorts. Most of the effort was dedicated to implementing the new
elimination restriction rules. The kernel with support for sort polymorphismwas released in version
8.19.0 (January 2024).

Porting tactics. Currently, not all tactics in Coq fully support sort polymorphism. Although
the most commonly used tactics have been adapted, the complete migration of the tactics lan-
guage depends on user-reported bugs for correction. Existing codebases have yet to adopt sort
polymorphism, which is needed to thoroughly test and identify tactic-related issues.

Algebraic universes. The current implementation of sort and universe level polymorphism relies
on a new algorithm for solving arbitrary (in)equations in the theory of universe levels with successor
and join, based on the work of Bezem and Coquand [2022], whose integration in mainline Coq
(PR 18903) still faces performance challenges when applied to non-polymorphic developments.
This implementation lifts the limitations of the algorithm currently available in Coq, which only
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supports a subset of constraints on universe level expressions that can appear during typechecking.
Concretely, it extends the expressivity of user facing specifications by allowing arbitrary universe
level expressions at any instance, which is crucial to succinctly express the general definitions of
the prelude and the general rewriting library described in §3.5.

User-level implications. In most cases, explicit references to sort polymorphism are found in the
definitions of basic structures and their associated generic properties. However, in practical usage,
sort polymorphism is less apparent, as the system automatically infers sort instantiations—such as
when applying a generic lemma. Consequently, the user experience remains largely unaffected.
However, elaboration processes differ between general sort-polymorphic definitions and their
specific instantiations. Although a single inductive definition of dependent pairs can accommodate
all instantiations, maintaining notations for the concrete instantiations is essential. This ensures
that unification and type inference behave as expected when specific instances are used.
Similar to universe level polymorphism, we could implement a mode where the most generic

sorts are inferred from definitions that use only Type. However, whether this should become the
default behavior remains uncertain. Further experimentation, particularly through the development
of a sort-polymorphic standard library, is necessary before making such a decision.

Our use of sort polymorphism for e.g., dependent pairs also causes Coq commands such as Print
to output definitions involving sort and universe level quantifications, advanced features which
can be confusing to novice users. We plan to mitigate this by substituting sort variables with their
instances when printing instantiated inductive types.

10 Related Work

Type theories with multiple sorts. Barendregt [1991] introduces Pure Type Systems (PTSs) to
provide a general theory of type theories over multiple sorts, encompassing the calculus of construc-
tions [Coquand and Huet 1988]. Barras [1999]; Barras and Grégoire [2005] investigate extensions of
PTSs featuring inductive types and cumulativity. Those works do not address sort polymorphism,
but we see no reason why it couldn’t be integrated into PTSs.

Voevodsky [2013] proposes a type theory with two levels as a basis for homotopical mathematics,
featuring an inner univalent layer and an external strict layer with equality reflection. A proper
foundation for such 2-level type theories is established in [Annenkov et al. 2023] with applications
outside its original intended models, e.g., metaprogramming [Kovács 2022b]. Since these theories
focus on two layers, little consideration have been given to code reuse and redundancy between
these. As explained in § 8.5, the intended model for 2-level type theory is based on different
expectations compared to the system SortPoly we develop here.
Multi-modal type theories [Gratzer 2022; Gratzer et al. 2021; Shulman 2023] describe type

theories parametrized by a (2-category) of modes playing a similar role to sorts. The expressivity of
multi-modal type theories goes well beyond what we present here. Stassen et al. [2022] report on
an experimental implementation of a multi-modal type theory with no mechanism to factor out
definitions between modes.

Universe levels & polymorphism. Universe levels play in proof assistants both a crucial role to
preserve consistency and an administrative ordeal that is rarely significant for most results. Harper
and Pollack [1989] introduce the notion of typical ambiguity to allow unspecified global universe
levels, leaving the proof assistant in charge of solving the induced constraints. This design failed to
scale to large formal developments, and Sozeau and Tabareau [2014] propose a notion of prenex
sort polymorphism, similar in spirit to ML-style polymorphism, to abstract over local universe level
bindings and constraints. We follow a similar design for sort polymorphism, without constraints
due to the absence of cumulativity for sorts. Kovács [2022a] internalizes universe levels as a type
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Lvl inside the theory, allowing to reuse the quantification of the theory for most universe levels,
but an additional external universe Type𝜔 is needed to give a type to such quantifications over all
levels Lvl. Semantically, a similar notion of an internal type of sorts would need to be sorted out
in our setting. Hou (Favonia) et al. [2023] develop McBride’s idea of crude but effective universe
polymorphism, which uses an internal universe lifting operator rather than quantifications. Because
in SortPoly not all sorts support the same expressivity, for instance by lack of an internal universe,
this lifting technique does not seem directly applicable to sort polymorphism.

11 Conclusion and Future Work

The integration of sort polymorphism in proof assistants like Coq, Lean, and Agda is crucial
for addressing the complexities arising from diverse logical and computational principles, such
as definitional proof irrelevance, erasable types, univalence or exceptions. While universe level
polymorphism manages hierarchies effectively, current proof assistants lack adequate support
for polymorphism between sorts, hindering reuse and extensibility. This work advances sort
polymorphism by developing its metatheory, focusing on monomorphization, large elimination,
and parametricity. We implement sort polymorphism in Coq and demonstrate its efficacy through
a new sort-polymorphic prelude featuring basic definitions and automation. This approach not
only overcomes existing limitations but also lays the foundation for future advancements in multi-
sorted proof assistants. The practical experiments carried out so far outline challenges as well as
expressivity improvements to be tackled in future work.
Sort constraints. As outlined in §5, there is currently no way to generically reason about sorts

with large elimination. We could take inspiration from and extend the existing mechanism of
universe constraints, which forces instances of universe variables to satisfy some conditions at
instantiation time. This way, we could add a constraint on a variable sort 𝑠 representing the fact
that it has large elimination, as well as a Coq notation for the internal universes U𝑠

𝑢 . Expanding on
this, we could also add eliminability constraints between sorts 𝑠 and 𝑠′, indicating that inductives
of the former sort can eliminate into the latter (or even specialize it to specific inductives).

Adding new sorts.With this system in place, Coqwould benefit from additional sorts more closely
suited to specific needs. These could come built-in with Coq, Exc being a prime candidate for
inclusion, or possibly user-definable, so that end-users do not have to tinker with the Coq kernel
themselves, akin to the similar project of rewrite rules [Cockx et al. 2021]. The design space for
new sorts remains wide open, with one envisioned goal being that of a sort PSh representing the
internal type theory of presheaves on a given category.

Adapting existing code. A much more pragmatic but also significant challenge is that of adapting
the whole Coq infrastructure to work properly with the addition of SortPoly. Some tactics will
have to be adapted, and libraries ported to make the most out of the new system. While challenging
in terms of engineering effort, this transition will be a one-time cost. Success in this endeavor will
require coordination with the whole community, so that users might embrace these new features
and drive adoption across the whole ecosystem.
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A Detailed Proofs

A.1 Formal Presentation of pCUIC

⊢pCUICenv Σ

Σ |Θ ⊢pCUIC ·
EmptyCtx

Σ |Θ ⊢pCUIC Γ (Θ𝐶 ⊢ 𝐶 : 𝐴) ∈ Σ Θ ⊢pCUIC ®𝑝 : Θ𝐶

Σ |Θ | Γ ⊢pCUIC 𝐶{®𝑝} : 𝐴[Θ𝐶 := ®𝑝]
Env

Σ |Θ ⊢pCUIC Γ 𝑠 = Type∨𝑠 = Prop
Θ ⊢level 𝑙 Σ |Θ | Γ ⊢pCUIC 𝐴 : 𝒰𝑠

𝑙

Σ |Θ ⊢pCUIC Γ, 𝑎 : 𝐴
ExtCtx

Σ |Θ ⊢pCUIC Γ (𝑥 : 𝑇 ) ∈ Γ

Σ |Θ | Γ ⊢pCUIC 𝑥 : 𝑇
Var

Σ |Θ ⊢pCUIC Γ Θ ⊢level 𝑙 Θ ⊢level 𝑙
′

Σ |Θ | Γ ⊢pCUIC 𝒰Prop
𝑙

: 𝒰Type
𝑙 ′+1

Prop

Σ |Θ ⊢pCUIC Γ Θ ⊢level 𝑙 Θ ⊢level 𝑙
′ Θ ⊢constraint 𝑙 = 𝑙 ′

Σ |Θ | Γ ⊢pCUIC 𝒰Type
𝑙

: 𝒰Type
𝑙 ′+1

Type

Σ |Θ | Γ ⊢pCUIC 𝐴 : 𝒰𝑠
𝑙

Σ |Θ | Γ, 𝑥 : 𝐴 ⊢pCUIC 𝐵 : 𝒰𝑠′

𝑙 ′

Σ |Θ | Γ ⊢pCUIC Π(𝑥 : 𝐴) . 𝐵 : 𝒰𝑠′

max 𝑙 𝑙 ′

Forall

Σ |Θ | Γ ⊢pCUIC 𝑓 : Π(𝑥 : 𝐴).𝐵
Σ |Θ | Γ ⊢pCUIC 𝑡 : 𝐴

Σ |Θ | Γ ⊢pCUIC 𝑓 𝑡 : 𝐵 [𝑥 := 𝑡]
App

Σ |Θ | Γ, 𝑥 : 𝐴 ⊢pCUIC 𝑡 : 𝐵

Σ |Θ | Γ ⊢pCUIC 𝜆(𝑥 : 𝐴) . 𝑡 : Π(𝑥 : 𝐴). 𝐵
Lambda

(Θ𝐼 ⊢ 𝐼 : Γ𝑝 param → Γ𝑖 ind → 𝒰𝑠𝐼
𝑙𝐼

where [𝐶𝑘 : Π( ®𝑝 : Γ𝑝 )Γ𝑘 . 𝐼 ®𝑝 ®𝚤𝑘 ]𝑘 ) ∈ Σ

𝑠𝐼 = Prop =⇒ 𝑠 = Prop∨ 𝐼 has singleton elimination
Σ |Θ | Γ, (®𝚤 : Γ𝑖 [Γ𝑝 := ®𝑝]), (𝑥 : 𝐼 {®𝑢} ®𝑝 ®𝚤) ⊢ 𝑃 : 𝒰𝑠

𝑙

Σ |Θ | Γ ⊢ 𝑐 : 𝐼 {®𝑢} ®𝑝 ®𝚤
(
Σ |Θ | Γ, Γ𝑘 ⊢ 𝑏𝑘 : 𝑃 [Γ𝑖 := ®𝚤𝑘 , 𝑥 :=𝐶𝑘 ®𝑝 ®𝚤𝑘 ]

)
𝑘

Σ |Θ | Γ ⊢ case 𝑐 return 𝑃 with ®𝑏𝑘 : 𝑃 [Γ𝑖 := ®𝚤, 𝑥 := 𝑐]
Case

Σ |Θ | Γ, 𝑓 : 𝑇 ⊢pCUIC 𝑡 : 𝑇
Σ |Θ | Γ ⊢pCUIC 𝑇 : 𝒰𝑠

𝑙
𝑡 guarded

Σ |Θ | Γ ⊢pCUIC fix 𝑓 : 𝑇 := 𝑡 : 𝑇
Fix

Σ |Θ | Γ ⊢pCUIC 𝑡 : 𝐴
Σ |Θ | Γ ⊢pCUIC 𝐴 ≡ 𝐵 : 𝒰𝑠

𝑙

Σ |Θ | Γ ⊢pCUIC 𝑡 : 𝐵
Conv

Σ |Θ ⊢pCUIC Γ Θ ⊢level 𝑙 Θ ⊢level 𝑙
′

Σ |Θ | Γ ⊢pCUIC 𝒰Prop
𝑙

≡ 𝒰Prop
𝑙 ′ : 𝒰Type

𝑙+1

Conv-Prop

Σ |Θ ⊢pCUIC Γ Θ ⊢level 𝑙
Θ ⊢level 𝑙

′ Θ ⊢constraint 𝑙 = 𝑙 ′

Σ |Θ | Γ ⊢pCUIC 𝒰Type
𝑙

≡ 𝒰Type
𝑙 ′ : 𝒰Type

𝑙+1

Conv-Type

Σ |Θ | Γ, 𝑥 : 𝐴 ⊢pCUIC 𝑡 : 𝐵 Σ |Θ | Γ ⊢pCUIC 𝑎 : 𝐴

Σ |Θ | Γ ⊢pCUIC (𝜆(𝑥 : 𝐴). 𝑡) 𝑎 ≡ 𝑡 [𝑥 := 𝑎] : 𝐵 [𝑥 := 𝑎]
Beta
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Σ |Θ | Γ ⊢pCUIC 𝑓 : Π(𝑥 : 𝐴). 𝐵
Σ |Θ | Γ ⊢pCUIC 𝜆(𝑥 : 𝐴). 𝑓 𝑥 ≡ 𝑓 : Π(𝑥 : 𝐴). 𝐵

Eta

Σ |Θ | Γ ⊢pCUIC 𝐴 ≡ 𝐴′ : 𝒰𝑠
𝑙

Σ |Θ | Γ, 𝑥 : 𝐴 ⊢pCUIC 𝐵 ≡ 𝐵′ : 𝒰𝑠′

𝑙 ′

Σ |Θ | Γ ⊢pCUIC Π(𝑥 : 𝐴).𝐵 ≡ Π(𝑥 : 𝐴′).𝐵′ : 𝒰𝑠′

max 𝑙 𝑙 ′

Conv-Forall

(Θ𝐼 ⊢ 𝐼 : Γ𝑝 param → Γ𝑖 ind → 𝒰𝑠𝐼
𝑙𝐼

where [𝐶𝑘 : Π( ®𝑝 : Γ𝑝 )Γ𝑘 . 𝐼 ®𝑝 ®𝚤𝑘 ]𝑘 ) ∈ Σ

Σ |Θ | Γ ⊢ ®𝑝 : Γ𝑝 [Θ𝐼 := ®𝑢] Σ |Θ | Γ ⊢ ®𝚤 : Γ𝑖 [Θ𝐼 := ®𝑢, Γ𝑝 := ®𝑝]
𝑠𝐼 = Prop =⇒ 𝑠 = Prop∨ 𝐼 has singleton elimination

Σ |Θ | Γ, (®𝚤 : Γ𝑖 [Γ𝑝 := ®𝑝]), (𝑥 : 𝐼 {®𝑢} ®𝑝 ®𝚤) ⊢ 𝑃 : 𝒰𝑠
𝑙(

Σ |Θ | Γ, Γ𝑘 ⊢ 𝑏𝑘 : 𝑃 [Γ𝑖 := ®𝚤𝑘 , 𝑥 :=𝐶𝑘 {®𝑢} ®𝑝 ®𝚤𝑘 ]
)
𝑘

Σ |Θ | Γ ⊢ case𝐶 𝑗 {®𝑢} ®𝑝 ®𝑎 return 𝑃 with ®𝑏𝑘 ≡ 𝑏 𝑗 [Γ𝑗 := ®𝑎] : 𝑃 [Γ𝑖 := ®𝚤, 𝑥 := 𝑐]
Iota

A.2 Proof of Theorem 6.1

Lemma A.1 (Validity of Environments).
• If Σ |Θ | Γ ⊢ Δ then ⊢

env
Σ

• If Σ |Θ | Γ ⊢ 𝑡 : 𝐴 then ⊢
env

Σ
• If Σ |Θ | Γ ⊢ 𝑡 ≡ 𝑢 : 𝐴 then ⊢

env
Σ

Proof. By mutual induction on the derivation of the SortPoly judgements, noting that Σ remains
unchanged in every rules and that it is forced to well-formed on empty contexts (EmptyCtx). □

Lemma A.2 (Weakening of Environments). Let Σ ⊆ Σ′
be environments such that ⊢

env
Σ and

⊢
env

Σ′
.

If Σ |Θ | Γ ⊢ Δ then Σ′ |Θ | Γ ⊢ Δ
If Σ |Θ | Γ ⊢ 𝑡 : 𝐴 then Σ′ |Θ | Γ ⊢ 𝑡 : 𝐴
If Σ |Θ | Γ ⊢ 𝑡 ≡ 𝑢 : 𝐴 then Σ′ |Θ | Γ ⊢ 𝑡 ≡ 𝑢 : 𝐴

Proof. By mutual induction on the derivation of the SortPoly judgements, the important cases
being Env, Case and Iota where components of Σ are used. The same components are then in Σ′

since Σ ⊆ Σ′. □

Lemma A.3 (Embedding of pCUIC terms). If Σ is a well-formed pCUIC environment and no sort

variables appear in Θ, Γ,Δ, 𝑡, 𝑢, 𝐴, then

• Σ |Θ | Γ ⊢ Δ implies Σ |ℒ(Θ) | Γ ⊢pCUIC Δ
• Σ |Θ | Γ ⊢ 𝑡 : 𝐴 implies Σ |ℒ(Θ) | Γ ⊢pCUIC 𝑡 : 𝐴
• Σ |Θ | Γ ⊢ 𝑡 ≡ 𝑢 : 𝐴 implies Σ |ℒ(Θ) | Γ ⊢pCUIC 𝑡 ≡ 𝑢 : 𝐴

Proof. By mutual induction on the derivation of the SortPoly judgements.

Case EmptyCtx: Immediate by EmptyCtx.

Case ExtCtx: Since Θ does not contain any sort variable, 𝑠 is necessarily a ground sort, so either
Type or Prop. ExtCtx now applies to the inductive hypotheses for the well-formed context Γ and
type 𝐴 and the level judgements that remains unchanged since it only depends on ℒ(Θ).

Case Var: Immediate application of Var to the inductive hypothesis for the context.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 76. Publication date: January 2025.



76:32 J. Poiret, G. Gilbert, K. Maillard, P.-M. Pédrot, M. Sozeau, N. Tabareau, and É. Tanter

Case Env: Since Σ is a well-formed pCUIC environment, no sort variable appears in Θ𝐶 , so ®𝑝 lifts
to a substitution from ℒ(Θ) to Θ𝐶 and Env applies to the inductive hypothesis on the well-formed
context Γ.

Case Univ: Since Θ contains no sort variable, 𝑠 is a ground sort. If 𝑠 = Type, then Type applies
since universes levels and contraints between those are preserved. Otherwise, 𝑠 = Prop and Prop
applies.

Case Case: Since Σ is a well-formed pCUIC signature, Θ𝐼 contains no sort variable and 𝑠𝐼 is a
ground sort, either Type orProp. In the latter case, the condition Σ |Θ ⊢ elimination of 𝐼 {®𝑢} to 𝑠 allowed
ensures that either the sort 𝑠 of the elimination motive 𝑃 is Prop or 𝐼 satisfies the singleton elimina-
tion rule. Case then applies to the induction hypotheses.

Case Conv-Univ: Parallel to the case Univ, using either Conv-Prop or Conv-Type.

Case Iota: Similar to the case Case, using Iota on the inductive hypotheses.

Cases Forall, App, Lambda, Fix, Conv, Conv-Forall, Beta, Eta: Straightforward application of
the corresponding pCUIC rule to the inductive hypotheses. □

Lemma A.4 (Embedding of pCUIC signatures). If ⊢
env

Σ and no sort variables appear in the

components of Σ, then ⊢pCUIC
env

Σ.

Proof. By induction on the derivation of ⊢env Σ

Case Empty concluded by ⊢
env

·. ⊢pCUICenv · holds

Case Definition concluded by ⊢
env

Σ, (Θ𝐷 ⊢ 𝐷 := 𝑏 : 𝐴). By induction hypothesis ⊢pCUICenv Σ holds
and no sort variables appear in Σ |Θ𝐷 | · ⊢ 𝑏 : 𝐴 so LemmaA.3 ensures that Σ |ℒ(Θ𝐷 ) | · ⊢pCUIC 𝑏 : 𝐴,
hence ⊢pCUICenv Σ,ℒ(Θ𝐷 ) ⊢ 𝐷 := 𝑏 : 𝐴.

Case Inductive concluded by.

⊢env Σ, (Θ𝐼 ⊢ 𝐼 : Γ𝑝 param → Γ𝑖 ind → 𝒰𝑠
𝑙
where [𝐶𝑘 : Π( ®𝑝 : Γ𝑝 ) ( ®𝑥 : Γ𝑘 ). 𝐼 ®𝑝 (®𝚤𝑘 [ ®𝑝, ®𝑥])]𝑘 ).

Since no sort variable appear in the environment, the sort 𝑠 of the inductive 𝐼 is a ground sort of
pCUIC. By induction hypothesis ⊢pCUICenv Σ holds, and applying Lemma A.3 to the premise of the
rule, we obtain that

Σ |ℒ(Θ𝐼 ) ⊢pCUIC Γ𝑝 Σ |ℒ(Θ𝐼 ) | Γ𝑝 ⊢pCUIC Γ𝑖 [Σ |ℒ(Θ𝐼 ) | Γ𝑝 ⊢pCUIC Γ𝑘 ]𝑘

[Σ |ℒ(Θ𝐼 ) | Γ𝑝 , Γ𝑘 ⊢pCUIC ®𝚤𝑘 : Γ𝑖 ]𝑘

and the universe level constraints Θ𝐼 ⊢level 𝑙 are valid as well in pCUIC, so we conclude that

⊢pCUICenv Σ, (Θ𝐼 ⊢ 𝐼 : Γ𝑝 param → Γ𝑖 ind → 𝒰𝑠
𝑙
where [𝐶𝑘 : Π( ®𝑝 : Γ𝑝 ) ( ®𝑥 : Γ𝑘 ). 𝐼 ®𝑝 (®𝚤𝑘 [ ®𝑝, ®𝑥])]𝑘 ).

□

Theorem A.5 (Embedding of pCUIC - Theorem 6.1). A judgment Σ |Θ | Γ ⊢ 𝑡 : 𝐴 where no sort

variables appear in Θ or in constants of Σ is in the image of the pCUIC embedding.

Proof. By Lemma A.1 and Lemma A.4, ⊢pCUICenv Σ holds so Lemma A.3 applies. □
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A.3 Proof of Theorem 6.2

Lemma A.6 (Substitution of sorts). If Θ ⊢ ®𝑠 : Θ′
then

• Θ′ ⊢
sort

𝑠 implies Θ ⊢
sort

𝑠 [Θ′ := ®𝑠]
• Θ′ ⊢

level
𝑙 implies Θ ⊢

level
𝑙 [Θ′ := ®𝑠]

• Σ |Θ′ | Γ ⊢ Δ implies Σ |Θ | Γ [Θ′ := ®𝑠] ⊢ Δ[Θ′ := ®𝑠]
• Σ |Θ′ | Γ ⊢ 𝑡 : 𝐴 implies Σ |Θ | Γ [Θ′ := ®𝑠] ⊢ 𝑡 [Θ′ := ®𝑠] : 𝐴[Θ′ := ®𝑠]
• Σ |Θ′ | Γ ⊢ 𝑡 ≡ 𝑢 : 𝐴 implies Σ |Θ | Γ [Θ′ := ®𝑠] ⊢ 𝑡 [Θ′ := ®𝑠] ≡ 𝑢 [Θ′ := ®𝑠] : 𝐴[Θ′ := ®𝑠]

Proof. For the stability of sort by substitution, the case GroundSort is immediate since a
ground sort is left unchanged by the substitution. In the case SortVal with conclusion Θ′ ⊢sort 𝑠 ,
either 𝑠 [Θ′ := ®𝑠] is a ground sort, so GroundSort applies, or it is a variable in Θ concluded by
SortVal.
The stability of levels by substitution proceeds by an immediate induction on the derivation,

using that substituted level variables are still well-formed.
The stability of well-formed contexts, terms and conversion under substitution proceed by mutual

induction on the derivation of the judgements. For the cases ExtCtx, Univ, and Conv-Univ we
use that sort judgements Θ ⊢sort 𝑠 and level judgements Θ ⊢level 𝑙 are stable by substitution. In the
Env, Case and Iota rules, we use composition of sort and level substitutions as well as the fact that
Σ |Θ ⊢ elimination of 𝐼 {®𝑢} to 𝑠 allowed is stable by substitution in the two latter cases. All other
cases are straightforward applications of the inductive hypotheses. □

Lemma A.7 (Exhaustivity of Monomorphized Environments). If ⊢
env

Σ and (Θ𝐶 ⊢ 𝐶 : 𝐴) ∈ Σ
then for any ®𝑠 ∈ secsort (Θ𝐶 ,G), (ℒ(Θ𝐶 ) ⊢ 𝐶®𝑠 : mG (𝐴[Θ := ®𝑠])) ∈ mG (Σ).

Proof. If 𝐶 is a declared constant corresponding to an entry (Θ𝐶 ⊢ 𝐶 := 𝑏 : 𝐴) introduced in Σ
with Definition, then by definition mG (Σ) contains an entry (ℒ(Θ𝐶 ) ⊢ 𝐶®𝑠 :=mG (𝑏 [Θ𝐶 := ®𝑠]) :
mG (𝐴[Θ𝐶 := ®𝑠])), so (ℒ(Θ𝐶 ) ⊢ 𝐶®𝑠 : mG (𝐴[Θ := ®𝑠])) ∈ mG (Σ) holds as well.

Otherwise 𝐶 is a type former or constructor of an entry of Σ of shape

(Θ𝐼 ⊢ 𝐼 : Γ𝑝 param → Γ𝑖 ind → 𝒰𝑠
𝑙
where [𝐶𝑘 : Π( ®𝑝 : Γ𝑝 ) ( ®𝑥 : Γ𝑘 ). 𝐼 ®𝑝 (®𝚤𝑘 [ ®𝑝, ®𝑥])]𝑘 ).

By definition of the monomorphization, mG (Σ) contains an entry

ℒ(Θ𝐼 ) ⊢ 𝐼®𝑠 : mG
(
Γ𝑝 [Θ𝐼 := ®𝑠]

)
param → mG (Γ𝑖 [Θ𝐼 := ®𝑠]) ind → 𝒰𝑠 [Θ𝐼 :=®𝑠 ]

𝑙

where [𝐶®𝑠,𝑘 : Π( ®𝑝 : mG
(
Γ𝑝 [Θ𝐼 := ®𝑠]

)
) ( ®𝑥 : mG (Γ𝑘 [Θ𝐼 := ®𝑠])). 𝐼®𝑠 ®𝑝 (mG (®𝚤𝑘 [Θ𝐼 := ®𝑠]) [ ®𝑝, ®𝑥])]𝑘

If 𝐶 is the type former 𝐼 of type Σ |Θ𝐼 | ⊢ 𝐼 : Γ𝑝 → Γ𝑖 → 𝒰𝑠
𝑙
, then(

ℒ(Θ𝐼 ) ⊢ 𝐼®𝑠 : mG
(
(Γ𝑝 → Γ𝑖 → 𝒰𝑠

𝑙
) [Θ𝐼 := ®𝑠]

) )
∈ mG (Σ) .

Finally, if 𝐶 is a constructor 𝐶𝑘 of type Π( ®𝑝 : Γ𝑝 ) ( ®𝑥 : Γ𝑘 ). 𝐼 ®𝑝 (®𝚤𝑘 [ ®𝑝, ®𝑥]) then(
ℒ(Θ𝐼 ) ⊢ 𝐶®𝑠,𝑘 : mG

(
(Π( ®𝑝 : Γ𝑝 ) ( ®𝑥 : Γ𝑘 ). 𝐼 ®𝑝 (®𝚤𝑘 [ ®𝑝, ®𝑥])) [Θ𝐼 := ®𝑠]

) )
∈ mG (Σ) .

□

Lemma A.8 (Monomorphization of Terms). Let ⊢
env

Σ such that ⊢
env

mG (Σ) and assume that

Θ has no sort variable, then

• Σ |Θ | Γ ⊢ Δ implies mG (Σ) |Θ |mG (Γ) ⊢ mG (Δ)
• Σ |Θ | Γ ⊢ 𝑡 : 𝐴 implies mG (Σ) |Θ |mG (Γ) ⊢ mG (𝑡) : mG (𝐴)
• Σ |Θ | Γ ⊢ 𝑡 ≡ 𝑢 : 𝐴 implies mG (Σ) |Θ |mG (Γ) ⊢ mG (𝑡) ≡ mG (𝑢) : mG (𝐴)
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Proof. By mutual induction on the derivation of the SortPoly judgements. All cases but the
EmptyCtx and Env cases are straightforward applications of the inductive hypothesis with the
same rule since mG (·) simply traverses the term. Rule EmptyCtx is dealt with the hypothesis that
⊢env mG (Σ). In the Env case with conclusion Σ |Θ | Γ ⊢ 𝐶{®𝑝} : 𝐴[Θ𝐶 := ®𝑝], separating ®𝑝 into the
sort ®𝑠 and universe ®𝑢 instances, we have that ®𝑠 ∈ secsort (Θ𝐶 ,G) since Θ contains no sort variable
and Θ ⊢ ®𝑝 : Θ𝐶 . By Exhaustivity of Monomorphized Environments, (ℒ(Θ𝐶 ) ⊢ 𝐶®𝑠 : mG (()𝐴[Θ𝐶 :=
®𝑠]) ∈ mG (Σ), so applying Env with Θ ⊢ ®𝑢 : ℒ(Θ𝐶 ) and observing thatmG (𝐴[Θ𝐶 := ®𝑠]) [ℒ(Θ𝐶 ) :=
®𝑢] =mG

(
𝐴[Θ𝐶 := ®𝑝]

)
, we obtain that mG (Σ) |Θ |mG (Γ) ⊢ 𝐶®𝑠 {®𝑢} : mG

(
𝐴[Θ𝐶 := ®𝑝]

)
. □

Lemma A.9 (Monomorphization of Environments). If ⊢
env

Σ then ⊢
env

mG (Σ).

Proof. By induction on the derivation of ⊢env Σ

Case Empty concluded by ⊢
env

·. mG (·) = · is well formed.

Case Definition concluded by ⊢
env

Σ, (Θ𝐷 ⊢ 𝐷 := 𝑏 : 𝐴). By induction hypothesis ⊢env mG (Σ)
holds. For any ®𝑠 ∈ secsort (Θ𝐷 ,G), applying Monomorphization of Terms to the substitution of
Σ |Θ𝐷 | · ⊢ 𝑏 : 𝐴 by ®𝑠 (Lemma A.6) – with universe context ℒ(Θ𝐷 ) free of sort variables – yields

mG (Σ) |ℒ(Θ𝐷 ) | ⊢ mG (𝑏) [Θ𝐷 := ®𝑠] : mG (𝐴) [Θ𝐷 := ®𝑠]
Since secsort (Θ𝐷 ,G) is finite, we can conclude that ⊢env mG (Σ, (Θ𝐷 ⊢ 𝐷 := 𝑏 : 𝐴)) by repeated
applications of Definition and Weakening of Environments.

Case Inductive concluded by:

⊢env Σ, (Θ𝐼 ⊢ 𝐼 : Γ𝑝 param → Γ𝑖 ind → 𝒰𝑠
𝑙
where [𝐶𝑘 : Π( ®𝑝 : Γ𝑝 ) ( ®𝑥 : Γ𝑘 ). 𝐼 ®𝑝 (®𝚤𝑘 [ ®𝑝, ®𝑥])]𝑘 ).

By induction hypothesis ⊢env mG (Σ) holds and for any ®𝑠 ∈ secsort (Θ𝐼 ,G) substituting by ®𝑠 and
applying Monomorphization of Terms to the premises yield
mG (Σ) |ℒ(Θ𝐼 ) ⊢ mG

(
Γ𝑝 [Θ𝐼 := ®𝑠]

)
mG (Σ) |ℒ(Θ𝐼 ) |mG

(
Γ𝑝 [Θ𝐼 := ®𝑠]

)
⊢ mG (Γ𝑖 [Θ𝐼 := ®𝑠])

[mG (Σ) |ℒ(Θ𝐼 ) |mG
(
Γ𝑝 [Θ𝐼 := ®𝑠]

)
⊢ mG (Γ𝑘 [Θ𝐼 := ®𝑠])]𝑘

[mG (Σ) |ℒ(Θ𝐼 ) |mG
(
Γ𝑝 [Θ𝐼 := ®𝑠]

)
,mG (Γ𝑘 [Θ𝐼 := ®𝑠]) ⊢ ®𝚤𝑘 : mG (Γ𝑖 )]𝑘

Since 𝑠 [Θ𝐼 := ®𝑠] is a ground sort in G, we have that ℒ(Θ𝐼 ) ⊢sort 𝑠 [Θ𝐼 := ®𝑠]. Moreover, ℒ(Θ𝐼 ) ⊢level 𝑙
holds since that judgement only depends on universe levels of Θ𝐼 that are left unchanged by ℒ(−).
Since secsort (Θ𝐼 ,G) is finite, we can repeatedly extend mG (Σ) with inductive entries 𝐼®𝑠 for each
®𝑠 ∈ secsort (Θ𝐼 ,G) with Inductive, using Weakening of Environments to mediate for the newly
introduced entries. □

Theorem A.10 (Monomorphization). For any term Σ |Θ | Γ ⊢ 𝑡 : 𝐴 with no sorts in Θ, so that
Θ = ℒ(Θ), we get a well-typed term, mG (Σ) |ℒ(Θ) |mG (Γ) ⊢ mG (𝑡) : mG (𝐴).

Proof. From Σ |Θ | Γ ⊢ 𝑡 : 𝐴, we deduce that ⊢env Σ, so that Monomorphization of Environments
applies. Now we have that ⊢env mG (Σ), which we combine with Monomorphization of Terms to
get the desired result. □
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