
A Functional Functional Interpretation

Pierre-Marie Pédrot
Laboratoire PPS, CNRS, UMR 7126, Univ Paris Diderot,

Sorbonne Paris Cité, PiR2, INRIA Paris Rocquencourt, F-75205
Paris, France

pierre-marie.pedrot@inria.fr

Abstract
In this paper, we present a modern reformulation of the Dialectica
interpretation based on the linearized version of de Paiva. Contrar-
ily to Gödel’s original translation which translated HA into system
T, our presentation applies on untyped λ-terms and features nicer
proof-theoretical properties.

In the Curry-Howard perspective, we show that the computa-
tional behaviour of this translation can be accurately described by
the explicit stack manipulation of the Krivine abstract machine,
thus giving it a direct-style operational explanation.

Finally, we give direct evidence that supports the fact our pre-
sentation is quite relevant, by showing that we can apply it to the
dependently-typed calculus of constructions with universes CCω

almost without any adaptation. This answers the question of the
validity of Dialectica-like constructions in a dependent setting.

Categories and Subject Descriptors Theory of computation
[Logic]: Type theory

General Terms Theory

Keywords Dialectica translation, Linear logic, Dependent types,
Abstract machine, Curry-Howard

Introduction
The Dialectica transformation, also known as the functional inter-
pretation, was introduced by Gödel in the eponymous journal in
1958 [7], although he had been designing it since the 30’s [1]. It
turns out it was a tentative workaround to the incompleteness the-
orem, then perceived as great catastrophe. As classical logic could
not be considered a trustful tool to justify itself anymore, one had
to solve the problem of foundations by using constructive means.

Similarly to its predecessor, the double-negation translation,
Dialectica aimed at providing classical logic with a reliable ba-
sis rooted in computation, through a transformation of HA into
system T [1]. Unlike the double-negation translation, Dialec-
tica is quite finer-grained. Indeed, Dialectica realizes two non-
intuitionistic principles, namely Markov’s principle (MP) and in-
dependence of premises (IP), while retaining the disjunction and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CSL-LICS 2014, July 14–18, 2014, Vienna, Austria.
Copyright c© 2014 ACM 978-1-4503-2886-9. . . $15.00.
http://dx.doi.org/10.1145/2603088.2603094

existence properties. These two semi-classical principles are usu-
ally stated as follows:

¬(∀nN.¬P n)
MP

∃nN. P n

(∀mN. P m)→ ∃nN. R n
IP

∃nN. (∀mN. P m)→ Rn

where P is a decidable proposition on natural numbers. Markov’s
principle can be practically implemented by a simple unbounded
loop, checking if P is true at each n, starting from zero. By a clas-
sical reasoning, this algorithm must terminate [8]. Independence of
premises is more challenging to justify on constructivist grounds,
and does conflict with the usual Curry-Howard interpretation [1].

In the wake of modern proof theory, it is not until the end of
the 80’s that De Paiva provided a radical categorical cleanup of the
underlying processes at work in the Dialectica transformation [3].
Even better, it resulted that Dialectica factored nicely through linear
logic decompositions of intuitionistic calculi. De Paiva’s works are
actually the essential firm ground upon which this article is built.

We recall that Dialectica associates to any formula A from HA
a first-order formula AD of the following shape:

AD := ∃~u.∀~x.AD[~u, ~x]

According to de Paiva’s presentation, each part of the Dialectica
translation result can be understood on its own:

• The ∃~u part can be given a unique “witness” type
• The ∀~x part can be given a unique “counter” type
• The formula AD acts as a dynamic test and can be seen as

an orthogonality relation stating who the winner is, in a game
semantics player-versus-opponent fashion.

As shown by Hyland and Schalk [9, 10], it happens coincidently
that many models of linear logic are based upon this kind of three-
part decomposition, and de facto, the derived double-glueing con-
struction is often used as a decomposition tool for such models.

Curiously enough, the Dialectica translation by itself did not
profit from this nice categorical presentation, probably because of
a community mismatch. More suprisingly, the computational be-
haviour of this translation was never explained in a Curry-Howard
manner. The main goal of this article is to remedy this unfair situa-
tion, by proposing a modern syntactic presentation of the Dialectica
transform, based on de Paiva’s decomposition, as well as a compu-
tational account for it, inspired by classical realizability.

The first part of the article consists in defining and manipulating
quite a few subtly distinct translations. In order not to confuse the
reader, let us present a quick overview of those translations:

• The historical Dialectica translation will only be alluded to.
This is Gödel’s original one [7], which is described in [1] for
instance.

• The linear Dialectica is essentially the translation from LL into
LJ described by de Paiva [3]. It is briefly recalled at Section 1.
Its direct application, the linearized Dialectica, is a syntactic
translation acting on the λ-calculus, described at Section 2.
• Finally, the revised Dialectica is a variant of the previous one

solving semantical well-behavedness issues. Section 3 is dedi-
cated to its presentation.

Following the general guidance principle of [13], we present
the linearized and revised translations through λ-terms instead of
sequents, in a purely proof-as-program paradigm. The similarity of
exposition culminates in Section 4 where we provide a realizability
explanation for the Dialectica translation by means of the Krivine
abstract machine.

Finally, we show that the revised Dialectica can be applied to
more complicated settings without pain. We show at Section 5 how
we can straightforwardly adapt our syntactic presentation to the
dependently-typed CCω system.

1. Rephrasing Linear Dialectica
The historical Dialectica transformation acted on intuitionistic
arithmetic, and resulted essentially in another intuitionistic logic,
save for a few additional semi-classical axioms. As shown by de
Paiva [3], the Dialectica transformation can also be seen as a gen-
uine way to design new models of linear logic from old ones. In-
deed, the historical Dialectica happens to factor through the usual
call-by-name translation from LJ to LL. This decomposition will
be discussed afterwards. For now, we are going to focus on linear
logic alone.

Both Dialectica and its linearized counterpart are type-directed,
in the sense that they operate on sequents rather than on untyped
terms. We recall in this section the translation on linear types,
which are defined by the following inductive grammar.

A,B ::= α | A⊗B | !A | A⊥

This presentation reduces the required number of connectives,
as they shall be defined by duality. In particular, we will conve-
niently write the linear arrow A(B := (A⊗B⊥)⊥. As we will
be interested in translations of the λ-calculus, we choose to forget
about the additive connectives, even though they could be properly
described in this setting.

Each linear typeA is mapped to two distinct intuitionistic types:
the type W[A] of witnesses of A, and the type C[A] of counters
of A. While witnesses can be understood as a straightforward intu-
itionistic interpretation of types, counters are their duals, thought as
opponents in game semantics, or stacks in abstract machines. We
will tend to write witnesses with roman letters t, u, . . . and counters
with Greek letters π, ϕ, . . . even though their rôle may be swapped.

We define inductively at Figure 1 the witness and counter in-
terpretations. The interpretation of atoms is not fixed, but rather
parameterized by two valuations Wα and Cα, and we assume the
following to hold.

Assumption 1. For all α, the types Wα and Cα are inhabited.

As the target types contain products, we need a λ-calculus
equipped with products on the level of terms. We formalize it at
Figure 2.

Defining the interpretation of proofs requires some additional
refinements. The linear Dialectica inherited from the historical one
the necessary use of paraproofs, that is, terms inhabiting a given
type W[A], except they may not be a valid proof. To discriminate
between valid and invalid paraproofs, one has to use an orthogo-
nality relation, relating witnesses and counters at a given type. We
will write t ⊥A π whenever t : W[A] and π : C[A] are orthogonal

W[α] := Wα

C[α] := Cα
W[A⊗B] := W[A]×W[B]
C[A⊗B] := (W[A]⇒ C[B])× (W[B]⇒ C[A])

W[!A] := W[A]
C[!A] := W[A]⇒ C[A]

W[A⊥] := C[A]
C[A⊥] := W[A]

Figure 1. Translation on types

A,B ::= α | A⇒ B | A×B

t, u ::= x | λx. t | t u | (t, u) | match t with (x, y) 7→ u

(λx. t)u →β t{x← u}
match (t, u) with (x, y) 7→ r →β r{x, y ← t, u}

Γ, x : A ` x : A

Γ ` t : A Γ ` u : B

Γ ` (t, u) : A×B

Γ, x : A ` t : B

Γ ` λx. t : A⇒ B

Γ ` t : A⇒ B Γ ` u : A

Γ ` t u : B

Γ ` t : A×B Γ, x : A, y : B ` r : C

Γ ` match t with (x, y) 7→ r : C

Figure 2. Target λ×-calculus

at type A. Being orthogonal can roughly be understood in terms of
game semantics: t ⊥A π means that the player t wins against the
opponent π in the arena A.

The precise use of the orthogonality will be made explicit at
Section 2. For now, let us state it: given a family of atomic rela-
tions ⊥α as parameters, it is the relation generated by the rules of
Figure 3 and closed by β-equivalence. We require additionally the
following condition on the atomic relations.

Assumption 2. The orthogonality on atomic types must be decid-
able, i.e. for all α, there is a λ-term decideα such that:

decideα t π u1 u2 →∗
{
u1 if t ⊥α π
u2 otherwise

π 6⊥A t

t ⊥A⊥ π

t ⊥A ψ u u ⊥B ϕ t

(t, u) ⊥A⊗B (ϕ,ψ)

t ⊥A ϕ t

t ⊥!A ϕ

Figure 3. Orthogonality relation

Definition 1 (Proofs). A proof of A is a term ` t : W[A] s.t. for
all ` π : C[A], t ⊥A π. We may alternatively say that t is valid.

Proposition 1 (Soundness). If A is provable in linear logic, then
there is a proof of A.

Proposition 2 (Non-degeneracy). There exist a formula A such
that there is no proof ofA for all possible instances of Wα, Cα and
⊥α.

We are not really interested in linear logic per se, but rather in
its application to λ-calculus, hence we immediatly carry on. We
will give the particular content of the translation in the case of the
λ-calculus in Section 2.2.

2. Translating call-by-name λ-calculus
In this part, we will be translating λ-calculus through two distinct
transformations, according to the following scheme:

λ
[[·]]−→ LL

D−→ λ×

where D is the linear Dialectica transform exposed previously.
The advantage of applying such a decomposition lies in the more
elegant presentation of the whole Dialectica process we recover at
the end.

Our source λ-calculus is endowed with the following simple
types:

A,B ::= α | A⇒ B

with the usual typing rules. It may have been more uniform, and
indeed possible, to start from λ× instead of the usual λ-calculus,
but it would have been at the expense of clarity and technical
simplicity.

Note that in this section, we still need to work with typed terms
as in the historical Dialectica, but we will adapt this presentation to
the untyped setting later on.

2.1 Call-by-name linear translation on types
There are several ways to translate λ-calculus into linear logic, de-
pending on the calling convention one wants to give to the transla-
tion. The two most known translations are the historical decompo-
sition, which is call-by-name, and the “boring” translation, which
is call-by-value, both described by Girard in [5].

We will focus on call-by-name, because this calling convention
is slightly simpler to present through linear logic, and, moreover,
the historical Dialectica is actually call-by-name itself, at least for
the arrow. This way, we will be able to understand the computa-
tional content of a cleaned-up version of Dialectica. Yet, this does
not forbid us to design a call-by-value Dialectica, or even a classi-
cal variant. One of these classical decompositions happens to have
been treated in [17], albeit not explicitly through the prism of linear
logic.

We recall now the call-by-name translation from LJ to LL. The
call-by-name linear translation amounts to the decomposition of the
intuitionistic arrow into a linear arrow together with the exponential
modality, according to the famous equation:

[[A⇒ B]] := ![[A]]([[B]]

The remaining of the translation is straightforward. We only
have to define the interpretation of a sequent, which is akin to the
arrow case, where Γ is made of the formulae Γ1, . . . ,Γn:

[[Γ ` A]] := ![[Γ1]]⊗ . . .⊗ ![[Γn]]([[A]]

For the sake of readability, we will keep implicit the [[·]] inter-
pretation and freely write intuitionistic types instead of their linear
translation when the context is clear.

2.2 Translating sequents
We now make explicit the composition of [[·]] andD on the untyped
λ-calculus. First, we will tweak the straightforward translation of
sequents to obtain a nice-looking translation on open terms, by
carefully looking at the global result.

Proposition 3. We have the following isomorphism:

W[Γ1, . . . ,Γn ` A] ∼=

−−−→
W[Γ]⇒W[A]

×
−−−→
W[Γ]⇒ C[A]⇒ C[Γ1]

×
...
×

−−−→
W[Γ]⇒ C[A]⇒ C[Γn]

We will therefore see all our sequents through this isomorphism.
As one can observe, the call-by-name translation of an open term
Γ ` t : A produces two sorts of objects:

• On the one hand, the
−−−→
W[Γ] ⇒ W[A] component. We will

call this part of the product the intuitionistic component of the
translation of t, written t•.
• On the other hand, for each free variable xi : Γi of t, a term
txi :

−−−→
W[Γ] ⇒ C[A] ⇒ C[Γi]. We will call this one the xi-

collector of t. The choice for this name will be made clearer
later on.

For the sake of simplicity, because all of these translated terms
share a common

−−−→
W[Γ] prefix corresponding to the free variables

of the original term, we will simply consider that the translation
preserves free variables, up to type lifting.

Definition 2 (Sequent translation). The Dialectica translation maps
a sequent, that is, an open term

x1 : Γ1, . . . , xn : Γn ` t : A

to an intuitionistic proof:

x1 : W[Γ1], . . . , xn : W[Γn] ` t• : W[A]

together with, for each free variable xi, its xi-collector:

x1 : W[Γ1], . . . , xn : W[Γn] ` txi : C[A]⇒ C[Γi]

The orthogonality relation is lifted to sequents seamlessly and
results in the following definition.

Definition 3 (Sequent validity). A sequent x1 : Γ1, . . . , xn : Γn `
t : A is valid whenever for all ~u : W[~Γ] and π : C[A], if for all i,
ui ⊥Γi (txi{~x← ~u})π then t•{~x← ~u} ⊥A π.

2.3 The actual translation
In order to present the term translation, we need to introduce some
more material. We recall that we required the atomic types Wα and
Cα to be non-empty. Then, for every type A we can construct a
dummy term ∅A : W[A].

Definition 4 (Dummy term). Dummy terms are defined by induc-
tion on A:

• ∅α (resp. ∅α⊥) is a term inhabiting Wα (resp. Cα);
• ∅!A := ∅A and ∅(!A)⊥ := λx.∅A⊥

• ∅A⊗B := (∅A,∅B) and
∅(A⊗B)⊥ := (λx.∅A⊥ , λy.∅B⊥)

As we shall see, the dummy term serves an encoding purpose,
and for the translation of the λ-calculus, we will only need it at the
level of stacks, not at the level of terms.

Definition 5 (Merge). Similarly to the dummy term, we can use
the decidability of the orthogonality on atomic types to lift it to any
type. In particular, we can easily write a λ-term

mergeA : C[A]⇒ C[A]⇒W[A]⇒ C[A]

with the following property:

mergeA π1 π2 t →∗β
{
π2 if t ⊥A π1

π1 otherwise

We also use some syntactic sugar to ease the reading. In partic-
ular, we will write

λ(x, y). t :=λp. match p with (x, y) 7→ t

for some fresh variable p, and p1, p2 for the projections.

Definition 6 (Linearized Dialectica). The linearized Dialectica
transformation is defined at Figure 4.

Variable case: Γ, x : A ` x : A.

x• := x

xx := λπ. π

xy := λπ.∅Γ⊥
i

when x 6= y and (y : Γi) ∈ Γ

Abstraction case: Γ ` λx. t : A⇒ B.

(λx. t)• := (λx. t•, λπx. tx π)

(λx. t)y := λ(x, π). ty π

Application case: Γ ` t u : B.

(t u)• := (p1 t•)u•

(t u)y := λπ. mergeΓi
(ty (u•, π)) (uy (p2 t• π u•)) y

Figure 4. The linearized Dialectica transformation

Proposition 4 (Soundness). The Dialectica translation preserves
sequent typing, i.e. for all Γ ` t : A and (x : Γi) ∈ Γ,

W[Γ] ` t• : W[A]

W[Γ] ` tx : C[A]⇒ C[Γi].

Proposition 5 (Validity). If Γ ` t : A, then it is a valid sequent.

3. A cleaner Dialectica translation
3.1 Stating the problem
The translation presented in the previous sections suffers from
several defects. First, it still only applies in a typed setting, because
we need the hypothesis type to build the variable and application
collectors. Indeed, merge and ∅ are only defined with respect to a
given type.

Second, it does not comply with one of the most fundamental
properties expected for a λ-calculus translation, that is, compatibil-
ity with reduction.
Fact 1. In general, when t→∗ u, we do not have t• ≡β u•.

From where does the problem stem? If one tried to prove that
such a property did hold, she would get stuck because of the lack
of algebraic equalities during reduction of the merge operator. For
example, we do not have the following desirable algebraic equality
in general:

mergeA ∅A⊥ π t ≡β π
Indeed, because it uses an ad hoc definition parameterized with

the decideα user-provided functions, merge may have a highly
non-uniform behaviour in its return value, resulting in an unpre-
dictable choice between ∅A⊥ and π.

Let us step back and inspect what are our requirements in the
construction of the translation as well as in its soundness proof.
Fact 2. The following properties are essential in the Dialectica
transformation:

1. The existence of the ∅ family of terms, as well as of the merge
operator;

2. the orthogonality preservation of the merge:

t ⊥A mergeA π1 π2 t ↔ t ⊥A π1 ∧ t ⊥A π2.

This clearly looks like the encoding of a cleaner object. We can
abstract away these properties using the following data structure.

Definition 7 (Abstract multisets). An abstract multiset data struc-
ture is the conjunction of the following data:

• A parameterized type M (−)

• The following constants1: ∅, ~, {·} and >>= admitting the fol-
lowing typing rules:

Γ ` ∅ : MA

Γ ` m1 : MA Γ ` m2 : MA

Γ ` m1 ~m2 : MA

Γ ` t : A

Γ ` {t} : MA

Γ ` m : MA Γ ` f : A⇒MB

Γ ` m >>= f : MB

For now, we do not require any β-equivalence on these terms.
The reader can foresee that we will want to obtain a monad struc-
ture obeying some monoidal rules, though. The natural candidate
will obviously be the finite multiset monad.

The ~ operator will be used as a rewriting-friendly merge, and
∅ will be used as a uniform dummy term.

Note also that the typing here is essentially for readability pur-
poses. Indeed, we will be working with untyped λ-calculus soon,
where such a datastructure could be written uniformly without car-
ing about the types at all.

3.2 Towards a déjà vu
Equipped with our axiomatic structure, let us head to an adaptation
of the linear Dialectica transformation to try to fix our problems.
As we remarked, we used the dummy terms to play the role of a
generic placeholder. Because we are about to get rid of dummy
terms, we can also remove the non-emptyness condition on atomic
types upon which they were defined.

Assumption 3. From now on, we do not require anymore Wα and
Cα to be non-empty.

It turns out that we do not really need the orthogonality relation
either in this new paradigm. Actually, the orthogonality was solely
used to discriminate dummy terms. Now that atomic types may
be empty, there is no way to construct such terms and paraproofs
automatically become valid proofs.

Definition 8 (Revised proofs). A proof of A is now any term
t : W[A].

The careful scrutiny of the translation indicates that the only
type using the dummy terms and merging features was the expo-
nential !A. Indeed, those constructions only appear in collectors,
and with types from the context of the sequent, which are precisely
the types wearing an exponential modality in the translation. We
can parallel the use of these terms with structural rules introduced
by the call-by-name translation:

• Weakening at axioms for an unused variable, matched by the
use of a ∅ in our translation;
• Contraction at applications, matched by the merge operator;
• Promotion and dereliction, transparent in Dialectica.

Therefore, we only have to adapt the translation of the bang con-
nective as follows. All other type interpretations remain unchanged.

Definition 9 (Revised bang). The counter interpretation of the
bang connective is now interpreted as:

C[!A] := W[A]⇒M (C[A])

This also affects the typing of sequents, as collectors’ typing is
turned from:

W[Γ] ` txi : C[A]⇒ C[Γi]

into:
W[Γ] ` txi : C[A]⇒M (C[Γi])

1 We use infix notation to ease readability, but they should be treated as plain
λ-terms.

Fact 3. If MA is taken to be the type of finite sets overA, then the
translation we recover is the linearization of the so-called Diller-
Nahm variant of the Dialectica translation [4].

Rediscovering a known transformation through a bypath is quite
a reassuring thing. As we shall see, it is nonetheless more natural
to consider finite multisets instead of finite sets here, even though
the finite set version would comply with the requirements stated in
the next section. This is not unrelated to the similar choice found in
coherent spaces [10].

3.3 The revised Dialectica
The translation is essentially the same. The intuitionistic part re-
mains unchanged. We only add abstract multiset related structure
in the variable and application rules.

Definition 10 (Revised Dialectica). The revised Dialectica trans-
formation is defined at Figure 5.

Variable case:

x• := x

xx := λπ. {π}
xy := λπ.∅ when x 6= y

Abstraction case:

(λx. t)• := (λx. t•, λπx. tx π)

(λx. t)y := λ(x, π). ty π

Application case:

(t u)• := (p1 t•)u•

(t u)y := λπ. (ty (u•, π)) ~ (p2 t• π u• >>=(λρ. uy ρ))

Figure 5. The revised Dialectica transformation

Preservation of typability is obtained as expected.

Theorem 1 (Soundness). For all Γ ` t : A and (x : Γi) ∈ Γ, we
have:

W[Γ] ` t• : W[A]

W[Γ] ` tx : C[A]⇒M (C[Γi])

The real gain of this variant is that, given the right operational
semantics on the abstract multiset structure, we recover a true
proof-theoretic translation that preserves β-equivalence.

Assumption 4. We assume that the abstract multiset complies with
the following rewriting rules.

Monadic laws

{t} >>= f ≡β f t t >>=(λx. {x}) ≡β t
(t >>= f) >>= g ≡β t >>=(λx. f x >>= g)

Monoidal laws

t ~ u ≡β u ~ t
∅ ~ t ≡β t ~ ∅ ≡β t

(t ~ u) ~ v ≡β t ~ (u ~ v)

Distributivity laws

∅ >>= f ≡β ∅

(t ~ u) >>= f ≡β (t >>= f) ~ (u >>= f)

t >>=λx.∅ ≡β ∅

t >>=λx. (f x ~ g x) ≡β (t >>= f) ~ (t >>= g)

Commutative cuts

match t with (x, y) 7→ ∅ ≡β ∅

match t with (x, y) 7→ m1 ~m2 ≡β
(match t with (x, y) 7→ m1) ~ (match t with (x, y) 7→ m2)

(match t with (x, y) 7→ u) >>= f ≡β
match t with (x, y) 7→ (u >>= f) (x, y not free in f)

There are some comments to be made about such a structure.
The first three groups of rules are natural and can be thought of as
the expected dynamical behaviour of a (finite) multiset. Nonethe-
less, note that it may be degenerated, as the unit monad MA :=1

does fit the bill with the trivial operations.
The existence of the free version of an abstract multiset in the

pure λ-calculus should be questioned, but the usual list structure
is not far from being a candidate. Actually, the only real property
absent in lists is the commutativity of the union. As we never escape
from the multiset monad, one solution could consist in working
with up-to-reordering lists by natively putting built-in equivalence
rules in the rewriting system of an extended λ-calculus. Or we
could just see it from the programming language side, by assuming
an abstract primitive datastructure coming as an extension of the
λ-calculus.

The commutative cut rules are more of a technical problem.
We need them to ensure the good properties of the translation. In
our case, they are an elegant way to palliate more serious issues
of positive connectives in λ-calculus. This particular problem has
been around for a long time, but seems to have been considered as
a technical hassle introduced by inductive types. For more details,
see for instance [6, 14].

Assuming those rewriting rules, one can derive the following set
of equivalences on Dialectica.

Proposition 6 (Emptyness). If x is not a free variable of t, then
tx ≡β λπ.∅.

Proposition 7 (Substitution lemma). We have:

(t{x← r})• ≡β t•{x← r•}
when x is not free in r, and:

(t{x← r})y ≡β

λπ. (ty{x← r•}π)~ (tx{x← r•}π >>=λρ. ry ρ)

when x is not free in r and x 6= y.

Remark 1. Note that by combining the emptyness lemma with the
substitution lemma, we obtain:

(t{x← r})y ≡β ty{x← r•}
when both x and y are not free in r and x 6= y.

We can finally conclude that β-equivalence is preserved through
the revised Dialectica transformation.

Theorem 2. If t ≡β u, then t• ≡β u•.

4. Through the Abstract Machine
So far, we have only been interested in the typing and soundness
properties of the Dialectica transformation. This is not the end of
the story, though. We can show that the Dialectica transformation is
not only one of the first Curry-Howard-like logical transformation,
but that it is actually one of those. As we will show in this section,
the content of the translation can be explained by the operational
semantics of an abstract machine, and not just any. Dialectica can
indeed be described thanks to the famous Krivine abstract machine.

4.1 The Krivine abstract machine
The Krivine abstract machine (KAM for short) shall be the key to
the unveiling of the computational content hidden into Dialectica.
This is a call-by-name abstract machine that serves many purposes,
one of its most prolific uses being the classical realizability [11].

We recall at Figure 6 the basic definitions of the KAM. A KAM
state, also called process, is a pair of a head closure c and a stack
π. The head closure is responsible for the transition rules to apply
to the process, according to the rules of Figure 6.

Closures c ::= (t, σ)

Environments σ ::= ∅ | σ + (x := c)

Stacks π ::= ε | c · π
Processes p ::= 〈c | π〉

PUSH 〈(t u, σ) | π〉 → 〈(t, σ) | (u, σ) · π〉
POP 〈(λx. t, σ) | c · π〉 → 〈(t, σ + (x := c)) | π〉
GRAB 〈(x, σ + (x := c)) | π〉 → 〈c | π〉
GARBAGE 〈(x, σ + (y := c)) | π〉 → 〈(x, σ) | π〉

Figure 6. The Krivine Abstract Machine (KAM)

We shall emphasize that there are several variants of the KAM
in the wild. Note in particular that in the present variant, we use
closures instead of direct substitution. This feature is an absolute
requirement to understand how Dialectica works under the hood,
in a fashion similar to [13]. It turns out that the GRAB rule will be
our quintessential point of attention.

4.2 Lifting Dialectica
Working with a direct-style operational semantics like the KAM is
lighter, but this forces us to relate its first-class objects to the en-
coded structures found in the translation. There are essentially two
straightforward but cumbersome additional translations to define,
one for each newly introduced object: environments and stacks.

We will rule out the issue of environments quickly by trans-
lating closures to plain terms. We will do so by flattening them
recursively.

Definition 11 (Closure flattening). Let (t, σ) be a closure. The
closure flattening of (t, σ), written t n σ, is defined inductively
as:

• tn ∅ := t
• tn σ + (x := (u, τ)) := (tn σ){x← un τ}

If σ = (x1 := (r1, τ1))+ . . .+(xn := (rn, τn)), we will write
by an abuse of notation:

t{~x← σ•} := t{~x← (~r n ~τ)•}

Proposition 8. The following equivalence holds:

t•{~x← σ•} ≡β (tn σ)•

More interestingly, KAM stacks are also given a first-class cit-
izenship in the Dialectica transform, albeit not being formally sep-
arated from the target of λ-terms. Thanks to the existence of pairs
in λ×, we can define the following simple translation of stacks.

Definition 12 (Stack translation). Let π be a KAM stack. We define
its Dialectica translation π• by induction over π:

• ε• := ε, for some fresh variable ε
• ((t, σ) · π)• := ((tn σ)•, π•).

Actually, we could even design a typing judgment for KAM
stacks, that would be preserved through the stack translation, where
a stack π ` A would be mapped to a counter ` π• : C[A].

4.3 The main result
We can now answer the issue of the computational content of the
Dialectica translation.

Theorem 3 (KAM simulation). Let t be a term, σ an environment
and π a stack. Assume x a free variable of t such that x appears
neither in any hereditary binding of σ nor in π. Suppose now that
there exists an environment τ and a stack ρ s.t.:

〈(t, σ) | π〉 →∗ 〈(x, τ) | ρ〉

Then there exists a term m such that:

tx{~x← σ•}π• ≡β {ρ•}~m

Proof. By induction on the length of the machine reduction.

• Rule GRAB: there are two cases.
If 〈(x, σ + (x := c)) | π〉 → 〈c | π〉. We have:

xx{~x← σ•}π• →β {π•} ≡β {π•}~∅

If 〈(y, σ + (y := c)) | π〉 → 〈c | π〉 where y 6= x. We
assumed that x was not in σ nor in π, therefore it cannot reduce
to a state 〈(x, τ) | ρ〉. Note that in this case:

yx{~x← σ•}π• →β ∅
• Rule GARBAGE. This rule is transparent for the translation. We

conclude by induction hypothesis.
• Rule POP. Assume, for some y 6= x:

〈(λy. t, σ) | (u, τ) · π〉 → 〈(t, σ + (y := (u, τ)) | π〉

Then we have:

(λy. t)x{~x← σ•} ((un τ)•, π•)

≡β tx{~x← σ•, y ← (un τ)•}π•

We conclude by induction hypothesis.
• Rule PUSH. This is the interesting rule. Assume:

〈(t u, σ) | π〉 → 〈(t, σ) | (u, σ) · π〉

The translation gives:

(t u)x{~x← σ•}π•

→β tx{~x← σ•} (u•{~x← σ•}, π•)~
p2 (t•{~x← σ•})π• u•{~x← σ•} >>=
λπ. ux{~x← σ•}π

There are two ways the right hand side may evaluate to some
state 〈(x, τ) | ρ〉. The variable x is encountered either in the
reduction of t or in the reduction of u.

If x is encountered in the reduction of t, we can α-rename
the occurences of x in the closure (u, σ) as (û, σ̂) without
affecting the considered reduction path. We get the following
α-converted reduction:

〈(t, σ) | (û, σ̂) · π〉 →∗ 〈(x, τ) | ρ〉

The altered reduction has the same length as it original counter-
part, so we recover by the induction hypothesis:

tx{~x← σ•} (u•{~x← σ•}, π•)
≡β tx{~x← σ•} ((ûn σ̂)•, π•)

≡β {ρ•}~m

from which we can conclude using rewriting steps.

If x is encountered in the reduction of u, then we have a
reduction of the following shape where x0 is fresh:

〈(t, σ) | (u, σ) · π〉
→∗ 〈(λx0. t0, σ) | (u, σ) · π〉
→ 〈(t0, σ + x0 := (u, σ)) | π〉
→∗ 〈(x0, σ + x0 := (u, σ)) | π̂〉
→ 〈(u, σ) | π̂〉
→∗ 〈(x, τ) | ρ〉

By applying the induction hypothesis on the variable x0 to
〈(t0, σ + x0 := (u, σ)) | π〉, we obtain

t0x0{~x← σ•, x0 ← (un σ)•}π• ≡β {π̂•}~m

for some m. By the KAM reduction, we also have:

t{~x← σ} →∗β λx0. t0{~x← σ}

from which we can rewrite:

p2 (t•{~x← σ•})π• u•{~x← σ•} >>=
λπ. ux{~x← σ•}π

→∗β p2 (λx0. t0{~x← σ})• π• u•{~x← σ•} >>=
λπ. ux{~x← σ•}π

→+
β t0x0{~x← σ, x0 ← u•{~x← σ•}}π• >>=

λπ. ux{~x← σ•}π
≡β {π̂•}~m >>=λπ. ux{~x← σ•}π
≡β (ux{~x← σ•} π̂•)~(m >>=λπ. ux{~x← σ•}π)

We can conclude by applying the induction hypothesis to
〈(u, σ) | π̂〉.

We could refine this result at the cost of a more technical
presentation. Actually, it is easy to check that the collectors also
preserve multiplicity of the encountered stacks, as witnessed by
the rules for variables and application. This is why the choice of
finite multisets is more natural than the choice of finite sets from an
operational point of view.

Note also that what the we obtain is an equivalence rather than
some reduction. This is chiefly due to the fact we had to present the
commutative cuts as equivalences. Recovering a reduction instead
is far from from obvious, if achievable at all.

4.4 Is Dialectica broken?
We can rephrase this result and comment it a bit. What Dialectica
does is no more than a bookkeeping of the states of the abstract
machine that triggered a GRAB rule. Each time a variable of a clo-
sure is accessed, Dialectica remembers the current stack to return
it at the end. Hence the name of x-collectors we gave to the (·)x
transformations.

In particular, the second component of the translation of λ-
abstractions can be simply seen as the collector for the bound vari-
able hidden in the λ-term by η-expansion. And indeed, it happens
that we have such a correspondance.
Fact 4 (Collector η-expansion). For all term t and for all variables
x and π free in t, we have:

p2 t
• π x ≡β (t x)x π

Therefore, it seems that we should be satisfied with the KAM
description. Unluckily, there is a catch. The simulation result actu-
ally raises more legitimate questions than it solves. Indeed, we can
make the following experimental observation.
Fact 5. The stacks are produced regardless of the evaluation order,
i.e. if we implemented MA as a list, then the produced list would
not respect the order in which each stack is encountered in the
KAM.

This is actually a critical problem. The Dialectica transform is
computing something which is partly wrong: it does produce the
encountered stacks with the right multiplicity, but the result does
not agree with the intrinsic sequentiality of the KAM. One could
argue that the KAM is the faulty one here. But it does not sound
right, for Dialectica has the following defects:

1. List-using Dialectica does not preserve β-reduction, as the com-
mutation rule for ~ is essential in the proof of theorem 2.

2. The output order is totally irrelevant with respect to any sensible
reduction strategy we can think of anyway.

The issue arises in the translation of the application rule. We
recall that the translation of applications is of the following two-
part form.

(t u)y π ≡β (ty (u•, π))~ (p2 t
• π u• >>=(λρ. uy ρ))

Under our interpretation, the left part corresponds to accesses
to y in t, while the right part corresponds to repeated accesses
in u after its substitution in t ≡β λx. t0. The problem is, these
two parts should be interleaved. Indeed, t may access y before and
after reducing to λx. t0. In the latter case, accesses to y may occur
in between accesses to x. There is therefore no reason to split y-
accesses in two parts as done in our translation. In the light of this
evidence, the commutativity requirement for the abstract multisets
is a barely a workaround to this deep design issue.

Alas, there is no obvious way to fix Dialectica such that it agrees
with the sequential semantics of the KAM. The translation of the
linear arrow seems to be the culprit: it is totally oblivious to the
relative order by which events happen, and there is no way to
recover causality dependence between its two components.

5. Towards CCω

There have been ongoing efforts to lift Dialectica-like translations
to dependent types in a categorical system through the double-
glueing construction, to no avail. This failure seems to originate in
the ad hoc encodings of the historical translation. Our formulation
renders the problem tractable, if not trivial, in a syntactic setting.

We will indeed show now, as a proof-of-concept, how our pre-
sentation naturally applies to the quite expressive CCω . Indeed,
CCω is a pure type system with a denumerable quantity of uni-
verses featuring amongst others dependent types. It is a variant of
Luo’s ECC [12] without any impredicative universes.

5.1 Presenting CCω

In this section, we provide the reader with one of the formalization
of the Curry-style CCω system. The whole set of rules is described
at Figure 7 for the record, but for the moment, let us discuss a bit
about this theory.

A,B, t, u ::= x | λx. t | t u | �i∈N | Πx : A.B

(λx. t)u →β t{x← u}

WF-EMPTY
` ·

Γ ` A : �i
WF-CONS

` Γ, x : A

Γ ` A : �i
AX

Γ, x : A ` x : A

i < j ` Γ
TYPE

Γ ` �i : �j

Γ ` t : B Γ ` A : �i x not free in t
WKN

Γ, x : A ` t : B

Γ, x : A ` t : B Γ ` Πx : A.B : �i
ABS

Γ ` λx. t : Πx : A.B

Γ ` A : �i Γ, x : A ` B : �j
FORALL

Γ ` Πx : A.B : �max(i,j)

Γ ` t : Πx : A.B Γ ` u : A
APP

Γ ` t u : B{x← u}

Γ ` t : A Γ ` B : �i A ≡β B
CONV

Γ ` t : B

Figure 7. The CCω system

As for the calculus of constructions from where it stems, the
usual λ-calculus arrow is refined as a dependent arrow Πx : A.B
where B may depend on A. This allows would-be types to contain
plain terms, hence the adjective dependent.

Actually, there is no formal distinction in CCω between terms
and types, which are merged in the same syntactic class generically
described as terms. In order to be able to type terms that would
correspond to usual types, it features a denumerable hierarchy of
universes �i∈N which are the types of types, where each type at a
level i inhabits in a higher universe at a level j > i. This strict
constraint ensures that the type system can rule out unsoundness
based on variants of Russel’s paradox [2].

We made the choice to use a Curry-style CCω for simplicity of
this particular exposition. For the implementer, this is not innocu-
ous, as the Curry-style presentation suffers from practical defects.
One of the most salient issues is the indecidability of type infer-
ence. We made this choice for the sake of clarity, as we could read-
ily adapt the Dialectica transformation to the usual Church-style
presentation. It is just easier to manipulate the Dialectica transform
in Curry-style, and it fits more naturally in the course of this article.

5.2 The issues of a type-dependent Dialectica
There is only a small amount of modifications to do in order to lift
the translation of Figure 5 to CCω . This essentially amounts to the
following:

• Because we introduced dependent types, we need to switch
from plain arrows A ⇒ B and products A × B to their
dependent counterparts Πx : A.B and Σx : A.B.
• As we gave a first-class citizenship to types, we also need to

provide them with an interpretation.

Actually, the first point is rather simple, and the second point is
almost already solved.

5.2.1 Handling type-dependency
First, the introduction of dependency imposes us to switch from
products to dependent products in the target system. We present at
Figure 8 the rules to add to CCω to recover the adapted system
CC×ω .

A,B, t, u ::= . . . | (t, u) | match t with (x, y) 7→ u

match (t, u) with (x, y) 7→ r →β r{x, y ← t, u}

Γ ` t : A Γ ` u : B{x← t} Γ ` Σx : A.B : �i

Γ ` (t, u) : Σx : A.B

Γ ` t : Σx : A.B Γ, x : A, y : B ` u : C

Γ ` match t with (x, y) 7→ u : C

Γ ` A : �i Γ, x : A ` B : �j

Γ ` Σx : A.B : �max(i,j)

Figure 8. Target CC×ω

Note in particular that in CC×ω , we can recover a non-dependent
arrowA⇒ B and a non-dependent productA×B by the forgetful
encoding:

A⇒ B := Πx : A.B A×B := Σx : A.B

where x is not free in B.
Additionally, the dependency issue requires some isomorphism

reordering to lift the revised Dialectica. This unfortunately breaks
the linear decomposition of the arrow. Recall that we had in the
revised transformation:

W[A⇒ B] = W[!A(B]

=

W[A]⇒W[B]

×
C[B]⇒W[A]⇒M (C[A])

Yet, because of the introduction of the dependency, B may now
depend on an element ofA. Thus the W[A] argument in the second
component should be placed before the C[B] argument, resulting
in the following translation:

W[Πx : A.B] =

Πx : W[A].W[B]

×
Πx : W[A].C[B]⇒M (C[A])

As a side remark, this seems to be a hint at the fact that there
is something broken either in the linear decomposition or in the
current presentation of dependent types. We do not know which
one is the actual culprit though.

5.2.2 Handling higher-order
As CCω does not distinguish between plain terms and types, we
must translate both at the same time. This raises two issues.

First, we must adapt abstract multisets to live well in this higher-
order setting. This is not much of a problem, and we tweak them as
follows.

Definition 13. In this section, we change the typing rule of ∅ by:

Γ ` A : �i

Γ ` ∅ : MA

and we require additional well-behavedness of M :

Γ ` A : �i

Γ `MA : �i

A ≡β B
MA ≡β MB

The two typing rules are motivated by coherence conditions,
and the compatibility with β-equivalence is natural as soon as we
will be computing in types. Remark that we won’t be using >>= in a
dependent setting, hence there is no need to change its typing rule
to a dependent arrow.

We must also fix the problem of the translation of types. There
is little room for design choice here. We must be able to access the
witness and the counter types of any translated type at any moment.
The only sensible way to do this is by setting the intuitionistic
translation of a type to be a pair of types, composed of the witness
and counter types. Therefore, the W[·] and C[·] constructions we
have been using since the beginning are going to be turned into
simple macros.

Definition 14 (Witness & counter macros). Given any term A, we
will write:

W[A] := p1 A
• and C[A] := p2 A

•

Likewise, we must answer the question of the proper collector
translation for types. The abstract machine intuition could be a
fruitful one, but unfortunately, as of today, there is no clear abstract
machine presentation of a typing system for CCω . In particular, it
is unclear when we must compute things and in which order. The
most elegant way we came up with was to deny any computational
contents to types, that is, given any closed type A, we will enforce
Ax ≡β λπ.∅.

5.3 Final translation
It is now simple to provide a Dialectica translation to CCω . The λ-
calculus part is taken almost unchanged from Figure 5, except for
the commutation described at paragraph 5.2.1 which impacts intu-
itionistic proof of the abstraction and collectors of the application.

The translation on types was already essentially defined at para-
graph 5.2.2, so we just stick to these design choices.

All the rewriting lemmas from the simply-type case still hold.
It is indeed sufficient to check that they are still valid for the two
new constructs �i and Πx : A.B. We recover in particular the
β-reduction preservation lemma as before.

Proposition 9. If t ≡β u, then t• ≡β u•.

Thanks to this property, we can tediously check that all typing
rules are preserved by the translation, and in particular the CONV
inference rule which actively makes use of β-equivalence. We
finally recover the preservation of typability in the following form.

Theorem 4 (Soundness). For all Γ ` t : A and (x : Γi) ∈ Γ,

W[Γ] ` t• : W[A]

W[Γ] ` tx : C[A]⇒M (C[Γi]).

To insist on the beauty of the dependent Dialectica translation,
it is noteworthy that now, W[·] and C[·] are not a preexistent type
translation, but actually a macro using the (·)• inductive term
translation.

Theorem 5 (Non-degeneracy). Assuming CC×ω +M is coherent,
there is no proof of Falsei := ΠA : �i. A.

Variable case:

x• := x

xx := λπ. {π}
xy := λπ.∅ when x 6= y

Abstraction case:

(λx. t)• := (λx. t•, λxπ. tx π)

(λx. t)y := λ(x, π). ty π

Application case:

(t u)• := (p1 t•)u•

(t u)y := λπ.(ty (u•,π))~(p2 t• u• π>>=(λρ.uyρ))

Type case:

(�i)• := (�i × �i,�i)
(�i)y := λπ.∅

Product case:

(Πx : A.B)+ :=

Πx : W[A].W[B]

×
Πx : W[A].C[B]⇒MC[A]

(Πx : A.B)− := Σx : W[A].C[B]

(Πx : A.B)• := ((Πx : A.B)+, (Πx : A.B)−)

(Πx : A.B)y := λπ.∅

Figure 9. A type-dependent Dialectica transformation

Proof. Indeed, we have

W[Falsei] ≡β

 ΠA : (�i ×�i). p1 A
×

ΠA : (�i ×�i).Ππ : (p2 A).M�i

and there is no proof of the first component if the target system is
coherent.

Conclusion
In this paper, we have presented a modern formulation of the
Dialectica transformation, based on the merging of a categorical
presentation together with a syntactical Curry-Howard approach,
thus providing it with a operational content. We also showed that
a richer type system such as CCω could accomodate a direct
Dialectica transformation.

Yet, we also discovered that there was a subtle mismatch be-
tween Dialectica and its underlying computational model, which do
not agree on such an important thing as sequentiality. This design
issue is hardwired in the translation and cannot be solved trivially.
This has some unpleasant consequences. For instance, if one wants
to create a practical system not using the theoretical workaround of
abstract multisets, she would have first to find a way to present a
sequentialized Dialectica.

This argument can also be reversed in favour of Dialectica, and
may be justified by the linear decomposition. Actually, models of
linear logic are often partially forgetful of sequentialization. The
commutativity of the exponential seems indeed a bit at odds with
the sequentiality of abstract machines.

On a more positive note, tweaking the Dialectica translation of
CCω could be a fruitful way to achieve the comprehension of lin-
ear dependent types, or at least a better insight. In particular, the
idea of types as computational-free objects is at stake if we want
to bring the abstract machine intuition with dependent types. One

would require a better interleaving of typing and computation to
solve this particular problem, a feature that usual PTS-based sys-
tems do not provide. Studying other PTS extensions like inductives
with dependent elimination may also prove helpful.

From the point of view of side-effects, Dialectica can be consid-
ered as a weak form of delimited control. Contrarily to usual unde-
limited continuations, as featured by control operators like callcc,
stacks returned by the collectors are delimited by the current stack,
i.e. the argument of these collectors. But the continuations pro-
duced by Dialectica also have a polarized flavor, in the sense that
instead of being an abstract continuation, they can be inspected just
like a first-order positive datatype. Even more strikingly, this prop-
erty is a requirement of the translation, as shown by the collector
of the λ-abstraction, which does pattern-matching on the current
stack to extract its argument. Such so-called inspectable continu-
ations surprisingly arise in a somewhat related setting, described
in an article from the same volume [15], which attempts to give a
computational content to the involutive negation through polariza-
tion and delimited continuations. It seems that Dialectica features
a well-behaved translation for a fragment of those calculi, and the
relation between them should be worked out.

As a final constatation, and in the lineage of modern proof
theory, we have shown once again that a famous logical translation
had a well-defined computational content easily expressed in direct
style with an abstract machine. This underlines once more the
robustness of this technique.

Acknowledgements I would like to warmly thank Paul-André
Melliès, Martin Hyland and Hugo Herbelin for their insightful
discussions, Alexis Saurin for his continuous versatile support and
Colin Riba for having provided me with the original motivation
for this article. I would also like to thank the reviewers for their
precious comments and remarks.

References
[1] Jeremy Avigad and Solomon Feferman. Gödel’s functional (‘di-

alectica’) interpretation. In Samuel R. Buss, editor, Handbook of
Proof Theory, pages 337–405. Elsevier Science Publishers, Amster-
dam, 1998.

[2] Thierry Coquand. An analysis of Girard’s paradox. In LICS, pages
227–236. IEEE Computer Society, 1986.

[3] Valeria de Paiva. A dialectica-like model of linear logic. In David H.
Pitt, David E. Rydeheard, Peter Dybjer, Andrew M. Pitts, and Axel
Poigné, editors, Category Theory and Computer Science, volume 389
of Lecture Notes in Computer Science, pages 341–356. Springer, 1989.

[4] Justus Diller. Eine Variante zur Dialectica-Interpretation der Heyting-
Arithmetik endlicher Typen. Archiv für mathematische Logik und
Grundlagenforschung, 16(1-2):49–66, 1974.

[5] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.

[6] Jean-Yves Girard. The Blind Spot: Lectures on Logic. European
Mathematical Society, 2011.

[7] Kurt Gödel. Über eine bisher noch nicht benützte Erweiterung des
finiten Standpunktes. Dialectica, 12:280–287, 1958.

[8] Hugo Herbelin. An intuitionistic logic that proves Markov’s principle.
Logic in Computer Science, Symposium on, 0:50–56, 2010.

[9] J. M. E. Hyland. Proof theory in the abstract. Ann. Pure Appl. Logic,
114(1-3):43–78, 2002.

[10] Martin Hyland and Andrea Schalk. Glueing and orthogonality for
models of linear logic. Theor. Comput. Sci., 294(1/2):183–231, 2003.

[11] Jean-Louis Krivine. Dependent choice, ‘quote’ and the clock. Theor.
Comput. Sci., 308(1-3):259–276, 2003.

[12] Zhaohui Luo. ECC, an extended calculus of constructions. In LICS,
pages 386–395. IEEE Computer Society, 1989.

[13] Alexandre Miquel. Forcing as a program transformation. In LICS,
pages 197–206. IEEE Computer Society, 2011.

[14] Guillaume Munch-Maccagnoni. Syntax and Models of a non-
Associative Composition of Programs and Proofs. PhD thesis, Univ.
Paris Diderot, December 2013.

[15] Guillaume Munch-Maccagnoni. Formulae-as-types for an involu-
tive negation. In Proceedings of the joint meeting of the Twenty-
Third EACSL Annual Conference on Computer Science Logic and the
Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer
Science (CSL-LICS), 2014.

[16] Paulo Oliva. Unifying functional interpretations. Notre Dame Journal
of Formal Logic, 47(2):263–290, 04 2006.

[17] Thomas Streicher and Ulrich Kohlenbach. Shoenfield is Gödel after
Krivine. Math. Log. Q., 53(2):176–179, 2007.

	Rephrasing Linear Dialectica
	Translating call-by-name -calculus
	Call-by-name linear translation on types
	Translating sequents
	The actual translation

	A cleaner Dialectica translation
	Stating the problem
	Towards a déjà vu
	The revised Dialectica

	Through the Abstract Machine
	The Krivine abstract machine
	Lifting Dialectica
	The main result
	Is Dialectica broken?

	Towards CC
	Presenting CC
	The issues of a type-dependent Dialectica
	Handling type-dependency
	Handling higher-order

	Final translation

