
In Cantor Space No One Can Hear You Stream

Martin Baillon1, Assia Mahboubi1,2, and Pierre-Marie Pédrot1

1 INRIA
2 Vrije Universiteit Amsterdam

Abstract. We revisit the famous notion of sheaves through the lens
of type theory and side-effects. Using the language of MLTT, we show
that they inductively approximate idealized functional objects as deci-
sion trees, realizing a generalized form of continuity. We materialize this
intuition in MLTTϝ, a case-study sheaf extension of MLTT with a Cohen
real and leverage it to show uniform continuity of all MLTT functionals
of type (N→ B) → N. The latter results were mechanized in Rocq.

Keywords: type theory, continuity, sheaves, logical relation

1 Introduction

In classical general topology, a family (Oi)i∈I is an open cover of a spaceX ifX =⋃
i∈I Oi and X is compact if any potentially infinite open cover of X contains

a finite cover. Sub-families of an open cover can be seen as approximations of
the underlying space X, and compactness can be viewed as an abstract interface
for a complete finitary description of X. Implementing this interface typically
involves some form of choice principle, with various degrees of effectiveness.

Classical examples of compact spaces include the unit interval [0, 1] for the
usual topology on R, and arbitrary products of compact spaces, for the product
topology — a result known as Tychonoff’s theorem. Equivalent to the axiom
of choice in its full generality, this theorem has far-reaching consequences. For
instance, it ensures the compactness of the space of functions {0, 1}N, called
the Cantor space and denoted N → B, as this space is the countable product
of a discrete set. Tychonoff’s theorem also proves that an arbitrary theory in
propositional logic has a model as soon as any finite subset thereof has a model.
This property also holds for first-order logic, and this generalization is equivalent
to the Boolean prime ideal theorem, a weak form of the axiom of choice.

Modern classical topology gradually generalized the intuitions acquired on
the study of concrete metric spaces, i.e. spaces with an underlying set of elements
that can be equipped with a notion of distance, to more a abstract, point-free
understanding of topology as relations between open sets. In particular, Serre’s
introduction of sheaves into algebraic geometry [60] brought a general machinery
previously pertaining to topological algebra for deducing global properties from
local ones. As of today, topos theory has promoted the study of sheaves as a field
of its own, with applications in geometry, number theory or logic. Forcing is one
such notorious application of sheaves in logic. It generalizes compactness as a



tool for building models of set theory, in particular for proving independence
results like that of the axiom of choice or the continuum hypothesis [47].

About at the same time, different schools of constructive mathematics strived
to avoid non-effective forms of choice principles in analysis, typically for imple-
menting the compactness interface, thus eliminating the “convenient fictions”
of classical topology. Brouwer’s fan theorem is actually the effective, equivalent
wording of the compactness of the Cantor space. Formal, point-free topology
was later introduced by Martin-Löf and Sambin as a foundation of constructive
topology, see e.g. Palmgren’s survey on the foundations of homotopy theory [50].
Brouwer also investigated themeaning of defining a function on a domain such as
the Cantor space, or on the Baire space of functions N→ N. Notably, Brouwer’s
continuity principle states that any function F : (N→ N) → N, defined on the
Baire space, can only rely on finitely many values of its input to compute its
output, otherwise said, F is continuous. This principle should also hold for any
F : (N → B) → N by subtyping. Moreover, compactness of the Cantor space
actually makes this finite collection of values independent from the considered
input. This property is called uniform continuity of F and the collection of such
values, a modulus of continuity. Note that Brouwer’s continuity principle is out-
right wrong in a classical setting, as the later actually even allows for defining
the nowhere continuous function on the Baire space that tests whether its input
is the decimal representation of a rational number in [0, 1[. Brouwer’s principle
however holds for definable functions in certain systems, notably Gödel’s Sys-
tem T [65], by careful inspection of computation trees for recursive functionals.

Brouwer’s heterodox convictions have not pervaded his contemporary math-
ematical community. They however found echoes in the subsequent unfolding
of theoretical computer science, whose central notion of algorithm is at odds
with the classical mathematical notion of functions. For instance, the encod-
ing of recursive functions by means of inductive trees has been rediscovered in
several areas, from Kleene trees [45] to game semantics, and constructive anal-
ysis and topology underpin the foundations of programming languages for safe
cyber-physical systems [61].

Maybe even more surprisingly, as a second validation of Brouwer’s approach,
intuitionistic logic ended up becoming one of the two pillars of the Curry-Howard
correspondence, which identifies intuitionistic proofs with functional programs. It
turned out to be an incredibly valuable tool to understand logic. More than just
allowing to interpret proofs computationally, the correspondence can be followed
along several axes. Some logical interpretations can be seen as program transfor-
mations, a process called indirect style. This contrasts with the so-called direct
style approach, where originally non-provable axioms can be realized through
new computational behaviours called side-effects. The most famous instance of
such a relationship is undoubtedly the interpretation of classical logic, which
identifies in indirect style the double-negation translation with continuation-
passing style, and corresponds in direct style to the implementation of Peirce’s
law via the callcc operator inspired by the Scheme programming language [40].



In terms of expressivity, the apex of this correspondence is Martin-Löf type
theory (MLTT), a system which makes no formal difference between proofs and
programs. Both objects are represented by the very same structure of terms, and
computation is built into the system thanks to dependent types. Since MLTT is
a close cousin to topos theory, it is natural to wonder about the computational
interpretation of sheaves. What effect do they perform? We unravel that they
interpret programs as decision trees capturing a generalized notion of continuity.

The first contribution of this paper is MLTTϝ, a direct style extension of
MLTT to a prototypical sheaf construction known as Cohen real [23,24]. We use
it to construct a syntactic model of MLTT via a logical relation à la Abel [2],
and a mechanized version thereof in Rocq. We show that this model entails the
uniform continuity of all MLTT functionals of type (N→ B) → N. We argue this
is a first step towards a more general understanding of sheaf type theories.

The description of the later contribution actually comes after a perhaps un-
usually expanded section devoted to motivating and situating the later sheaf
model in the diverse landscape of related work. For this purpose, we string to-
gether observations and definitions that, albeit not novel, are scattered across
different domains and explained in different languages. We advocate for the use
of MLTT as a unifying device providing a clear and high-level description of
the objects, stripped from encodings or low-level considerations. This unified
perspective is the second contribution of this paper. One source of inspiration
is the original formulation by Escardó of Brouwer trees as a simple inductive
type, and its clever use to prove continuity of System T functionals [31] that was
generalized to a weak variant of MLTT by Baillon et al. [12] Escardó’s technique
of effectful forcing indeed can be seen as an analogue to sheaf-theoretic forcing
techniques, transposed to the realm of type theory. Another important source
is Rijke, Schulman and Spitters’ article [59] which describes a generalization of
sheaves called localization in the context of homotopy type theory, yet without
emphasis on computation. Coquand et al. also gave a very similar account [25].
A good chunk of the computational behaviour of sheaves have been explained in
the setting of Beth-style realizability in a long series of papers by Rahli et al.,
the most recent being [18], but the importance of the tree-like nature is not rec-
ognized. Finally, the series of work by Coquand and collaborators on dynamical
methods [20] help us bridge the gap between our type-theoretical point of view
and the more common mathematical usage of sheaf-like interpretations.

This paper is thus organized in two parts. The first part consists of Section 2,
which discusses the use of sheaves for building models of type theory. We present
sheaves in indirect style synthetically in the language of MLTT, getting rid of the
presheaf middleman. This allows to pinpoint where the tree-like nature of sheaves
arises and to relate them to other constructions from programming language
theory. Furthermore, it also highlights an extremely specific property of the
side-effects they provide which distinguishes them from more traditional effects.

The second part is devoted to the definition of MLTTϝ and to the study of
its metatheoretical properties. The theory itself is defined in Section 3 and we
describe a complete realizability model for it in Section 4. We use this model



to derive our main result, i.e. that MLTT functionals on the Cantor space are
uniformly continuous and thus cannot observe the potential infinity of their
argument. Therefore, in Cantor space, no one can hear you stream. Hyperlinks
point to relevant parts of the Rocq mechanization of this model.

2 Sheaves

This section argues that sheaves constitute a very nice kind of side-effect, much
better behaved than double-negation interpretations. We defend our case by un-
tangling their traditional definition from the notion of presheaves and rephrasing
it directly in MLTT. By expressing them synthetically, we revisit various well-
known results with a computational point of view.

2.1 Sheaves and Presheaves

We first recall here the usual presentation of sheaves in a set-theoretical but
otherwise underspecified metatheory. For a more comprehensive overview, we
refer to the MacLane and Moerdijk’s reference book [47]. Let us fix a category
P. For any of its objects p, q, written p, q ∈ P, we denote P(q, p) the class of
morphisms with source q and target p. A sieve on p ∈ P is a set of morphisms
with target p that is closed under precomposition. We write Sp for the set of
sieves on p and Σq ∈ P.P(q, p) for the full sieve on p, as we rather see a point
in a sieve on p as a pair (q, α) of an object q ∈ P and a morphism α ∈ P(q, p).

Definition 1. A Grothendieck topology T on P is a P-indexed family of collec-
tion of sieves, i.e. Tp ⊆ Sp for all p ∈ P, that enjoys the following properties.

1. If P ∈ Tp and α ∈ P(q, p) then α∗P ∈ Tq where α∗P is the pullback of P .
2. The full sieve on p belongs to Tp.
3. If P ∈ Tp, Q ∈ Sp and P ⊆

⋃
q∈P {(q, α) | α∗Q ∈ Tq} then Q ∈ Tp.

Grothendieck topologies provide an abstract generalization of the notion of
an open cover and an element Tp of a Grothendieck topology T is thus often
called a covering. Axiom 2. states that the trivial covering is a covering and
Axiom 3. that a covering of coverings is still a covering. We fix a topology T in
the rest of this section. Recall that the category of presheaves over P is defined
as Psh(P) := Pop → Set and that it forms a topos [47].

Definition 2. Let A be a presheaf and P ∈ Sp. A compatible family of A on P
is a family of elements xq,α ∈ Aq for every (q, α) ∈ P that satisfies the equation
A[β](xq,α) = xr,β◦α for all (q, α) ∈ P and β ∈ P(r, q).

Definition 3. A presheaf A is a T-sheaf whenever for every P ∈ Tp and ev-
ery compatible family x of A on P there exists a unique element x̂ ∈ Ap s.t.
A[α](x̂) = xq,α for all (q, α) ∈ P .

Theorem 1. The full subcategory Sh(P,T) of T-sheaves is a topos. Further-
more, the inclusion Sh(P,T) ⊆ PSh(P) has a left adjoint called sheafification.



Sheaf toposes are such a commonplace notion and a historical artifact that
they have a name of their own. They are called Grothendieck toposes.

Let us step back for a second to assess what a topos is from a type-theoretic
point of view. A topos is a kind of type theory, or to be more correct a model of
certain type theory. This type theory is dubbed the internal language of a topos.
Fully describing it would lead us to too far, but let us sketch it here briefly. When
compared to MLTT, the type theory arising from a topos is weird, being both
stronger and weaker. It is stronger because it features an impredicative universe
Prop of proof-irrelevant propositions, bringing it closer to CIC. It also inherits
extensionality principles from Set, including equality reflection, thus making it
an extensional type theory. As a consequence, it validates function extensionality
(funext) and uniqueness of identity proofs (UIP). In addition, it also validates
propositional extensionality (propext). Finally, it interprets quotients together
with a strong form of unique choice. On the weaker side, the usual formulation
of toposes lacks proper universes Type and hence does not feature in general
a true notion of large elimination, where types can be constructed by pattern-
matching on terms. Instead, thanks to Prop, they only allow for propositions
being constructed by case-analysis. This is expressive enough to side-step the
lack of expressivity of pure type systems such as the Calculus of Constructions,
which cannot prove 0 ̸= 1, but is still far from the rich setting of MLTT.

2.2 Sheaves without Presheaves

The notions exposed above can in fact be rephrased in a purely internal way,
a phenomenon that was already observed early on. Indeed, since Psh(P) is a
topos, as we explained above it hosts a rich logical system by itself. Assuming
Grothendieck universes in the host set theory, we can even show that it also
features actual universes in the internal language, making it a model of MLTT.
As a result, everything we write in MLTT can be interpreted straightforwardly
into Psh(P). In this section, we will work in PshTT, an ambient type theory
extending MLTT that is voluntarily kept underspecified. Its intended semantics
is given by presheaf models, so PshTT will provide us in particular with a small
universe of definitional proof-irrelevant propositions Prop [35]. We will liberally
and silently rely on the aforementioned extensionality principles that hold there.
Note that we will refrain from relying on equality reflection though, so some
flavour of observational type theory would be enough to capture PshTT [7].

The goal of this section is to replay all the set-theoretic definitions from Sec-
tion 2.1 directly in PshTT so that the type-theoretic definition will coincide with
the set-theoretic one when interpreted into a presheaf model. This endeavour is
not really novel, but our insistence to use dependent type theory will unravel a
few properties that are not so obvious when using e.g. first-order based internal
languages. Much closer to our approach is the Rijke, Shulman and Spitters’ sig-
nificant work on modalities in HoTT [59] which tackles amongst others a more
generic construction known as localization. Sheafification is a degenerate form
of localization, so our definitions are a simplification of theirs. Yet the fact it is



much simpler also emphasizes computational properties that are not apparent
in their article. Without further ado, let us now describe sheaves synthetically.

Definition 4. A Lawvere-Tierney topology is a term T : Prop → Prop together
with two terms ηT : Π(P : Prop). P → T P and >>=T : Π(P Q : Prop).T P →
(P → T Q) → T Q.

It is reasonably easy to observe that a Lawvere-Tierney topology in the
presheaf model is exactly a Grothendieck topology. The family of sieves T to-
gether with condition 1. correspond to the term T itself, condition 3. corresponds
to >>=T and 2. is internally a proof of T ⊤, which is equivalent to ηT up to propo-
sitional extensionality. Through this presentation, it is immediate that T is just a
monad on Prop. All equations hold trivially as Prop is proof-irrelevant in PshTT.

Definition 5. A type A : Type is a T-sheaf if it is equipped with two terms

– ϝA : Π(P : Prop).T P → (P → A) → A ;
– eA : Π(P : Prop) (p : T P ) (x : A). ϝA P p (λ(q : P ). x) =A x.

Again, we can read back the historical presentation in the internal statement,
namely ϝA gives the existence of glueing and eA corresponds to its uniqueness.

Sheafification is somewhat horrendous when performed analytically, as one
has to pay a lot of attention to low-level details. There also exists an internal
way to define it from topos theory called Grothendieck’s −+ construction [47],
which is similar to an impredicative encoding. Such encodings suffer from a lot of
issues in type theory [51], and the −+ construction is no exception. Fortunately
for us we can define sheafification in a direct way assuming our ambient type
theory to be expressive enough. It is indeed a free functor, so it can be described
very easily as a quotient inductive type [6] (QIT).

Definition 6. We define sheafification as the QIT3 S in Figure 1.

Here, the internal approach really shines. Assuming that our internal notion
of sheaves is indeed the right one, there is nothing to show about the inter-
pretation of S through a presheaf model. By construction, it is the free sheaf
arising from some type. Obviously, the hard part is that one has to show that
QITs exist in presheaf models. Albeit technical, this is actually doable as QITs
can be encoded in extensional type theory using basic inductive and quotient
types [43,33], and presheaf models provide all of this material.

Lemma 1. S defines a monad on Type with the obvious combinators.

It is worth recalling some abstract properties of sheaves in this synthetic set-
ting. We have function extensionality at hand, so all usual categorical definitions
work as expected. We swear to the reader that this is the only place in this paper
where we insist so much on categorical notions. First, let us state the obvious.

3 For completeness, we also write the recursor equation for the quotient constructor as
if it were a higher inductive type (HIT) [66]. For QITs, this equation holds trivially.



Inductive S (A : Type) : Type :=
| ηS : A → S A
| ϝS : Π(P : Prop).T P → (P → S A) → S A
| eS : Π(P : Prop) (p : T P ) (x : S A). ϝS P p (λ(q : P ). x) =S A x.

Srec : Π(A : Type) (R : S A → Type) (rη : Π(x : A). R (ηS x))
(rϝ : ΠP (p : T P ) (k : P → S A) (r : Π(p : P ). R (k p)). R (ϝS P p k))
(re : ΠP (p : T P ) (x : S A) (r : R x).

(eS P p x) # rϝ P p (λ(q : P ). x) (λ(q : P ). r) = r).
Π(s : S A). R s

Srec A R rη rϝ re (ηS x) ≡ rη x
Srec A R rη rϝ re (ϝS P p k) ≡ rϝ P p k (λ(p : P ).Srec A R rη rϝ re (k p))
ap (Srec A R rη rϝ re) (eS P p x) ≡ re P p x (Srec A R rη rϝ re x)

Fig. 1. Sheafification and its associated recursor

Lemma 2. A type A is a T-sheaf exactly when it is an S-algebra. Moreover,
being a T-sheaf is a mere proposition in the HoTT sense.

The latter property makes the monad S idempotent, which has a lot of far-
reaching consequences. One of them is that any function f : A → B between two
sheaves becomes an algebra morphism. This will be important in what follows.

2.3 Oracles as Logical Operating Systems

Before further studying sheaves as computational objects, we first generalize the
notion of topology to an extreme without losing their fundamental properties.
This little shift of perspective will make the relationship of sheafification with
well-known computational objects unmistakable.

Definition 7. A logical operating system (LOS) is given by two terms I : Type
and O : I → Prop.

The name might seem mysterious at first, but it will become clear soon. The
types I and O stand respectively for input and output. We will now define a slight
variant of sheafification from the previous section relying on a LOS (I,O) rather
than a topology. We reuse the same notations for uniformity.

Definition 8. From now on, we will redefine the type S from Definition 6 as

Inductive S (A : Type) : Type :=
| ηS : A → S A
| ϝS : Π(i : I). (O i → S A) → S A
| eS : Π(i : I) (x : S A). ϝS i (λ(o : O i). x) =S A x.

Any T : Prop → Prop gives rise to a LOS by setting I := Σ(P : Prop).T P
and O (P, p) := P . Through this encoding the above definition of S is isomorphic
to the one from Section 2.2. We can similarly define sheafness w.r.t. a LOS.



Definition 9. A type A : Type is an (I,O)-sheaf if it is equipped with two terms

– ϝA : Π(i : I). (O i → A) → A ;
– eA : Π(i : I) (x : A). ϝA i (λ(o : O i). x) =A x.

Note that we actually do not need the monadic closure properties on T for S
to behave well, they are freely added by the QIT. The reason it is a requirement
in the historical presentation is mostly because the S type constructor is tradi-
tionally defined via an impredicative encoding that requires collapsing together
all ϝ constructors. Indeed, using propext and the quotient eS one can replace
two subsequent calls to ϝ first on P : Prop and then on Q : P → Prop by one call
on ∃p : P.Q p thanks to the monadic structure. All calls are compacted this way
by recursion on the list of questions, where the nullary case is given by ⊤ : Prop
and ηT.

We call (I,O) an operating system because it morally corresponds to the
abstract interface for system calls (syscalls). That is, a term i : I codes for a
syscall number with its arguments while O i is the return type of this call. For
some sheaf A, the term ϝA provides a handler that is not unlike the actual low-
level implementation of operating systems where syscalls are implemented using
some form of delimited continuations [44], i.e. objects of type O i → A.

As a matter of fact, this observation has been put to practical use with
interaction trees [68] which are a way to encode a vast range of I/O effects in
type theory. There are several variants of interaction trees, but they all share a
striking similarity with our S type. The most basic kind is defined as the type

(Co)Inductive T (A : Type) : Type :=
| ηT : A → T A
| ϝT : Π(i : I). (O i → T A) → T A

for some I : Type and O : I → Type. The major differences with S are the
following. First T is usually coinductive rather than inductive, but the only
reason for that is it is also meant to encode non-terminating programs. One could
use an inductive variant if they did not care about potential non-termination.
Second, the output type O is proof-relevant, as users care about return values
of their syscalls. Finally, and perhaps more importantly, there is no quotient in
sight, as the order of operations matters critically in an I/O world.

The two latter points are the fundamental reason why in our setting we
talk about a logical operating system. With sheaves, there is no way to extract
proof-relevant content out of a syscall by virtue of O returning propositions, and
furthermore the quotient prevents one to observe not only the order of syscalls
but also their multiplicity and even useless calls.

Lemma 3. For any sheaf A, we can prove the following equalities in PshTT:

i : I, x : A ⊢ ϝA i (λ(o : O i). x) = x
i : I, j : I, x : O i → O j → A ⊢ ϝA i (λ(oi : O i). ϝA j (λ(oj : O j). x oi oj)) =

ϝA j (λ(oj : O j). ϝA i (λ(oi : O i). x oi oj))



This is actually quite surprising when considering (I,O) as introducing side-
effects. Somehow, sheaves provide a kind of unobservable side-effect in the sense
of [54]. There are new normal forms represented by uninterpreted calls to the
oracle via ϝS , but they cannot be exploited internally because of the quotient.
We defer a proper discussion of this phenomenon to Section 2.4.

The relationship between operating systems and forcing was already observed
by Krivine and Miquel in classical realizability [49]. It is part of the folklore of
the French school of type theory, although there is little published material on
the topic, except maybe vulgarization [55]. Regardless, set-theoretic forcing can
be seen as a specific case of sheafification for the double negation monad [47]. It
is interesting to observe that Miquel’s computational interpretation is state-like
rather than tree-like. The deep reason for this is that Miquel’s paper only models
Fω, which lacks dependent elimination. Therefore, it can be re-explained as the
composition of the double-negation translation with the presheaf translation,
which is strictly weaker than ¬¬-sheaves.

2.4 Sheaves in Homotopy Type Theory

An interesting question is the type of type theory that one can obtain from our
synthetic sheaf interpretation. More precisely, we will be looking at syntactic
models, i.e. models defined as mere syntactic translations between theories that
interpret conversion in the source as conversion in the target. We know that
usual sheaves result in a Grothendieck topos, but as mentioned this is hardwiring
extensionality both in the source and in the target. What if we want to get an
intensional theory instead? It turns out that synthetic sheaves go quite a long
way. We sketch the syntactic-synthetic sheaf model in this section. Once again,
this is a simplification and a reformulation of the localization paper [59].

Infrastructure Following the category-with-family (CwF) setting, we will be
translating contexts into contexts, types into synthetic sheaves, i.e.

TypS(Γ ) := Σ[[A]] : Typ(Γ ). isSh [[A]]

and terms as terms of the underlying type. Above isSh A is the data for A from
Definition 9. We assume a target CwF that is rich enough, i.e. basically a model
of PshTT. This construction preserves strictness of substitution from the target,
since this is just a subuniverse model as in [59]. We write terms and types in
the target directly using the MLTT syntax and consciously confuse the target
theory with the ambient type theory, effectively working in the standard CwF.
In particular, TypS can be conflated with the record type TypeS defined below.

TypeS :=

 el : Type;
ϝ : Π(i : I). (O i → el) → el;
e : Π(i : I) (x : A). ϝ i (λ(o : O i). x) = x;


For readability, we will implicitly use the el projection to cast a TypeS to a Type
and identify [[·]] with el.



Π-types The first meaningful type former one usually consider in dependent
type theory is the dependent product. Assuming funext in the target, one can
straightforwardly show that Π-types are inherited from it, i.e. with a bit of abuse
of notation, we pick [[Π(x : A).B]] := Π(x : [[A]]). [[B]]. Indeed, isSh ([[Π(x : A). B]])
holds as soon as we have Π(x : [[A]]). isSh [[B]], the algebra structure being given
pointwise as in any call-by-name model. There is really no more to say about it.

Inductive types Inductive types are much more fascinating. A Grothendieck
topos readily interprets inductive types, so they should have a syntactic equiv-
alent. By relying on QITs in the synthetic approach, it becomes crystal clear.
Essentially, we just take the original inductive type I and freely adjoin it the
ϝI and eI constructors. This construction scales to all inductive types, but we
concentrate on N as a running example, where [[N]] boils down to the QIT below.

Inductive NS : Type :=
| OS : NS

| SS : NS → NS

| ϝN : Π(i : I). (O i → NS) → NS

| eN : Π(i : I) (x : NS). ϝN i (λ(o : O i). x) =NS x.

While defining the type and its constructors is not very exciting, it turns
out that the eliminator packs a little bit of magic. To implement the dependent
eliminator, we need a term in the target

NS
rec : Π(P : NS → TypeS) (pO : P OS) (pS : Π(n : NS). P n → P (SS n)) (n : NS). P n

satisfying the usual conversion rules. The latter constraints leaves virtually no
leeway for the constructors OS and SS . But precisely, at this point we are facing
a puzzling situation: we are only given branches for the OS and SS constructors,
as the source eliminator only knows about those ones. How can we fill in the two
remaining branches for ϝN and eN? In fact, we can, by defining NS

rec as follows.

NS
rec : Π(P : NS → TypeS) (pO : P OS) (pS : Πn.P n → P (SS n)) (n : NS). P n
NS

rec P pO pS OS := pO
NS

rec P pO pS (SS n) := pS n (NS
rec P pO pS n)

NS
rec P pO pS (ϝN i k) := (P (ϝN i k)).ϝ i (λ(o : O i). (eN i (k o))−1 #

(NS
rec P pO pS (k o)))

NS
rec P pO pS (eN i x) := . . .

We explain here how to derive the missing branches from the material that
is available. We believe that this is an enlightening point that needs to be given
a strong emphasis, as it differs radically with other settings where adding side-
effects break dependent elimination [53]. As in the effectful case, we use the
algebra structure on P to propagate the effect of ϝN to the surrounding context,
i.e. ϝN behaves as a kind of call-by-name exception. Yet, we crucially have to use
eN to rectify the type of the returned term. In the above definition,

i : I, k : O i → NS , o : O i ⊢ NS
rec P pO pS (k o) : P (k o)



but we actually want to return a term of type P (ϝN i k). With most mon-
ads, these two types are not isomorphic, and we have to restrict the recursor
to predicates P enjoying additional linearity properties, namely they must be
definitional algebra morphisms, i.e. commuting with ϝ up to conversion [5,4].
Thankfully, with sheaves the additional quotient eN is enough to derive a proof

i : I, k : O i → NS , o : O i ⊢ eN i (k o) : ϝN i (λ(q : O i). k o) = k o

but as we consider Prop to contain strict propositions, we also have

i : I, k : O i → NS , o : O i ⊢ (λ(q : O i). k o) ≡ k : O i → NS

hence in the end we do get a proof of ϝN i k = k o out of eN by conversion.
The branch for the quotient constructor eN requires a proof of its own, al-

though this is a proof-irrelevant equality so the exact term does not matter as
long as it exists, which is an easy consequence of the quotient preservation of P .

At the risk of sounding repetitive, the validity of dependent elimination is
quite surprising given that we have additional constructors for our translated
inductive types, a landmark of side-effects. What saves us really is that the
quotient prevents one to exploit these effects in a computational way. At a more
abstract level, one usually needs to restrict dependent elimination to some form
of linear predicates when throwing in effects in a dependent type theory, as
observed in [53]. Yet, S is an idempotent monad, which magically makes all
morphisms linear, hence full dependent elimination becomes valid again. To be
really fair, this line of reasoning only holds when reasoning extensionally enough,
something which is easy in a categorical setting but much less so in MLTT. The
fact that synthetic sheaves can be presented in a very computational way through
QITs is critical for this trick to go through in type theory.

Universes The last big ingredient that is still missing from our model to prop-
erly model MLTT is the existence of universes. Here the story becomes way more
blurry, and the literature is somewhat confusing. Sheaf models are the archetypi-
cal instance of a topos, so they do provide us with a small impredicative universe
of propositions Prop. We can easily reflect it in our translation. We do not give
the full details, but basically by using propext it is easy to show that

[[Prop]] := Σ(P : Prop).Π(i : I). (O i → P ) → P

is a sheaf by taking

ϝProp (i : I) (k : O i → [[Prop]]) : [[Prop]] := (Π(o : O i). (k o).1, . . . ).

If we try to replicate the same technique with Type, the intuitive equivalent is to
show that TypeS is indeed a sheaf. Except that in general, it is not. The reason
is that the use of propext for Prop does not scale to Type. One would have to
find a term ϝType (i : I) (k : O i → TypeS) : TypeS . We are quite constrained in
what we can put here because of the quotient condition. Just like for Prop, the



natural candidate for the el component of this operation is Π(i : I). (k o).el.
If we do this, we have a problem though: we cannot prove that the quotient is
preserved! Indeed, we have to show

A : TypeS , i : I ⊢ : (Π(o : O i). A.el) = A.el

but the best we can hope for is an isomorphism (Π(o : O i). A.el) ∼= A.el
by the sheafness of A. This is sufficient for Prop as isomophism implies logical
equivalence and thus equality, but this does not carry to proof-relevant types.

This is a very well-known problem that led to the introduction of stacks [10],
which are essentially sheaves where the quotient based on propositional equal-
ity is replaced by a tower of proof-relevant relations, resulting in some kind of
ω-groupoid. This kind of endeavour is unfortunately way beyond our syntactic
approach, as it would morally entail reimplementing a cubical model [16]. With-
out stacks, the universe of sheaves is only a weak universe [64], which is not
enough for our purposes. As argued in [63], there is some misunderstanding in
the literature about the availability of strict universes in run-of-the-mill sheaves.
For the sake of completeness, we recall here two ways to get them.

The first solution is to blindly replace PshTT with HoTT in everything we
did previously. There is nothing specific to be done, apart maybe for replacing
Prop with some predicative variant of strict propositions in case one does not
want to buy into resizing axioms. All other constructions are carried just the
same, except that we silently interpret equality as a univalent one, and thus in
particular the QITs we wrote before are now implicitly HITs — this is but a
mere point of view, the syntax remains unchanged. The surprising part is that by
doing so, we do not have to suffer with stacks: the universe of sheaves effortlessly
becomes a sheaf by what seems to be sheer magic. Indeed, in the strict setting,
there is no way to turn the isomorphism (Π(o : O i). A.el) ∼= A.el into an
equality. But in a univalent theory, this isomorphism is actually an equivalence,
and hence by univalence gives rise to the equality sought after. Once again, this
is the path taken by [59], although in our opinion they do not insist enough on
this miraculous phenomenon.

The other way is to replace an open universe of sheaves by a closed one, that
is, using some inductive-recursive encoding and replacing sheaves by their code.
We believe that this is the approach taken by [39], although they build directly
this object from first principles in a very non-constructive way. For this to be
applied to our syntactic setting, we would need a first-class notion of quotient
inductive recursive types (QIRT) in PshTT. To be clear, we have no idea whether
general QIRTs can be shown to exist in some models or if we can encode it away
using some variant of small induction recursion [41,37] or realignment types.
Nonetheless we sketch what they would look like to give a short, intuitive albeit
arguably too approximate explanation of the definition from [39]. The QIRT of
sheaf codes is described by an inductive definition US of codes together with a
recursive function ElS : US → TypeS additionally satisfying the sheaf quotient
condition by fiat, thanks to a quotient constructor similar to eS in US . It is not
clear exactly how this would compute, let alone be properly defined. We refer to
the exploratory work of Kaposi [42] and leave this to future study.



2.5 Computational Content of Sheaves

We want to highlight now a fact that is less well-known about sheaves that has
important consequences when thinking about computation. This fact is absent
from the historical definition of sheaves, and a bit hidden in the HoTT presenta-
tion [59], but our inductive description of sheafification makes it extremely clear.
In a nutshell, sheaves are actually about approximating idealized infinite objects
through finite approximations. This viewpoint is a staple of some constructivist
schools under the name of dynamical methods [20]. In particular, Coquand, Lom-
bardi and co-authors have conducted a systematic research program exploring
how these methods unveil the effective content of classical proofs [20,26,46]. Yet,
it does not seem to have percolated that much in the world of the proof-as-
program correspondence. We seize the opportunity to expose clearly here this
technique. Let (I,O) be a LOS in the remainder of this section.

It is a truism that ultimately, when performing computations, one only cares
about the value of some concrete datatypes. In first-order logic, this is often
conflated with the requirement that Σ1

0 formulae enjoy a witness property, while
in type theory, we typically expect closed terms ⊢ M : N to evaluate to some
concrete natural number. Such a property is traditionally called canonicity, and
can be defined more generally for all closed terms of an inductive type.

We now easily see that our sheafified theory enjoys a weaker form of canon-
icity inherited from the ambient theory by inspecting the translation from Sec-
tion 2.4. For each inductive I, we have two additional constructors ϝI and eI ,
where the latter is only used to build equalities. Our weaker canonicity thus says
that a value in the model is a finite chain of ϝI ending with an actual constructor.

We argue that this is a generalization of the fact that in MLTT, if Γ is a
consistent, purely negative context, terms Γ ⊢ M : N still enjoy canonicity [22].
With sheaves, O needs not be purely negative, but the price to pay is that we
have to keep an explicit list of calls to the ϝ constructors. It is still better than
just adding opaque axioms to the theory, since these terms bubble up to toplevel.

Note that weak canonicity also applies in particular to the empty type, which
has no actual constructor. Hence the sheaf theory is consistent exactly when O
is finitely consistent, i.e. the inductive type F := ϝF : Π(i : I). (O i → F ) → F is
empty. This is highly remininiscent of both the compactness lemma of first-order
logic and Herbrand’s theorem. Thus, sheafification is manifestly about finiteness.
But what is the infinite thing it approximates? With our presentation, it becomes
straightforward.

Definition 10. An omniscient oracle is a function α : Π(i : I).O i.

Assuming an omniscient oracle α, one can evaluate a term M : S A into an
actual value of A through the eval function defined recursively as

eval : (Π(i : I).O i) → S A → A
eval α (ηS x) := x
eval α (ϝS i k) := eval α (k (α i))



where the quotient preservation is left implicit but can be easily proved.
We see the term α as the embodiment of the infinite, able to answer all

questions. It is an idealized object that may not necessarily exist in a constructive
setting. By contrast, due to its inductive nature, a term M : S A can only ask
a finite number of questions via ϝS . The eval function mediates between the
finite and the infinite, giving a relativized meaning to an object that does only
depend on a finite approximation of an idealized abstraction. Working in a sheaf
type theory progagates this identification at all types.

This pattern is a commonplace in constructive mathematics, yet we are not
aware of any reference where it is explicitely explained through the inductive
quality of sheafification. To name a few classic instances of this viewpoint, let us
cite the algebraic closure, the ultrafilter theorem, etc. More generally, in first-
order logic all these objects can be axiomatized through the notion of geometric
theories, i.e. sets of geometric formulae of the shape

x | α1(x), . . . αn(x) ⊢
∨
i∈I

∃yi. β1(x,yi) ∧ . . . ∧ βmi(x,yi)

where the α, β predicates are atomic. Assuming a single-axiom theory, the I type
corresponds to the input x s.t. αi(x) for all 1 ≤ i ≤ n and O is the big disjunction
in the conclusion, which depends on the input x. This generalizes to arbitrary
sets of axioms by taking I to be the product of the corresponding input types.

The relationship between geometric formulae and finite approximations was
already observed by Coquand [21], who gives a model of first-order geometric
theories where proofs of Σ1

0 formulae are interpreted as inductive decision trees.

3 A Case Study of Type-Theoretical Forcing: MLTTϝ

3.1 General Motivation

The second part of this article discusses how sheaves shall earn a first-class
status in type theory. The critical point here is to be able to compute directly
in the sheaf theory. Note that we mean it in a strong sense, i.e. the objective
here is actually to obtain an extension of MLTT that can be equipped with an
algorithmic reduction generating normal forms.

To the reader, it may seem like the synthetic approach we have been advocat-
ing in the previous section is already a satisfying answer. Assuming univalence in
the target and following [59], we sketched that one can recover such a syntactic
model. Unfortunately, this is only part of the story.

A first drawback is the reliance on univalence. It brings in some technicalities,
as it is usually available through some cubical theory. Moreover, it hardwires a
lot of additional logical baggage that one may not desire to expose. For better
or for worse, traditional sheaves are developped in an anti-univalent setting. The
more neutral the foundations we define sheaves in, the more users they will reach.

One could argue that minimalism is no virtue in itself, and that type theorists
should bite the univalent bullet already. This is fair enough, but there is another



roadblock. Traditional sheaf models are the composition of a synthetic sheaf
model with a presheaf model. The latter corresponds to a monotonic reader
effect, i.e. morally a new kind of context, where the base category gives access to
modalities restricting the current state. See e.g. [38] for a type-theoretic account.

In this setting, it is virtually always the case that the LOS (I,O) is made of
exotic types, i.e. types defined through non-standard modalities of the presheaf
model that cannot be written directly in MLTT. As mentioned, it is typical for
O to be some kind of disjunction capturing a geometric formula. Yet, these dis-
junctions are not arbitrary propositions: there is a one-to-one mapping between
atomic exotic formulae and principal sieves from the underlying base category.
What we mean is that, in traditional sheaf models, there is a universe of propo-
sitions ϝProp ⊊ Prop that contains all principal sieves and is closed under e.g.
finite meets and joins, but is still at the same time definitionally proof-irrelevant
and enjoys unique choice. We believe that this is an amazing feature of these
models. In general, if one wants to keep decidability of type-checking, one has
to choose between definitional irrelevance or unique choice. Sheaf models resolve
this tension by giving both for propositions that arise a finite way from the base
category. More generally, even without taking these type-theoretic considera-
tions into account, all serious uses of sheaves are constructed above a presheaf
model. Thus there seems to be both foundational and empirical evidence that
we want to revisit the traditional setting by composing synthetic sheaves with
presheaves in a type-theoretic world.

And this is where we hit a wall. On the one hand, we have a sheaf model
requiring univalence. On the other hand, we do have a syntactic model which
interprets a theory equivalent to presheaves [52]... but this model requires and
propagates definitional UIP! As a result, we simply cannot plug one into the
other. A syntactic model of univalent presheaves seems completely out of reach,
so there is no clear way out of this conundrum via the syntactic route.

Note that the failed approach above tries to define a syntactic presheaf model
over a base category C internal to a homotopic type theory, whose precise model
does not matter but should be computational. This is subtly but fundamentally
different from the sheaf models from Coquand et al. [25]. While they also rely
on univalence and use the same synthetic encoding of sheaves, their presheaves
are defined externally in an unspecified metatheory. Said otherwise, their models
are built out of presheaves □× C → Set where □ is some cube category and C
an external base category. Unfortunately, there is no hope to recover a decent
computational content out of usual presheaves [52], so this is a no-go.

We need a more semantic approach. We want to define a type theory cap-
turing the internal language of Grothendieck toposes that keeps all the great
properties of MLTT. The task is daunting, given the variety of sheaf models. As
an initial step, we will focus in this paper on the simplest non-trivial case of
sheafification we could think of, namely the addition of a Cohen real to MLTT,
that is to say, an uninterpreted variable α : N→ B that is approximated by par-
tial functions of finite support. A close variant of this theory was first sketched



by Coquand and Jaber in [23,24]. Up to unique choice, Cohen reals correspond
to the geometric theory with one atom α : N→ B→ Prop and the two axioms

n : N | · ⊢ α n tt ∨ α n ff and n : N | α n tt, α n ff ⊢ ⊥.

This theory enjoys some remarkable properties: it is infinite and the branching
is at the same time non-trivial, finite and disjoint. In terms of LOS, the first
property means our type I is infinite, and thus our idealized object as well. This
is the whole point of forcing. The other properties constrain the O predicate.
Being non-trivial means that we get trees instead of lists in the semantics, and
finiteness will maintain decidability properties. Finally, disjointness makes the
whole setting much more tractable at the cost of some degeneracy. Semantically,
this means that the decision diagram is not a directed acyclic graph but a proper
tree. Because of this, we can completely ignore issues with unique choice and
replace the functional predicate α with an actual function. Disjoint branching
is very specific to Cohen reals, and makes our model a lot simpler, syntactically
and semantically.

3.2 Continuity

As specific as it may seem, adding a single Cohen real to a type theory can
already bring in interesting metatheoretical results about MLTT. In some way
that we already laid down in Section 2.5, the very purpose of sheafification is
to provide generalized continuity results. It is thus tempting to hope that the
archetypical continuity property shall follow from a simple form of sheaves. As
there are several non-equivalent notions of continuity [11], we need some para-
phernalia to formally explain what we mean by this word. Escardó introduced a
close relative to interaction trees called dialogue trees [31], which is just the type

Inductive D (A : Type) : Type :=
| ηD : A → DA with I : Type and O : I → Type.
| ϝD : Π(i : I). (O i → DA) → DA

As explained in Section 2.3, similarity to sheaves is not coincidental. The main
difference betweenD and S is thatD lacks any kind of quotient, and furthermore
that its O type is proof-relevant. Just like for S, we can define an evaluation
function evalD : (Π(i : I).O i) → D A → A which can be used to define a
rather strong notion of continuity for functionals.

Definition 11. A function F : (Π(i : I).O i) → A is dialogue-continuous,
written CD F , if there is d : D A s.t. Π(α : Π(i : I).O i). F α = eval α d.

This notion is strong because it implies a specific sequentialization of calls to
the higher-order argument, an intensional property not present in the traditional
view of continuity as a dependency on a finite prefix of the input. Taking specific
instances of (I,O), one can recover well-known notions of continuity. Notably, for
I := N and O i := B, this definition is equivalent to uniform continuity over the



Cantor space N → B. For I := N and O i := N, it implies pointwise continuity
over the Baire space N→ N, but is weaker than uniform continuity. As uniform
continuity over the Baire space is very strong, Fujiwara and Kawai [34] argue
that dialogue continuity is the proper way to extend uniform continuity from the
Cantor to the Baire space. Moreover, note that this generalization to arbitrary
(I,O) types is reminiscent of Brede and Herbelin’s generalized bar induction [15].

Using the fact D is a monad, Escardó gave a proof that System T enjoys
dialogue continuity for the Baire space in an external way via what amounts
to a syntactic effectful model [22]. Here, the argument N → N is handled as an
oracle in the sheaf way by interpreting System T into the call-by-value embedding
of D. This result was extended by Sterling to Brouwer sequences [62]. Finally,
Baillon et al. generalized Escardó’s result to dependent type theory [12]. Their
model interprets universes but lacks full dependent elimination. Indeed, oracle
calls are added freely via a ϝ constructor, introducing an observable effect which
forces them to restrict the interpreted theory to Baclofen Type Theory [53].

Escardó and Xu also studied more semantic approaches to the same kind of
questions [69,29] veering towards sheaves. Due to the semantic nature of these
works, it is hard to recover actual computation from their results.

There was an important series of papers around this topic from the PER com-
munity, Rahli being in the intersection of all of their authors [58,56,57,19,17,18].
These papers consider various forms of continuity in realizability models ofMLTT
à la NuPRL, with some built-in form of computation, and where the metatheory
is actually Rocq. By loyalty to the Brouwerian tradition, they are advertized as
Beth models, but they really are sheaf models, since they are proof-relevant. Note
that in their approach, the models are by design open, as there is no inductive
definition of well-typedness in sight: everything is defined in a semantics that
only cares about closed terms. Completeness is in particular a non-object, and
there is no hope to get a decidable type-checking algorithm for their non-theory.
While we boast no obsession for Brouwerian choice sequences, we believe the in-
tuitions developed in this community to be valuable, and that it is enlightening
to revisit these historical artifacts with a modern type-theoretic point of view.

In the remainder of this paper, we leverage recent developments in the mecha-
nization of models of normalization by evaluation [2,3]. Our goal is twofold. First,
we define and study MLTTϝ, the most elementary sheaf extension of MLTT with
a single Cohen real. Given the complexity of the objects at play, we formal-
ize our results in the Rocq proof assistant. Then, as a byproduct, we derive a
constructive proof of continuity for MLTT functionals over the Cantor space.

3.3 MLTTϝ

It is now time to enter the real matter. We define in this sectionMLTTϝ, a variant
of MLTT extended with a formal oracle α : N→ B, together with a local state of
forcing conditions ℓ ∈ L that represent finite knowledge about α. Note that L is a
type in the metatheory, not in MLTTϝ. Since we will often switch from one to the
other, we will try to write MLTTϝ objects in a normal font and metatheoretical



ones in a fraktur font. To further insist, we will use set-theoretical notations for
the metatheory, though it is technically the type theory of Rocq.

In the mechanization we set L := list (N×B), where list, N and B respec-
tively are metatheoretical lists, natural numbers and booleans. We will write []
for the empty list and :: for the cons operator. Despite use of lists, conditions
should rather be thought of as finite sets, and all operations will preserve the
implict reordering quotient. In particular, L enjoys the reverse inclusion order

ℓ′ ⪯ ℓ := Π(n ∈ N) (b ∈ B). (n, b)⋉ ℓ → (n, b)⋉ ℓ′

where ⋉ is any reasonable definition of list membership. When ℓ′ ⪯ ℓ, we view
ℓ′ as more precise than ℓ, insofar as it contains more information. Finally, given
ℓ ∈ L, we will write dom(ℓ) ∈ list N for the list of the first projections of ℓ.

MLTTϝ follows the usual presentation of dependent type theory with five kind
of judgments, i.e. context, type and term well-formedness together with type
and term conversion. The only difference with MLTT here is that we annotate
all judgments with forcing conditions, leading to the judgment shapes below.

well-formed context ⊢ ℓ | Γ
well-formed type ℓ | Γ ⊢ A well-formed term ℓ | Γ ⊢ M : A
convertible types ℓ | Γ ⊢ A ≡ B convertible terms ℓ | Γ ⊢ M ≡ N : A

Let us mention we only ever consider forcing conditions satisfying a well-
formedness predicate, checking that all bindings in ℓ appear at most once. This
ensures that conditions indeed code for finite approximations of functions. For-
mal definition of this predicate can be found here.

Typing and conversion rules for MLTTϝ are an extension of the rules for
MLTT, with negative Π and Σ-types with definitional η-rules, natural numbers,
booleans, empty and identity types, and one universe. We refer the interested
reader to the mechanization for a complete description of the theory.

ℓ | Γ ⊢ M : N
(Oracle)

ℓ | Γ ⊢ α M : B

⊢ ℓ | Γ (n, b)⋉ ℓ
(Eval)

ℓ | Γ ⊢ α n ≡ b : B

(n, tt) :: ℓ | Γ ⊢ J (n,ff) :: ℓ | Γ ⊢ J n ⋉̸ dom(ℓ)
(Split)

ℓ | Γ ⊢ J

Fig. 2. New rules for MLTTϝ

We only describe the additional rules handling the oracle and forcing con-
ditions in Figure 2. The Oracle rule states that α is a function in the Cantor
space. We define α as a unary term former but abuse the application nota-
tion. This is for technical reasons and we can retrieve a proper function by
η-expansion. The Eval rule states that the state of knowledge ℓ can be reflected
into conversion for α itself. As forcing conditions (n, b)⋉ℓ live in the meta-theory,

https://coqhott.github.io/digamma-mltt-esop26/coqdoc/LogRel.LContexts.html#wf_LCon
https://coqhott.github.io/digamma-mltt-esop26/coqdoc/LogRel.DeclarativeTyping.html#WfContextDecl


we rely on injections n : N and b : B as terms of MLTTϝ. Finally, sheafness of
MLTTϝ is embodied in the Split rule scheme, available for any judgment J of
our theory. It allows extending the local knowledge about α by making a case
analysis on its value at some concrete input n. We have to be ready to handle
either value, but note that the judgment is the same in both premises. This does
not prevent performing pattern-matching on α n further down the term, but
forces the Split rule to separate local extension of knowledge from its analysis.
A typical use of this rule is to derive a restricted η-rule for α, as it allows e.g.
proving

ℓ | Γ ⊢ if α n then tt else ff ≡ α n : B

for some concrete n ∈ N where the if− then− else is syntactic sugar for the
boolean recursor.

3.4 Canonicity

As explained in Section 2.5, in sheaf models usual canonicity results do not stand.
This carries over to MLTTϝ as it is not the case that a closed term [] | · ⊢ M : N
reduces to a value, since M may depend on α. We instead get a weak canonicity
result, i.e. canonicity up to an inductive tree of splits. To make this formal, we
first define the metatheoretic type D of dialogue trees parameterized by ℓ.

Inductive D (ℓ : list (N×B)) : Type :=
| ηD : D ℓ
| ϝD : Π(n : N). n ⋉̸ dom(ℓ) → (Π(b : B).D ((n, b) :: ℓ)) → D ℓ

Intuitively, d : D ℓ describes a tree of questions that are left unanswered by ℓ.
We then define d ◁ ℓ′, a predicate capturing that there is a path from ℓ to ℓ′ in
d. Both D and d ◁ ℓ′ are formally defined here.

ηD ℓ ◁ ℓ

k tt ◁ ℓ

ϝD n nε k ◁ (n, tt) :: ℓ

k ff ◁ ℓ

ϝD n nε k ◁ (n,ff) :: ℓ

The last thing we need before stating the weak canonicity theorem is a notion
of weak-head reduction for MLTTϝ. We define it as an extension of the usual rules
for MLTT, adding specific rules to handle α. Contrarily to MLTT, reduction rules
are annotated with a state of knowledge ℓ which is used in the new rules for α.
We only state these ones and refer to the mechanization for further details.

(n, b)⋉ ℓ

α n⇝ℓ b

M ⇝ℓ M
′ k ∈ N

α (Sk M)⇝ℓ α (Sk M ′)

The first rule is the counterpart to the Eval conversion rule. It reflects in the
reduction the current state of knowledge about α. The second rule is a congruence
rule for α, which allows reducing its argument as long as it may still evaluate to
a closed integer. This rule introduces a tiny amount of deep reduction, since it
can fire under an arbitrary amount of successor nodes.

https://coqhott.github.io/digamma-mltt-esop26/coqdoc/LogRel.Monad.html#DTree
https://coqhott.github.io/digamma-mltt-esop26/coqdoc/LogRel.UntypedReduction.html#OneRedAlg


In a pure setting like MLTT, there are exactly two kinds of normal forms:
values and neutrals. Values are terms which start with a introduction rule, e.g.
S M or λx : A.M . Meanwhile, neutrals are terms whose head is an elimination
blocked on a variable. In MLTTϝ, due to the oracle, we get a third kind of normal
form, which we call α-neutrals. An α-neutral at world ℓ is a term stuck on α n in
head position with n ⋉̸ (dom ℓ). Moving to a more informative ℓ′ ⪯ ℓ may unlock
further computation. It will correspond to a node in the split tree of a normal
form, and the model will ensure that α-neutrals can be eventually unblocked.

We will also consider hereditary reduction to a deep normal form M ⇓ℓ N ,
which is defined in a standard way. We are now ready to state weak canonicity
for MLTTϝ. Proving it is one of the goals of Section 4. It will be the cornerstone
to the proof that all MLTT-definable functionals are continuous.

Theorem 2 (Weak canonicity). For any closed term [] | · ⊢ M : N of MLTTϝ,

Σ(d ∈ D []).Π(ℓ ∈ L). d ◁ ℓ −→ Σ(n ∈ N).M ⇓∗
ℓ n.

3.5 Continuity

We will assume in this section that Theorem 2 holds, and will use it to prove
that MLTT functionals of type (N → B) → N are continuous. First, we need to
agree about what we actually mean by that, i.e. what the statement really says
and how internal it is. We focus first on the latter.

Assuming some formal definition of continuity, we have various levels in which
it can be reflected in MLTT. We single out three specific points on this contin-
uum, that we will call external continuity, the continuity rule and the continuity
principle. External continuity is an exclusively metatheoretical property, i.e. “for
any closed term F , we have C F” where C is a predicate in the metatheory. This
is the only one one can state when the object language is not expressive enough.
A recent paper by Escardó et al [30] internalizes an encoding of a dialogue tree
in System T but cannot internally say that it is a witness of dialogue continuity.
Here, MLTT, can express any reasonable notion of continuity as an internal prop-
erty ⊢ C : ((N→ B) → N) → Type. So we can ask for the continuity principle, a
term ΦC that proves continuity uniformly, i.e. ⊢ ΦC : Π(f : (N→ B) → N). C f .
Being the strongest of the three, it is also the trickiest. Baillon et al. [11] pro-
vide a large range of continuity definitions, but even with one of the weakest,
namely modulus continuity, Escardó and Xu [32] show that the continuity prin-
ciple on the Baire space is inconsistent in MLTT. For the Cantor type, their
counter-example does not hold however, so hope remains.

Finally, the continuity rule states that ⊢ F : (N → B) → N implies the
existence of some term ⊢ {F}C : C F . It allows reflecting the continuity proof in
MLTT itself, but in a non-uniform way. Here, the operation {F}C is defined in the
metatheory, typically via some external induction on the syntax of F which must
be a closed term. Clearly, the continuity principle implies the continuity rule,
but the inverse is not true in general. Moreover, with some mild assumptions on
the object theory, the continuity rule often implies its external variant.



We will focus on the continuity rule, taking uniform continuity as definition.
It is easier to state and equivalent to dialogue continuity on the Cantor space.

Definition 12. F : (N→ B) → N is uniformly continuous, written C F , if

Σ(n : N). Π(αβ : N→ B). α ≈n β → F α = F β

where ≈n is defined as pointwise equality on the n-th first integers.

Theorem 3 (Uniform continuity rule). For any ⊢MLTT F : (N → B) → N,
there exists a closed term ⊢MLTT {F}C : C F .

Proof. Let us assume such a F . By inclusion [] | · ⊢MLTTϝ F α̃ : N, where
α̃ := λn. α n. By Theorem 2, there is a finite set F of forcing conditions s.t. for
each ℓ ∈ F, F α̃ ⇓ℓ nℓ for some nℓ ∈ N. We can replay this reduction in MLTT by
substituting α with any MLTT term α0 that is compatible on ℓ reduction-wise.
In particular for any such α0:

⊢MLTT refl N nℓ : F α0 = nℓ. (1)

For any p ∈ N, there is ⊢MLTT setp : (N → B) → Bp → N → B defined by
finite case analysis s.t. for 0 ≤ i < p, setp M B0 . . . Bp−1 i⇝∗

MLTT Bi and for
p ≤ i, ⊢MLTT setp M B0 . . . Bp−1 i ≡ M i.

Since F is a covering, there is m ∈ N and ⊢MLTT Φ : Bm → N together with a
proof ⊢MLTT : Πα (b0 . . . bm−1 : B). F (setm α b0 . . . bm−1) = Φ b0 . . . bm−1

where Φ is defined out of {nℓ}ℓ∈F, and the proof is carried by destructing all
bi variables and concluding by Eq. (1). By reasoning internally, we easily get a
proof

⊢MLTT : Π(αβ : N→ B). α ≈m β →
F (setm α (α 0) . . . (α m− 1)) = F (setm β (β 0) . . . (β m− 1))

To conclude we need to show that F is extensional enough to behave the same
on α and its setm expansion. But this is a consequence of parametricity [13],
which shows that for any closed term ⊢MLTT M : (N→ B) → N we have a proof
⊢MLTT : Π(f g : N→ B). (Π(n : N). f n = g n) → M f = M g.

4 A syntactic model of MLTT in MLTTϝ

This section is dedicated to the description of both the theoretical and practical
aspects of our MLTTϝ model. Such models are fairly technical, so we will try to
stay high-level and will refer to the mechanization for the nitty-gritty details.

4.1 A Mechanized Logical Relation

Our model of MLTTϝ can be aptly described as a logical relation. Here, we use
this syntagm in a restricted and idiosyncratic sense to describe a specific kind



of model whose earliest representative is probably Girard’s strong normalization
model of System F [36] and whose canonical example is Abel et al. model of
MLTT [2].

We recall here the salient features of this flavour of models. First, the seman-
tics of terms is described by recursion on some syntactic description of types. In
presence of dependent types, we thus have to resort to some form of induction-
recursion to define at the same time types inductively and terms recursively
from types. Semantically, well-typedness of a term ⊩ M ∈ A is typically de-
fined through reduction to a weak-head normal form whose shape is constrained
by A. Hence, these models qualify as realizability models. Then, when caring
about the equational theory, which is the case when the source has a conversion
rule and thus in MLTT, it is customary to consider a binary PER presentation
⊩M ≡ N ∈ A of the unary variant ⊩M ∈ A. Finally, in these models all seman-
tic relations are presheaves over the category of contexts and weakenings. This
latter point is a departure from most common forms of realizability, and singles
out the critical notion of neutral terms, i.e. normal forms stuck on a variable. It
also makes it possible for the model to be complete with respect to the syntax,
which allows proving valuable results such as decidability of type-checking.

Our model follows Abel’s approach and the Rocq port [3] of the original Agda
implementation. The major difference with Abel’s complete model of MLTT is
that we morally introduce side-effects in the semantics via a splitting monad
similarly to [18]. All properties now live up to a finite tree of extensions of the
current forcing conditions, i.e. our semantic interpretations are sheaves for the
ℓ contexts. We refer to the Adjedj et al. paper [3] for the infrastructure, and we
will focus on the major differences with the original model instead.

4.2 Reducibility

Abel-style models are built in two steps. The first step is called reducibility and is
the actual model construction. The second step is called validity and consists in
closing reducibility under substitution. In usual realizability models this part is
often implicit in the soundness proof. We will concentrate on MLTTϝ reducibility
and will only allude to validity, as the latter is not specific to our model.

A model is typically defined through (small) induction-recursion. To each
type Γ ⊢ A, one associates an inductively defined reducibility statement Γ ⊩ A.
Then type convertibility, term typedness and term convertibility are defined by
recursion on a proof of Γ ⊩ A. In our setting, things get more subtle. We indeed
start by inductively defining what we call strong reducibility ℓ | Γ ⊩s A. Then,
given a proof HA ∈ ℓ | Γ ⊩s A, we define three reducibility relations at this type:

– strong reducible type convertibility ℓ | Γ ⊩s A ≡ B / HA;
– strong reducible typedness ℓ | Γ ⊩s M : A / HA;
– strong reducible term convertibility ℓ | Γ ⊩s M ≡ N : A / HA.

The intuition is that strongly reducible types and terms reduce to a value
now, at the current forcing condition ℓ. Then, to account for sheafification, we

https://coqhott.github.io/digamma-mltt-esop26/coqdoc/LogRel.LogicalRelation.html#LR


derive what we call split or weak reducibility relations, which will be the ones
that indeed interpret MLTTϝ judgments. Split reducibility is defined as the
closure of strong reducibility under what amounts to the splitting monad in
the presheaf model over ℓ contexts. The idea is that split reducible types and
terms will eventually reduce to a value in every branch, once enough splits are
performed. With HA ∈ ℓ | Γ ⊩ϝ A, it is formally defined as

ℓ | Γ ⊩ϝ A := Σ(d ∈ D ℓ). Π{ℓ′ ∈ L}. d ◁ ℓ′ → ℓ′ | Γ ⊩s A
ℓ | Γ ⊩ϝ J / HA := Σ(d ∈ D ℓ). Π{ℓ′ ∈ L} (dε ∈ HA.π1 ◁ ℓ′). ℓ′ | Γ ⊩s J / (HA.π2 dε)

The standard notion of syntactic neutrals from MLTT needs to be tweaked
w.r.t. the new reduction rules. In addition to terms stuck on variables, we need
to account for a call to the oracle stuck on a finite amount of S on top of a
neutral. We give an excerpt of old cases together with the single new case below.

whne x

whne n

whne (n M)

whne n

whne (Nrec P P0 PS n)
. . .

whne n k ∈ N

whne (α (Sk n))

We sketch a few representative cases of strong reducibility. Due to the wealth
of side-conditions in the definitions, writing it in full in print would not fit on
the page, so we only present the core data. Importantly, all definitions contain
syntactic well-formedness conditions ensuring completeness w.r.t. the syntax,
but we skip these annotations here. Similarly, for readability we concentrate on
the unary predicates but all these definitions also pack in the heterogeneous
PER variant. We abuse notations and implicit arguments quite a bit. We write
ρ ∈ ∆ ⊆ Γ for weakenings and M [σ] both for term substitution and weakening.

In Figure 3, we give reducibility for Π-types, the proverbial negative type.
With this level of abstraction, it is clear that our metatheoretical semantics is
call-by-value, even though the object theory enjoys a call-by-name equational
theory. Barring the flurry of technical annotations needed to preserve complete-
ness, the semantics is the one one would have expected from an effectful model.
Most importantly, the codomain of Π-types is not strong but split reducible,
since applying a function may perform side-effects, unlocking additional splits.

In Figure 4, we sketch reducibility of the typical positive type, namely N.
Contrarily to negative types, the relation is defined inductively, each constructor
being mapped to an inductive case. Since we have first-class variables, we also
need to freely add all well-typed neutrals. This was not visible in the term
reducibility for Π-types because neutrals are closed by head application.

In semantic models, the hard part is to justify universes. As argued in Sec-
tion 2.4, this is even a showstopper in traditional sheaf models. We have no such
trouble, because types are directly interpreted by their code. The infrastructure
is hard to erect for MLTT, which is why we have to use induction-recursion, but
once this is done sheafification poses no further trouble. We model the universe
as a positive type whose constructors are the type formers of the theory, and
this is about it. No need for stacks, univalence or QIRTs. It just works.

We quickly review some important properties of the model. The first one,
which we already advertized, is that the model is complete w.r.t. the syntax.

https://coqhott.github.io/digamma-mltt-esop26/coqdoc/LogRel.LogicalRelation.html#WLogRel
https://coqhott.github.io/digamma-mltt-esop26/coqdoc/LogRel.LogicalRelation.html#URedTm


ℓ | Γ ⊩s
Π A :=


∈ A⇝∗

ℓ Π(x : F ). G;
HF ∈ Π{∆ℓ′} (ρ ∈ ∆ ⊆ Γ ). ℓ′ ⪯ ℓ → ℓ′ | ∆ ⊩s F [ρ];
HG ∈ Π{∆ℓ′ a} (ρ ∈ ∆ ⊆ Γ ) (τ ∈ ℓ′ ⪯ ℓ).

ℓ′ | ∆ ⊩s a : F [ρ] / (HF ρ τ) → ℓ′ | ∆ ⊩ϝ G[a, ρ]; . . .


ℓ | Γ ⊩s

Π M : A / HA :=


∈ M ⇝∗

ℓ V ;
app ∈ Π{∆ℓ′ a} (ρ ∈ ∆ ⊆ Γ ) (τ ∈ ℓ′ ⪯ ℓ).

Π(a ∈ ℓ′ | ∆ ⊩s a : F [ρ] / (HF ρ τ)).
ℓ′ | ∆ ⊩ϝ V [ρ] a : G[a, ρ] / (HG ρ τ a); . . .


Fig. 3. Strong type reducibility and term reducibility for Π-types

ℓ | Γ ⊩s
N A := { ∈ A⇝∗

ℓ N; . . . }
M ⇝∗

ℓ 0 . . .

ℓ | Γ ⊩s
N M : A / HA

M ⇝∗
ℓ n whne n . . .

ℓ | Γ ⊩s
N M : A / HA

M ⇝∗
ℓ S N ℓ | Γ ⊩s

N N : A / HA . . .

ℓ | Γ ⊩s
N M : A / HA

Fig. 4. Strong type reducibility and term reducibility for natural numbers

Theorem 4 ( Completeness). If ℓ | Γ ⊩ϝ J then ℓ | Γ ⊢ J .

The second theorem is a critical semantic property of reducibility. In a nut-
shell, for all reducibility predicates, everything behaves as if type well-formedness
were a mere proposition. That is, no matter the exact proof used to build the
predicate, all proofs lead to logically equivalent relations.

Theorem 5 ( Irrelevance). If HA,H
′
A ∈ ℓ | Γ ⊩ϝ A and ℓ | Γ ⊩ϝ J / HA

then ℓ | Γ ⊩ϝ J / H′
A.

We cannot insist enough on the importance of this property. Without it, we
would face coherence hell, and would have to resort to overly abstract categorical
contraptions à la synthetic Tait computability [63] to obtain our model. Unfor-
tunately, such approaches are totally unapplicable to a proof assistant such as
Rocq, and we would have to buy into a much more expressive foundation that is
not even implemented yet. Thanks to irrelevance, we can pretend that everything
is propositional and hide coherence issues under a nice, practical abstraction.

Finally, we provide some sanity checks about the intended semantics of our
model. In particular, our predicates behave respectively as presheaves over con-
texts and as sheaves for the topology induced by the splitting operation.

Theorem 6 (Intended semantics). Reducibility is closed under weaken-
ings, splits and neutrals.

4.3 Validity and Soundness

To prove soundness of our model, we need to generalize reducibility a bit, a stan-
dard technique for MLTT models [2]. Note that forcing contexts ℓ ∈ L only get a

https://coqhott.github.io/digamma-mltt-esop26/coqdoc/LogRel.LogicalRelation.html#PiRedTy
https://coqhott.github.io/digamma-mltt-esop26/coqdoc/LogRel.LogicalRelation.html#PiRedTm
https://coqhott.github.io/digamma-mltt-esop26/coqdoc/LogRel.LogicalRelation.html#NatRedTy
https://coqhott.github.io/digamma-mltt-esop26/coqdoc/LogRel.LogicalRelation.html#NatRedTm
https://coqhott.github.io/digamma-mltt-esop26/coqdoc/LogRel.LogicalRelation.Escape.html# 
https://coqhott.github.io/digamma-mltt-esop26/coqdoc/LogRel.LogicalRelation.Irrelevance.html# 
https://coqhott.github.io/digamma-mltt-esop26/coqdoc/LogRel.LogicalRelation.Monotonicity.html# 
https://coqhott.github.io/digamma-mltt-esop26/coqdoc/LogRel.LogicalRelation.Monotonicity.html# 
https://coqhott.github.io/digamma-mltt-esop26/coqdoc/LogRel.LogicalRelation.Split.html# 
https://coqhott.github.io/digamma-mltt-esop26/coqdoc/LogRel.LogicalRelation.Neutral.html# 


degenerate form of substitutions through reverse inclusions of forcing conditions.
Hence, when defining validity, closure by forcing context substitutions is trivial.

Definition 13 ( Validity). We define semantic validity ⊩v for all our syn-
tactic classes as usual by closing reducibility by all well-typed substitutions.

We now have all the tools to state and prove the main result of our model,
of which Theorem 2 is an immediate corollary.

Theorem 7 ( Fundamental lemma). If ℓ | Γ ⊢ J then ℓ | Γ ⊩v J .

Proof. We only focus on changes w.r.t. the proof for MLTT, i.e. the rules from
Figure 2. The Split rule is literally baked in the model as per Theorem 6, leaving
us with Eval and Oracle. We focus on Oracle as it subsumes the other. We
have to prove that α M is split-reducible at type B. By induction hypothesis,
the argument M : N is a split reducible integer. Binding it, we can assume that
M is a strongly reducible integer. By definition of ⊩s

N, we have two cases. Either
M hereditarily reduces to a proper integer n, or to a term of the form Sk n for
some neutral n. In the first case we can split on n to conclude by reduction to a
concrete b. In the second case, the whole expression is a neutral, hence reducible.

5 Conclusion

The different approaches to building models discussed in this paper can be
framed along three axes: realizability, open terms and sheafness. Figure 5 il-
lustrates this classification by placing some representative models of MLTT from
the literature on a cube. The realizability axis opposes computation-free models
to models based on reduction. The open term axis contrasts semantics defined
with respect to closed terms only to models with a first-class notion of vari-
able, i.e. which are presheaves on contexts. Finally, the sheafness axis delineates
models of “pure” MLTT, with the usual notion of canonicity, from those where
side-effects in the semantics weaken canonicity. To the best of our knowledge,
our model is the only mechanized MLTT model that features all these properties.

As mentioned in Section 3.5, we believe that adding the continuity principle
to MLTTϝ is within grasp. All the necessary building blocks are already there,
we just need a local context of oracles rather than a single global one, and add
term that exploits the weak canonicity theorem in an internal way. Similarly, we
have not formally proved decidability of type-checking for MLTTϝ yet, but we
expect it to be a minor variation on the already mechanized proof for MLTT.

A more difficult task would be to define a variant of MLTTϝ for more gen-
eral Grothendieck topologies. As explained in Section 3.1, branching for Cohen
reals is both finite and disjoint. Finiteness is a must-have if we want to keep
decidability of type-checking, but the disjointness condition is very restrictive.
Studying a type-theoretic interpretation of the algebraic closure of a field, for
which Coquand and Manaa have provided a suitable site model in a intuitionistic

https://coqhott.github.io/digamma-mltt-esop26/coqdoc/LogRel.Validity.html# 
https://coqhott.github.io/digamma-mltt-esop26/coqdoc/LogRel.Fundamental.html#Fundamental


Synthetic normalization [63] MLTTϝ

NbE [1] LogRel-MLTT [2]

Sheaf topos [59] TT□
C [18]

Standard model [67] NuPRL [8]

O
p
e
n

te
rm

s

Sh
ea
ve

s

Realizability

Fig. 5. The Model Cube

higher-order logic [48], would be a first step towards less elementary models. The
Zariski topos [14] is another interesting and historically significant candidate.

More generally, recent works on dynamical methods in constructive mathe-
matics, as mentioned in Section 2.5, provide potentially interesting type-theoretic
models. Some of these results are quite spectacular. For instance, rephrasing clas-
sical local-global principles in algebraic geometry unveiled a simplification and
generalization of previous proofs of Serre’s conjecture (Quillen-Suslin’s theorem)
in commutative algebra [46]. Dynamical methods are actually about turning the
oracle-based algorithm suggested by a classical proof into a branching process,
e.g. some dialogue tree. Originally formulated in a categorical framework based
on sketches [28], dynamical methods have also found significant appplications in
computer algebra, e.g. for computing with algebraic numbers [27], transseries [9],
etc. We thus believe in the interest of revisiting Coquand, Lombardi et al.’s re-
search program, coined hidden constructions in abstract algebra in a series of
papers, through the type-theoretic perspective advocated in the present paper.

References

1. Abel, A., Aehlig, K., Dybjer, P.: Normalization by evaluation for martin-löf type
theory with one universe. In: Fiore, M. (ed.) Proceedings of the 23rd Conference
on the Mathematical Foundations of Programming Semantics, MFPS 2007, New
Orleans, LA, USA, April 11-14, 2007. Electronic Notes in Theoretical Computer
Science, vol. 173, pp. 17–39. Elsevier (2007). https://doi.org/10.1016/J.ENTCS.
2007.02.025, https://doi.org/10.1016/j.entcs.2007.02.025

2. Abel, A., Öhman, J., Vezzosi, A.: Decidability of conversion for type theory in type
theory. Proc. ACM Program. Lang. 2(POPL) (dec 2017). https://doi.org/10.
1145/3158111, https://doi.org/10.1145/3158111

3. Adjedj, A., Lennon-Bertrand, M., Maillard, K., Pédrot, P., Pujet, L.: Martin-
löf à la coq. In: Timany, A., Traytel, D., Pientka, B., Blazy, S. (eds.) Proceed-
ings of the 13th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs, CPP 2024, London, UK, January 15-16, 2024. pp. 230–

https://doi.org/10.1016/J.ENTCS.2007.02.025
https://doi.org/10.1016/J.ENTCS.2007.02.025
https://doi.org/10.1016/J.ENTCS.2007.02.025
https://doi.org/10.1016/J.ENTCS.2007.02.025
https://doi.org/10.1016/j.entcs.2007.02.025
https://doi.org/10.1145/3158111
https://doi.org/10.1145/3158111
https://doi.org/10.1145/3158111
https://doi.org/10.1145/3158111
https://doi.org/10.1145/3158111


245. ACM (2024). https://doi.org/10.1145/3636501.3636951, https://doi.

org/10.1145/3636501.3636951

4. Ahman, D.: Handling fibred algebraic effects. Proc. ACM Program. Lang.
2(POPL), 7:1–7:29 (2018). https://doi.org/10.1145/3158095, https://doi.

org/10.1145/3158095

5. Ahman, D., Ghani, N., Plotkin, G.D.: Dependent types and fibred computational
effects. In: Jacobs, B., Löding, C. (eds.) Foundations of Software Science and Com-
putation Structures - 19th International Conference, FOSSACS 2016, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings. Lecture Notes in
Computer Science, vol. 9634, pp. 36–54. Springer (2016). https://doi.org/10.
1007/978-3-662-49630-5_3, https://doi.org/10.1007/978-3-662-49630-5_3

6. Altenkirch, T., Capriotti, P., Dijkstra, G., Kraus, N., Forsberg, F.N.: Quotient
inductive-inductive types. In: Baier, C., Lago, U.D. (eds.) Foundations of Software
Science and Computation Structures - 21st International Conference, FOSSACS
2018, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings.
Lecture Notes in Computer Science, vol. 10803, pp. 293–310. Springer (2018).
https://doi.org/10.1007/978-3-319-89366-2_16, https://doi.org/10.1007/
978-3-319-89366-2_16

7. Altenkirch, T., McBride, C., Swierstra, W.: Observational equality, now! In: Stump,
A., Xi, H. (eds.) Proceedings of the ACM Workshop Programming Languages
meets Program Verification, PLPV 2007, Freiburg, Germany, October 5, 2007. pp.
57–68. ACM (2007). https://doi.org/10.1145/1292597.1292608, https://doi.
org/10.1145/1292597.1292608

8. Anand, A., Rahli, V.: Towards a formally verified proof assistant. In: Klein, G.,
Gamboa, R. (eds.) Interactive Theorem Proving - 5th International Conference,
ITP 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Aus-
tria, July 14-17, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8558,
pp. 27–44. Springer (2014). https://doi.org/10.1007/978-3-319-08970-6_3,
https://doi.org/10.1007/978-3-319-08970-6_3

9. Aschenbrenner, M., Dries, L.v.d., Hoeven, J.v.d.: Asymptotic Differential Alge-
bra and Model Theory of Transseries. No. 195 in Annals of Mathematics studies,
Princeton University Press (2017), http://arxiv.org/abs/1509.02588

10. Authors, T.S.P.: Stacks project, https://stacks.math.columbia.edu/
11. Baillon, M., Forster, Y., Mahboubi, A., Pédrot, P.M., Piquerez, M.: A Zoo of

Continuity Properties in Constructive Type Theory. In: Fernández, M. (ed.) 10th
International Conference on Formal Structures for Computation and Deduction
(FSCD 2025). Leibniz International Proceedings in Informatics (LIPIcs), vol. 337,
pp. 9:1–9:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Ger-
many (2025). https://doi.org/10.4230/LIPIcs.FSCD.2025.9, https://drops.
dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2025.9

12. Baillon, M., Mahboubi, A., Pédrot, P.: Gardening with the pythia A model of
continuity in a dependent setting. In: Manea, F., Simpson, A. (eds.) 30th EACSL
Annual Conference on Computer Science Logic, CSL 2022, February 14-19, 2022,
Göttingen, Germany (Virtual Conference). LIPIcs, vol. 216, pp. 5:1–5:18. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/

LIPICS.CSL.2022.5, https://doi.org/10.4230/LIPIcs.CSL.2022.5
13. Bernardy, J., Lasson, M.: Realizability and parametricity in pure type systems. In:

Hofmann, M. (ed.) Foundations of Software Science and Computational Struc-

https://doi.org/10.1145/3636501.3636951
https://doi.org/10.1145/3636501.3636951
https://doi.org/10.1145/3636501.3636951
https://doi.org/10.1145/3636501.3636951
https://doi.org/10.1145/3158095
https://doi.org/10.1145/3158095
https://doi.org/10.1145/3158095
https://doi.org/10.1145/3158095
https://doi.org/10.1007/978-3-662-49630-5\_3
https://doi.org/10.1007/978-3-662-49630-5_3
https://doi.org/10.1007/978-3-662-49630-5\_3
https://doi.org/10.1007/978-3-662-49630-5_3
https://doi.org/10.1007/978-3-662-49630-5_3
https://doi.org/10.1007/978-3-319-89366-2\_16
https://doi.org/10.1007/978-3-319-89366-2_16
https://doi.org/10.1007/978-3-319-89366-2_16
https://doi.org/10.1007/978-3-319-89366-2_16
https://doi.org/10.1145/1292597.1292608
https://doi.org/10.1145/1292597.1292608
https://doi.org/10.1145/1292597.1292608
https://doi.org/10.1145/1292597.1292608
https://doi.org/10.1007/978-3-319-08970-6\_3
https://doi.org/10.1007/978-3-319-08970-6_3
https://doi.org/10.1007/978-3-319-08970-6_3
http://arxiv.org/abs/1509.02588
https://stacks.math.columbia.edu/
https://doi.org/10.4230/LIPIcs.FSCD.2025.9
https://doi.org/10.4230/LIPIcs.FSCD.2025.9
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2025.9
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2025.9
https://doi.org/10.4230/LIPICS.CSL.2022.5
https://doi.org/10.4230/LIPICS.CSL.2022.5
https://doi.org/10.4230/LIPICS.CSL.2022.5
https://doi.org/10.4230/LIPICS.CSL.2022.5
https://doi.org/10.4230/LIPIcs.CSL.2022.5


tures - 14th International Conference, FOSSACS 2011, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2011,
Saarbrücken, Germany, March 26-April 3, 2011. Proceedings. Lecture Notes in
Computer Science, vol. 6604, pp. 108–122. Springer (2011). https://doi.org/10.
1007/978-3-642-19805-2_8, https://doi.org/10.1007/978-3-642-19805-2_8

14. Blechschmidt, I.: Using the internal language of toposes in algebraic geom-
etry. Ph.D. thesis, Augsburg University (2017), https://rawgit.com/iblech/

internal-methods/master/notes.pdf

15. Brede, N., Herbelin, H.: On the logical structure of choice and bar induc-
tion principles. In: 36th Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021. pp. 1–13. IEEE
(2021). https://doi.org/10.1109/LICS52264.2021.9470523, https://doi.org/
10.1109/LICS52264.2021.9470523

16. Cavallo, E., Mörtberg, A., Swan, A.W.: Unifying cubical models of univalent
type theory. In: Fernández, M., Muscholl, A. (eds.) 28th EACSL Annual Con-
ference on Computer Science Logic, CSL 2020, January 13-16, 2020, Barcelona,
Spain. LIPIcs, vol. 152, pp. 14:1–14:17. Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik (2020). https://doi.org/10.4230/LIPICS.CSL.2020.14, https://doi.
org/10.4230/LIPIcs.CSL.2020.14

17. Cohen, L., Rahli, V.: Realizing continuity using stateful computations. In: Klin, B.,
Pimentel, E. (eds.) 31st EACSL Annual Conference on Computer Science Logic,
CSL 2023, February 13-16, 2023, Warsaw, Poland. LIPIcs, vol. 252, pp. 15:1–15:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023). https://doi.org/10.
4230/LIPICS.CSL.2023.15, https://doi.org/10.4230/LIPIcs.CSL.2023.15

18. Cohen, L., Rahli, V.: TT□
C : A family of extensional type theories with effectful

realizers of continuity. Logical Methods in Computer Science Volume 20, Issue 2,
18 (Jun 2024). https://doi.org/10.46298/lmcs-20(2:18)2024, https://lmcs.
episciences.org/11666

19. Cohen, L., da Rocha Paiva, B., Rahli, V., Tosun, A.: Inductive continuity via
Brouwer trees. In: Leroux, J., Lombardy, S., Peleg, D. (eds.) 48th International
Symposium on Mathematical Foundations of Computer Science, MFCS 2023, Au-
gust 28 to September 1, 2023, Bordeaux, France. LIPIcs, vol. 272, pp. 37:1–37:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023). https://doi.org/10.
4230/LIPICS.MFCS.2023.37, https://doi.org/10.4230/LIPIcs.MFCS.2023.37

20. Coquand, T.: Dynamical method in algebra: A survey. In: Mayer, M.C., Pirri,
F. (eds.) Automated Reasoning with Analytic Tableaux and Related Meth-
ods, International Conference, TABLEAUX 2003, Rome, Italy, September 9-12,
2003. Proceedings. Lecture Notes in Computer Science, vol. 2796, p. 2. Springer
(2003). https://doi.org/10.1007/978-3-540-45206-5_2, https://doi.org/10.
1007/978-3-540-45206-5_2

21. Coquand, T.: A completeness proof for geometrical logic. Logic, Methodology and
Philosophy of Sciences (2005)

22. Coquand, T., Danielsson, N.A., Escardó, M.H., Norell, U., Xu, C.: Negative
consistent axioms can be postulated without loss of canonicity (2013), https:

//martinescardo.github.io/papers/negative-axioms.pdf

23. Coquand, T., Jaber, G.: A note on forcing and type theory. Fundam. Informaticae
100(1-4), 43–52 (2010). https://doi.org/10.3233/FI-2010-262, https://doi.
org/10.3233/FI-2010-262

24. Coquand, T., Jaber, G.: A computational interpretation of forcing in type theory.
In: Dybjer, P., Lindström, S., Palmgren, E., Sundholm, G. (eds.) Epistemology

https://doi.org/10.1007/978-3-642-19805-2\_8
https://doi.org/10.1007/978-3-642-19805-2_8
https://doi.org/10.1007/978-3-642-19805-2\_8
https://doi.org/10.1007/978-3-642-19805-2_8
https://doi.org/10.1007/978-3-642-19805-2_8
https://rawgit.com/iblech/internal-methods/master/notes.pdf
https://rawgit.com/iblech/internal-methods/master/notes.pdf
https://doi.org/10.1109/LICS52264.2021.9470523
https://doi.org/10.1109/LICS52264.2021.9470523
https://doi.org/10.1109/LICS52264.2021.9470523
https://doi.org/10.1109/LICS52264.2021.9470523
https://doi.org/10.4230/LIPICS.CSL.2020.14
https://doi.org/10.4230/LIPICS.CSL.2020.14
https://doi.org/10.4230/LIPIcs.CSL.2020.14
https://doi.org/10.4230/LIPIcs.CSL.2020.14
https://doi.org/10.4230/LIPICS.CSL.2023.15
https://doi.org/10.4230/LIPICS.CSL.2023.15
https://doi.org/10.4230/LIPICS.CSL.2023.15
https://doi.org/10.4230/LIPICS.CSL.2023.15
https://doi.org/10.4230/LIPIcs.CSL.2023.15
https://doi.org/10.46298/lmcs-20(2:18)2024
https://doi.org/10.46298/lmcs-20(2:18)2024
https://lmcs.episciences.org/11666
https://lmcs.episciences.org/11666
https://doi.org/10.4230/LIPICS.MFCS.2023.37
https://doi.org/10.4230/LIPICS.MFCS.2023.37
https://doi.org/10.4230/LIPICS.MFCS.2023.37
https://doi.org/10.4230/LIPICS.MFCS.2023.37
https://doi.org/10.4230/LIPIcs.MFCS.2023.37
https://doi.org/10.1007/978-3-540-45206-5\_2
https://doi.org/10.1007/978-3-540-45206-5_2
https://doi.org/10.1007/978-3-540-45206-5_2
https://doi.org/10.1007/978-3-540-45206-5_2
https://martinescardo.github.io/papers/negative-axioms.pdf
https://martinescardo.github.io/papers/negative-axioms.pdf
https://doi.org/10.3233/FI-2010-262
https://doi.org/10.3233/FI-2010-262
https://doi.org/10.3233/FI-2010-262
https://doi.org/10.3233/FI-2010-262


versus Ontology - Essays on the Philosophy and Foundations of Mathematics in
Honour of Per Martin-Löf, Logic, Epistemology, and the Unity of Science, vol. 27,
pp. 203–213. Springer (2012). https://doi.org/10.1007/978-94-007-4435-6_

10, https://doi.org/10.1007/978-94-007-4435-6_10
25. Coquand, T., Ruch, F., Sattler, C.: Constructive sheaf models of type theory.

Math. Struct. Comput. Sci. 31(9), 979–1002 (2021). https://doi.org/10.1017/
S0960129521000359, https://doi.org/10.1017/S0960129521000359

26. Coste, M., Lombardi, H., Roy, M.: Dynamical method in algebra: effective null-
stellensätze. Ann. Pure Appl. Log. 111(3), 203–256 (2001). https://doi.org/

10.1016/S0168-0072(01)00026-4, https://doi.org/10.1016/S0168-0072(01)

00026-4

27. Dora, J.D., Dicrescenzo, C., Duval, D.: About a new method for computing in al-
gebraic number fields. In: European Conference on Computer Algebra (2). Lecture
Notes in Computer Science, vol. 204, pp. 289–290. Springer (1985)

28. Duval, D., Reynaud, J.C.: Sketches and computation – ii: dynamic evaluation and
applications. Mathematical Structures in Computer Science 4(2), 239–271 (1994).
https://doi.org/10.1017/S096012950000044X

29. Escardó, M., Xu, C.: A constructive manifestation of the Kleene-Kreisel continuous
functionals. Ann. Pure Appl. Log. 167(9), 770–793 (2016). https://doi.org/10.
1016/J.APAL.2016.04.011, https://doi.org/10.1016/j.apal.2016.04.011

30. Escardó, M.H., da Rocha Paiva, B., Rahli, V., Tosun, A.: Internal effectful forc-
ing in system T. In: Fernández, M. (ed.) 10th International Conference on Formal
Structures for Computation and Deduction, FSCD 2025, July 14-20, 2025, Birm-
ingham, UK. LIPIcs, vol. 337, pp. 19:1–19:17. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2025). https://doi.org/10.4230/LIPICS.FSCD.2025.19, https:
//doi.org/10.4230/LIPIcs.FSCD.2025.19

31. Escardó, M.H.: Continuity of Gödel’s System T definable functionals via ef-
fectful forcing. Proceedings of the Twenty-ninth Conference on the Mathemat-
ical Foundations of Programming Semantics, MFPS 2013, New Orleans, LA,
USA, June 23-25, 2013 (2013). https://doi.org/10.1016/j.entcs.2013.09.010,
https://doi.org/10.1016/j.entcs.2013.09.010

32. Escardó, M.H., Xu, C.: The inconsistency of a brouwerian continuity princi-
ple with the Curry-Howard interpretation. 13th International Conference on
Typed Lambda Calculi and Applications, TLCA 2015, July 1-3, 2015, War-
saw, Poland (2015). https://doi.org/10.4230/LIPIcs.TLCA.2015.153, https:
//doi.org/10.4230/LIPIcs.TLCA.2015.153

33. Fiore, M.P., Pitts, A.M., Steenkamp, S.C.: Quotients, inductive types, and quotient
inductive types. Log. Methods Comput. Sci. 18(2) (2022). https://doi.org/10.
46298/LMCS-18(2:15)2022, https://doi.org/10.46298/lmcs-18(2:15)2022

34. Fujiwara, M., Kawai, T.: Equivalence of bar induction and bar recursion for con-
tinuous functions with continuous moduli. Ann. Pure Appl. Log. 170(8), 867–
890 (2019). https://doi.org/10.1016/J.APAL.2019.04.001, https://doi.org/
10.1016/j.apal.2019.04.001

35. Gilbert, G., Cockx, J., Sozeau, M., Tabareau, N.: Definitional proof-irrelevance
without K. Proc. ACM Program. Lang. 3(POPL), 3:1–3:28 (2019). https://doi.
org/10.1145/3290316, https://doi.org/10.1145/3290316

36. Girard, J.Y., Taylor, P., Lafont, Y.: Proofs and Types. Cambridge University Press,
Cambridge (1989), http://www.worldcat.org/isbn/0521371813

37. Gratzer, D.: An inductive-recursive universe generic for small families. CoRR
abs/2202.05529 (2022), https://arxiv.org/abs/2202.05529

https://doi.org/10.1007/978-94-007-4435-6\_10
https://doi.org/10.1007/978-94-007-4435-6_10
https://doi.org/10.1007/978-94-007-4435-6\_10
https://doi.org/10.1007/978-94-007-4435-6_10
https://doi.org/10.1007/978-94-007-4435-6_10
https://doi.org/10.1017/S0960129521000359
https://doi.org/10.1017/S0960129521000359
https://doi.org/10.1017/S0960129521000359
https://doi.org/10.1017/S0960129521000359
https://doi.org/10.1017/S0960129521000359
https://doi.org/10.1016/S0168-0072(01)00026-4
https://doi.org/10.1016/S0168-0072(01)00026-4
https://doi.org/10.1016/S0168-0072(01)00026-4
https://doi.org/10.1016/S0168-0072(01)00026-4
https://doi.org/10.1016/S0168-0072(01)00026-4
https://doi.org/10.1016/S0168-0072(01)00026-4
https://doi.org/10.1017/S096012950000044X
https://doi.org/10.1017/S096012950000044X
https://doi.org/10.1016/J.APAL.2016.04.011
https://doi.org/10.1016/J.APAL.2016.04.011
https://doi.org/10.1016/J.APAL.2016.04.011
https://doi.org/10.1016/J.APAL.2016.04.011
https://doi.org/10.1016/j.apal.2016.04.011
https://doi.org/10.4230/LIPICS.FSCD.2025.19
https://doi.org/10.4230/LIPICS.FSCD.2025.19
https://doi.org/10.4230/LIPIcs.FSCD.2025.19
https://doi.org/10.4230/LIPIcs.FSCD.2025.19
https://doi.org/10.1016/j.entcs.2013.09.010
https://doi.org/10.1016/j.entcs.2013.09.010
https://doi.org/10.1016/j.entcs.2013.09.010
https://doi.org/10.4230/LIPIcs.TLCA.2015.153
https://doi.org/10.4230/LIPIcs.TLCA.2015.153
https://doi.org/10.4230/LIPIcs.TLCA.2015.153
https://doi.org/10.4230/LIPIcs.TLCA.2015.153
https://doi.org/10.46298/LMCS-18(2:15)2022
https://doi.org/10.46298/LMCS-18(2:15)2022
https://doi.org/10.46298/LMCS-18(2:15)2022
https://doi.org/10.46298/LMCS-18(2:15)2022
https://doi.org/10.46298/lmcs-18(2:15)2022
https://doi.org/10.1016/J.APAL.2019.04.001
https://doi.org/10.1016/J.APAL.2019.04.001
https://doi.org/10.1016/j.apal.2019.04.001
https://doi.org/10.1016/j.apal.2019.04.001
https://doi.org/10.1145/3290316
https://doi.org/10.1145/3290316
https://doi.org/10.1145/3290316
https://doi.org/10.1145/3290316
https://doi.org/10.1145/3290316
http://www.worldcat.org/isbn/0521371813
https://arxiv.org/abs/2202.05529


38. Gratzer, D., Kavvos, G.A., Nuyts, A., Birkedal, L.: Multimodal dependent type
theory. In: Hermanns, H., Zhang, L., Kobayashi, N., Miller, D. (eds.) LICS ’20:
35th Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken,
Germany, July 8-11, 2020. pp. 492–506. ACM (2020). https://doi.org/10.1145/
3373718.3394736, https://doi.org/10.1145/3373718.3394736

39. Gratzer, D., Shulman, M., Sterling, J.: Strict universes for grothendieck topoi.
CoRR abs/2202.12012 (2022), https://arxiv.org/abs/2202.12012

40. Griffin, T.: A formulae-as-types notion of control. In: Allen, F.E. (ed.) Confer-
ence Record of the Seventeenth Annual ACM Symposium on Principles of Pro-
gramming Languages, San Francisco, California, USA, January 1990. pp. 47–58.
ACM Press (1990). https://doi.org/10.1145/96709.96714, https://doi.org/
10.1145/96709.96714

41. Hancock, P.G., McBride, C., Ghani, N., Malatesta, L., Altenkirch, T.: Small induc-
tion recursion. In: Hasegawa, M. (ed.) Typed Lambda Calculi and Applications,
11th International Conference, TLCA 2013, Eindhoven, The Netherlands, June
26-28, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7941, pp. 156–
172. Springer (2013). https://doi.org/10.1007/978-3-642-38946-7_13, https:
//doi.org/10.1007/978-3-642-38946-7_13

42. Kaposi, A.: Towards quotient inductive-inductive-recursive types. In: 29th Inter-
national Conference on Types for Proofs and Programs, TYPES 2023. pp. 124–126
(2023), https://types2023.webs.upv.es/TYPES2023.pdf

43. Kaposi, A., Kovács, A., Altenkirch, T.: Constructing quotient inductive-inductive
types. Proc. ACM Program. Lang. 3(POPL), 2:1–2:24 (2019). https://doi.org/
10.1145/3290315, https://doi.org/10.1145/3290315

44. Kiselyov, O., Shan, C.: Delimited continuations in operating systems. In: Koki-
nov, B.N., Richardson, D.C., Roth-Berghofer, T., Vieu, L. (eds.) Modeling and
Using Context, 6th International and Interdisciplinary Conference, CONTEXT
2007, Roskilde, Denmark, August 20-24, 2007, Proceedings. Lecture Notes in Com-
puter Science, vol. 4635, pp. 291–302. Springer (2007). https://doi.org/10.1007/
978-3-540-74255-5_22, https://doi.org/10.1007/978-3-540-74255-5_22

45. Kleene, S.C.: Recursive Functionals and Quantifiers of Finite Types I. Transactions
of the American Mathematical Society 91(1), 1 (Apr 1959). https://doi.org/
10.2307/1993145, https://www.jstor.org/stable/1993145?origin=crossref

46. Lombardi, H., Quitté, C., Yengui, I.: Hidden constructions in abstract algebra. VI.
The theorem of Maroscia and Brewer & Costa. J. Pure Appl. Algebra 212(7), 1575–
1582 (2008). https://doi.org/10.1016/j.jpaa.2007.10.009, https://doi.org/
10.1016/j.jpaa.2007.10.009

47. Mac Lane, S., Moerdijk, I.: Sheaves in Geometry and Logic a First Introduction to
Topos Theory. Springer New York, New York, NY (1992), http://link.springer.
com/book/10.1007/978-1-4612-0927-0

48. Mannaa, B., Coquand, T.: A sheaf model of the algebraic closure. In: CL&C.
EPTCS, vol. 164, pp. 18–32 (2014)

49. Miquel, A.: Forcing as a program transformation. In: Proceedings of the 26th An-
nual IEEE Symposium on Logic in Computer Science, LICS 2011, June 21-24, 2011,
Toronto, Ontario, Canada. pp. 197–206. IEEE Computer Society (2011). https:
//doi.org/10.1109/LICS.2011.47, https://doi.org/10.1109/LICS.2011.47

50. Palmgren, E.: From intuitionistic to point-free topology: on the foundation
of homotopy theory. In: Logicism, intuitionism, and formalism, Synth. Libr.,
vol. 341, pp. 237–253. Springer, Dordrecht (2009). https://doi.org/10.1007/

978-1-4020-8926-8_12, https://doi.org/10.1007/978-1-4020-8926-8_12

https://doi.org/10.1145/3373718.3394736
https://doi.org/10.1145/3373718.3394736
https://doi.org/10.1145/3373718.3394736
https://doi.org/10.1145/3373718.3394736
https://doi.org/10.1145/3373718.3394736
https://arxiv.org/abs/2202.12012
https://doi.org/10.1145/96709.96714
https://doi.org/10.1145/96709.96714
https://doi.org/10.1145/96709.96714
https://doi.org/10.1145/96709.96714
https://doi.org/10.1007/978-3-642-38946-7\_13
https://doi.org/10.1007/978-3-642-38946-7_13
https://doi.org/10.1007/978-3-642-38946-7_13
https://doi.org/10.1007/978-3-642-38946-7_13
https://types2023.webs.upv.es/TYPES2023.pdf
https://doi.org/10.1145/3290315
https://doi.org/10.1145/3290315
https://doi.org/10.1145/3290315
https://doi.org/10.1145/3290315
https://doi.org/10.1145/3290315
https://doi.org/10.1007/978-3-540-74255-5\_22
https://doi.org/10.1007/978-3-540-74255-5_22
https://doi.org/10.1007/978-3-540-74255-5\_22
https://doi.org/10.1007/978-3-540-74255-5_22
https://doi.org/10.1007/978-3-540-74255-5_22
https://doi.org/10.2307/1993145
https://doi.org/10.2307/1993145
https://doi.org/10.2307/1993145
https://doi.org/10.2307/1993145
https://www.jstor.org/stable/1993145?origin=crossref
https://doi.org/10.1016/j.jpaa.2007.10.009
https://doi.org/10.1016/j.jpaa.2007.10.009
https://doi.org/10.1016/j.jpaa.2007.10.009
https://doi.org/10.1016/j.jpaa.2007.10.009
http://link.springer.com/book/10.1007/978-1-4612-0927-0
http://link.springer.com/book/10.1007/978-1-4612-0927-0
https://doi.org/10.1109/LICS.2011.47
https://doi.org/10.1109/LICS.2011.47
https://doi.org/10.1109/LICS.2011.47
https://doi.org/10.1109/LICS.2011.47
https://doi.org/10.1109/LICS.2011.47
https://doi.org/10.1007/978-1-4020-8926-8\_12
https://doi.org/10.1007/978-1-4020-8926-8_12
https://doi.org/10.1007/978-1-4020-8926-8\_12
https://doi.org/10.1007/978-1-4020-8926-8_12
https://doi.org/10.1007/978-1-4020-8926-8_12


51. Paulin-Mohring, C.: Définitions Inductives en Théorie des Types. Accreditation
to supervise research, Université Claude Bernard - Lyon I (Dec 1996), https:

//theses.hal.science/tel-00431817
52. Pédrot, P.: Russian constructivism in a prefascist theory. In: Hermanns, H.,

Zhang, L., Kobayashi, N., Miller, D. (eds.) LICS ’20: 35th Annual ACM/IEEE
Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11,
2020. pp. 782–794. ACM (2020). https://doi.org/10.1145/3373718.3394740,
https://doi.org/10.1145/3373718.3394740

53. Pédrot, P., Tabareau, N.: An effectful way to eliminate addiction to depen-
dence. In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, June 20-23, 2017. pp. 1–12. IEEE Computer So-
ciety (2017). https://doi.org/10.1109/LICS.2017.8005113, https://doi.org/
10.1109/LICS.2017.8005113

54. Pédrot, P., Tabareau, N.: The fire triangle: how to mix substitution, dependent
elimination, and effects. Proc. ACM Program. Lang. 4(POPL), 58:1–58:28 (2020).
https://doi.org/10.1145/3371126, https://doi.org/10.1145/3371126

55. Poirier, H.: La vraie nature de l’intelligence. Science & Vie 1013, 38–57 (February
2002)

56. Rahli, V., Bickford, M.: Validating brouwer’s continuity principle for num-
bers using named exceptions. Math. Struct. Comput. Sci. 28(6), 942–990
(2018). https://doi.org/10.1017/S0960129517000172, https://doi.org/10.

1017/S0960129517000172
57. Rahli, V., Bickford, M., Cohen, L., Constable, R.L.: Bar induction is compatible

with constructive type theory. J. ACM 66(2), 13:1–13:35 (2019). https://doi.
org/10.1145/3305261, https://doi.org/10.1145/3305261

58. Rahli, V., Bickford, M., Constable, R.L.: Bar induction: The good, the bad, and
the ugly. In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, June 20-23, 2017. pp. 1–12. IEEE Computer So-
ciety (2017). https://doi.org/10.1109/LICS.2017.8005074, https://doi.org/
10.1109/LICS.2017.8005074

59. Rijke, E., Shulman, M., Spitters, B.: Modalities in homotopy type theory. Log.
Methods Comput. Sci. 16(1) (2020). https://doi.org/10.23638/LMCS-16(1:2)
2020, https://doi.org/10.23638/LMCS-16(1:2)2020

60. Serre, J.P.: Faisceaux algébriques cohérents. Ann. of Math. (2) 61, 197–278 (1955).
https://doi.org/10.2307/1969915, https://doi.org/10.2307/1969915

61. Sherman, B., Sciarappa, L., Chlipala, A., Carbin, M.: Computable decision making
on the reals and other spaces: via partiality and nondeterminism. In: LICS. pp.
859–868. ACM (2018)

62. Sterling, J.: Higher order functions and brouwer’s thesis. J. Funct. Program.
31, e11 (2021). https://doi.org/10.1017/S0956796821000095, https://doi.

org/10.1017/S0956796821000095
63. Sterling, J.: First Steps in Synthetic Tait Computability: The Objective Metathe-

ory of Cubical Type Theory. Ph.D. thesis, Carnegie Mellon University, USA
(2022). https://doi.org/10.1184/R1/19632681.V1, https://doi.org/10.1184/
r1/19632681.v1

64. Streicher, T.: Universes in toposes. In: Crosilla, L., Schuster, P.M. (eds.) From
sets and types to topology and analysis - Towards practicable foundations for
constructive mathematics, Oxford logic guides, vol. 48. Oxford University Press
(2005)

65. Troelstra, A., van Dalen, D.: Constructivism in Mathematics An Introduction,
vol. 121. Elsevier (1988)

https://theses.hal.science/tel-00431817
https://theses.hal.science/tel-00431817
https://doi.org/10.1145/3373718.3394740
https://doi.org/10.1145/3373718.3394740
https://doi.org/10.1145/3373718.3394740
https://doi.org/10.1109/LICS.2017.8005113
https://doi.org/10.1109/LICS.2017.8005113
https://doi.org/10.1109/LICS.2017.8005113
https://doi.org/10.1109/LICS.2017.8005113
https://doi.org/10.1145/3371126
https://doi.org/10.1145/3371126
https://doi.org/10.1145/3371126
https://doi.org/10.1017/S0960129517000172
https://doi.org/10.1017/S0960129517000172
https://doi.org/10.1017/S0960129517000172
https://doi.org/10.1017/S0960129517000172
https://doi.org/10.1145/3305261
https://doi.org/10.1145/3305261
https://doi.org/10.1145/3305261
https://doi.org/10.1145/3305261
https://doi.org/10.1145/3305261
https://doi.org/10.1109/LICS.2017.8005074
https://doi.org/10.1109/LICS.2017.8005074
https://doi.org/10.1109/LICS.2017.8005074
https://doi.org/10.1109/LICS.2017.8005074
https://doi.org/10.23638/LMCS-16(1:2)2020
https://doi.org/10.23638/LMCS-16(1:2)2020
https://doi.org/10.23638/LMCS-16(1:2)2020
https://doi.org/10.23638/LMCS-16(1:2)2020
https://doi.org/10.23638/LMCS-16(1:2)2020
https://doi.org/10.2307/1969915
https://doi.org/10.2307/1969915
https://doi.org/10.2307/1969915
https://doi.org/10.1017/S0956796821000095
https://doi.org/10.1017/S0956796821000095
https://doi.org/10.1017/S0956796821000095
https://doi.org/10.1017/S0956796821000095
https://doi.org/10.1184/R1/19632681.V1
https://doi.org/10.1184/R1/19632681.V1
https://doi.org/10.1184/r1/19632681.v1
https://doi.org/10.1184/r1/19632681.v1


66. Univalent Foundations Program, T.: Homotopy Type Theory: Univalent Founda-
tions of Mathematics. https://homotopytypetheory.org/book, Institute for Ad-
vanced Study (2013)

67. Werner, B.: Une Théorie des Constructions Inductives. Ph.D. thesis, Paris Diderot
University, France (1994), https://tel.archives-ouvertes.fr/tel-00196524

68. Xia, L., Zakowski, Y., He, P., Hur, C., Malecha, G., Pierce, B.C., Zdancewic,
S.: Interaction trees: representing recursive and impure programs in coq. Proc.
ACM Program. Lang. 4(POPL), 51:1–51:32 (2020). https://doi.org/10.1145/
3371119, https://doi.org/10.1145/3371119

69. Xu, C., Escardó, M.H.: A constructive model of uniform continuity. In: Hasegawa,
M. (ed.) Typed Lambda Calculi and Applications, 11th International Confer-
ence, TLCA 2013, Eindhoven, The Netherlands, June 26-28, 2013. Proceedings.
Lecture Notes in Computer Science, vol. 7941, pp. 236–249. Springer (2013).
https://doi.org/10.1007/978-3-642-38946-7_18, https://doi.org/10.1007/
978-3-642-38946-7_18

https://homotopytypetheory.org/book
https://tel.archives-ouvertes.fr/tel-00196524
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119
https://doi.org/10.1007/978-3-642-38946-7\_18
https://doi.org/10.1007/978-3-642-38946-7_18
https://doi.org/10.1007/978-3-642-38946-7_18
https://doi.org/10.1007/978-3-642-38946-7_18

	In Cantor Space No One Can Hear You Stream

